
Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

63

Context-Based Model for Concern Markup
of a Source Code

1 M.S. Malevannyy <mmxforever@mail.ru>
2 S.S. Mikhalkovich <miks@sfedu.ru>

1 Don State Technical University,

162, Socialisticheskaja st., Rostov-on-Don, 344022, Russia
2 Southern Federal University,

8A, Mil'chakova, Rostov-on-Don, 344090, Russia

Abstract. In this paper we describe our approach to representing concerns in an interface of an

IDE to make navigation across crosscutting concerns faster and easier. Concerns are

represented as a tree of an arbitrary structure, each node of the tree can be bound to a fragment

of code. It allows one to quickly locate fragments in the source code and makes switching

between software development tasks easier. We describe a model which specifies data

structures used to store the information about these code fragments and algorithms used to find

the code fragment in original or modified source code. The model describes the information

about code fragments as a set of contexts. Another important feature of the model is language

independency. The model supports different programming, mark-up, DSL-languages and any

structured text, such as a documentation. Main goal is to keep concern tree consistent with

evolving source code. Search algorithm is designed to work with a modified source code, where

the code fragment may change. The model is implemented as a tool, which supports different

programming languages and integrates into different editors and integrated development

environments. Source code analysis is performed by a set of lightweight parsers. In case of

significant changes if the code fragment may be not found automatically the tool helps a

programmer to find one by suggesting possible places in the source code based on the stored

information.

Ключевые слова: Concerns; Separation of Concerns; Program Comprehension; Integrated

Development Environments

DOI: 10.15514/ISPRAS-2016-28(2)-4

For citation: Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern

Markup of a Source Code. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 63-78.

DOI: 10.15514/ISPRAS-2016-28(2)-4

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

64

1. Introduction

During software development and maintenance developers usually work with several

code fragments related to their current task or concern. Most concerns are

crosscutting[1], which means that code related to it tends to be scattered across a

number of files, or different places within one file. Repeated navigation between these

code fragments requires a considerable time and effort[2]. These fragments form a

"working set". Switching to another task requires investigating the source code and

locating all fragments relevant to the task. Returning to the task after working on

another one may take significant time.

A number of techniques address to this problem, such as Aspect-Oriented

Programming[3], Feature-Oriented Programming[4][5][6], Delta-Oriented

Programming[7], Subject-Oriented Programming[8] and others. Most of them are

intended to explicitly separate concerns into a number of modules and provide

different mechanisms of composition of these modules. It often requires significant

changes in the source code to use one of these techniques.

Other methods provide support of concerns by adding new tools to an IDE, such as

virtual files[9][10][11] colour markup[12] without changing the source code. These

tools are often designed for only one IDE and depend on its infrastructure and thus

are limited to only few languages, supported by the IDE. Another common limitation

is low tolerance of changes in the source code. When the code is modified some code

fragments may be lost.

Many of these tools are limited to only one programming language, while large

software projects are often developed in several languages, including DSL-languages

and markup languages, and code fragments related to a concern may be scattered

across files in different languages.

We are currently developing an approach[13] intended to mitigate the problems of

navigation across the code and switching between different tasks. The approach

doesn't require any changes to the source code. It defines a notion of a concern as a

tree-like structure, consisting of sub-concerns and code fragments. Similarly to

ConcernMapper[14] it displays a concern tree in an IDE as a toolbox and allows one

to quickly locate fragments in the source code. Unlike most other tools it and may be

used in different IDEs and allows one to work with code in different languages.

Another goal is robustness, which allows working with the code being actively

developed keeping concern tree consistent with the code.

2. Model

We present a model our approach is based on. It uses lightweight parsers to analyze

source text and to create parse tree, which will be used later. The model defines the

data being stored in the concern tree. And finally, it defines algorithms to search the

code fragments in a modified source code.

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

65

2.1. Lightweight parsing

The model is common for different languages. To minimize dependency on IDE

infrastructure we use lightweight parsing to analyze the source code and build parse

tree, which contains information about significant entities in the code. Lightweight

parsers can recover from errors and produce parse tree for code with errors or

incomplete code, which is important while the code is being modified.

Adding support of another programming language requires development of a

lightweight parser for this language. Lightweight parsers are simple and easy to

develop using our DSL language LightParse. For most languages it takes only about

10-30 lines of text to express important language features and produce a lightweight

parser. The parser is able to analyze source code and build a simple parse tree with

only nodes, corresponding to these language features. Any other parts of source code

(e.g. method bodies) are skipped. Saving information about an entity in the source

code is available for all entities returned by the parser. The more detailed parse tree

the parser produces — the more entities can be saved in the concern tree, however

development of the parser may require more time.

Lightweight parsers produce a lightweight parse tree. Nodes of the tree have type,

name and location in the source code. Node name consists of several tokens; one of

them may be marked as important. For example method name consist not only of one

identifier — name, which is marked as important, but also includes parameter names

and types, access modifiers, return value type and so on.

An example of a lightweight parser is given in subsection 2.3. Lightweight parsing is

described in our paper[15] in more detail. The paper provides examples of lightweight

parser grammar. More examples may be found in GitHub repository of the tool1 (files

with extension ".lp").

2.2. Data

The approach is not limited to any specific programming language and therefore the

information in the concern tree should be sufficient to support different languages.

Also, we assume that the source code may change and the concern tree should

possibly store some redundant data to find the code fragment after the code has

changed.

Each code fragment in the concern tree stores next 5 items:

 Type.

 Header context. It may include entity name and any number of additional

tokens.

 Outer context. It includes names and types of all parent nodes from the

immediate parent to the root of the parse tree.

1 https://github.com/MikhailoMMX/AspectMarkup/tree/master/Parsers

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

66

 Horizontal context. It consists of two subsets of names and types of

preceding and subsequent sibling nodes.

 Inner context. It includes a subset of subnodes of current code fragment.

These items form Context of the node. Except for type, any other item may be empty.

Type is used to filter non-relevant nodes when searching for the code fragments. If a

concern tree item is bound to a method only methods should be considered, other

nodes, e.g. classes, fields may be ignored.

Header context represents entity name and several additional tokens. In the

following C# code example

public void visit(TreeNode t)

public void visit(Expression e)

both methods are named visit, but have different parameter types and names.

Header context makes possible distinguishing overloaded methods and other entities

with same names. Header context is represented as a list of tokens, where one token

may be marked as important and it is considered as the name of the entity. Header

context as well as name may be empty.

Outer context stores enclosing entities for the code fragment, such as classes and

namespaces. In many languages there may be variables and methods with exactly

same names, but defined in different classes or namespaces. An example is the

implementation of one interface by different classes. In this case it's necessary to save

not only the name of the entity, but also the name of enclosing entities. In the

following example

namespace N

{

 class C1 : IVisitor

 {

 public void visit(IVisitor v) { }

 }

 class C2 : IVisitor

 {

 public void visit(IVisitor v) { }

 }

}

both methods have same names and header contexts, but are defined in different

classes. For example, outer context for the first method will include name and type of

class C1 and namespace N. Outer context for an entity is a list of Header contexts and

Types for each enclosing entity starting from the immediate parent to the topmost

entity in the source file.

Header context and outer context are sufficient for most programming languages,

where all names are unique, at least in a certain scope. However, there is another class

of languages, such as Yacc (grammar definition language), or markup languages, such

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

67

as XML. In these languages there may be two entities with same name in same scope.

Without additional information binding concern tree nodes to such entities is

ambiguous. To handle these cases two different kinds of context were added to the

model.

Horizontal context keeps nearest neighbors before and after the node. It consists of

two sets of pairs (Header context + Type), one for preceding entities and one for

subsequent entities. Following example is an excerpt from ANSI C grammar[16]:

selection_statement

 : IF '(' expression ')'

 statement ELSE statement

 ...

 ;

There are two occurrences of statement in a subrule of a rule

selection_statement. Their horizontal contexts are different: token ELSE and

another non-terminal statement are located after the first occurrence of

statement and before the second one. This information makes it possible to

distinguish similar entities by their location among their neighbor entities.

It could have been achieved by saving an index of the entity. For example, first

statement gets index 1 and second one gets index 2, but saving indexes is less

tolerant to changes in the source text. Adding or removing entities in the beginning

of a subrule invalidates indexes of all subsequent entities, but has almost no effect on

horizontal context.

Inner context is intended to store subnodes of an entity. In some cases an entity can

have empty name and may be distinguished from another one only by its content. For

example, variable declaration sections in such language as PascalABC.NET[17] are

unnamed, but they have different variables:

var

 X, Y : Double;

var

 Name, Address : string;

 Age : integer;

In this example, there are two sections. It may be necessary to bind a concern tree

node to a whole section. Horizontal context cannot be reliable in this case because it

keeps only type and name, which is empty — changing their order will lead to

incorrect result of the search. Inner context is a set of Header contexts and Types for

some subnodes. In the example above saving only one subnode (i.e. variable name)

is enough to distinguish these sections. Amount of subnodes to be saved as the inner

context may vary.

Inner context for leaves of a parse tree may contain lines of source code. This may

apply if the entity spans multiple lines in the source code (e.g. methods).

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

68

Inner and horizontal contexts may be empty if the entity has no neighbor nodes or

subnodes. Otherwise. it may be not necessary to store all neighbors or subnodes.

Usually, a small amount of unique nodes is enough to distinguish similar entities. In

many languages horizontal and inner contexts are a redundant information. However,

using horizontal and inner contexts increases reliability of the search even with a code

on a programming languages that normally don't need these two kinds of context.

When the code has changed this information may be useful.

Let T is a parse tree node. 𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑇) = (𝑁𝑎𝑚𝑒𝑇 , 𝑇𝑦𝑝𝑒𝑇 , 𝑁𝑇 , 𝑂𝑇 , 𝐻𝑇 , 𝐼𝑇) is a

tuple of node Name, Type and its Header, Outer, Horizontal and Inner contexts

described above. When a binding to the node T is added to the concern tree,

𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑇) is saved.

Name and Type are strings. Header context 𝑁𝑇 = (𝑆1, 𝑆2, … 𝑆𝑛 is a list of strings.

Outer context 𝑂𝑇 = ((𝑁1, 𝑇1), (𝑁2, 𝑇2), … (𝑁𝑛, 𝑇𝑛)) is a list of pairs, where 𝑁𝑖 is a

Header Context and 𝑇𝑖 is a type of an enclosing entity. Inner Context 𝐼𝑇 = {(𝑁𝑖 , 𝑇𝑖)}

is a set of pairs: header contexts and type of an entity. And Horizontal context 𝐻𝑇 =

({(𝑁𝑖 , 𝑇𝑖)}, {(𝑁𝑗, 𝑇𝑗)}) is a pair of sets of header contexts and types of entities.

2.3. Additional markup

Our approach is focused on finding code fragments without using any modifications

of source code. Additional markup, such as comments with special keywords clutters

the code if used frequently. However, in some cases it might be feasible to mark some

places in the code with comments. First scenario is binding to code fragments in a

file, which contains a lot of very similar entities. Some XML files may have such

structure. In this example:

There are two nodes C, with equal contexts. Despite being subnodes of different

parent nodes, their outer contexts are equal, because both parent nodes have same

name. To handle this case it might require to save horizontal context for each parent

node, which is not implemented in the model.

Another scenario is binding to code fragments in frequently modified code, where

entities may undergo significant changes.

This kind of markup requires a lightweight parser, which builds parse tree based on

comments. Comments may define points and spans in the source code.

// ConcernBegin Serialization

...

// Concern SomePoint

A

B B

C C

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

69

...

// ConcernEnd Serialization

The code above shows an example of a markup with comments. Concern

Serialization is a span and SomePoint is a single line marked with a comment.

Lightweight parser for this markup is simple and may work with source code in many

languages. The only modification it may require to adapt the parser to a different

language is changing comment start symbols. Here is a grammar of the lightweight

parser written in LightParse:

%Extension "*"

Token Tk [[:IsLetterOrDigit:]_]*|

 [[:IsPunctuation:][:IsSymbol:]]

Token NewLine \r|\n|\r\n

Rule Program : [#Comment|Other]*

Rule Comment : "//" @CTk? @Tk+

Rule CTk: @"ConcernBegin"

 | @"ConcernEnd"

 | @"Concern"

Rule Other : Tk

 | NewLine

 | #error

3. Algorithms

There are two aspects of working with the concern tree: adding a node to the tree and

searching the code fragment, related to the node. Both actions require a parse tree,

which is provided by a lightweight parser. In the following part of the section we take

into consideration only a subset of parse tree nodes whose type is equal to the type of

an entity being saved or the one being searched. Given the T is a parse tree node to

be saved in the concern tree, we consider a set 𝑇𝑟𝑒𝑒 = {𝑇𝑖 | 𝑇𝑦𝑝𝑒𝑇𝑖
= 𝑇𝑦𝑝𝑒𝑇}.

Next step is calculating a distance between T and every item 𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒.

3.1. Calculating distances

Distance two tree nodes is a vector of distances between each component of a context

for a given pair of nodes.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇, 𝑇𝑖) = 𝐷𝑖 = (𝐷𝑁𝑎𝑚𝑒, 𝐷𝑇𝑦𝑝𝑒, 𝐷𝑁, 𝐷𝑂, 𝐷𝐻, 𝐷𝐼)

where:

𝐷𝑇𝑦𝑝𝑒 = {
1, 𝑖𝑓 𝑇𝑦𝑝𝑒𝑇 ≠ 𝑇𝑦𝑝𝑒𝑇𝑖

0, 𝑖𝑓 𝑇𝑦𝑝𝑒𝑇 = 𝑇𝑦𝑝𝑒𝑇𝑖

Distance for other part of context is calculated with functions LDistance and

SDistance, described further below:

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

70

 𝐷𝑁𝑎𝑚𝑒 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑎𝑚𝑒𝑇 , 𝑁𝑎𝑚𝑒𝑇𝑖
)

 𝐷𝑁 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
)

 𝐷𝑂 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑇 , 𝑂𝑇𝑖
)

 𝐷𝐻 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻𝑇 , 𝐻𝑇𝑖
)

 𝐷𝐼 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐼𝑇 , 𝐼𝑇𝑖
)

Zero in each component of a vector 𝐷 means equality of corresponding parts of

contexts of T and Ti. The higher these values — the less similar two parts of contexts

are.

Calculating the distance for Name, Header context and outer context is based on a

Levenshtein metric [18]. Levenshtein distance for two strings reflects the number of

edits (insertions, deletions and substitutions) required to change one string into the

other. Names of entities are just strings, however Header contexts are lists of strings.

Levenshtein distance in this case is calculated similarly, but each edit is a deletion,

insertion or substitution of a token. Weight of a substitution in this case depends on

similarity of tokens and ranges between 0 (tokens are equal) to 2 (weight of insertion

+ weight of deletion) if two tokens have maximum possible edit distance between

them. Distance between two outer contexts is calculated similarly. Each item of an

outer context is a pair (Type, Header Context) and the weight of substitution depends

on distance between to header contexts.

Calculation of edit distance is performed by overloaded functions LDistance.

Horizontal and inner contexts contain a subset of nodes and the distance is calculated

as a number of subnodes present in T and absent in Ti.

Calculation of distance between sets is performed by function SDistance:

𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐼, 𝐼𝑖) = |𝐼 \ 𝐼𝑖|

𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻, 𝐻𝑖) = |𝐻𝐿 \ 𝐻𝑖𝐿
| + |𝐻𝑅 \ 𝐻𝑖𝑅

|

3.2. Saving information

Name, Type, Header and Outer contexts are required parts of a context and are saved

always. Inner and Horizontal contexts are optional in some cases. To determine

should they be saved or not and how much nodes they should contain we are looking

for other nodes in the parse tree with similar Header Contexts.

Given the T is the parse tree node to be saved we define two sets of parse tree nodes:

𝑇𝑟𝑒𝑒𝐿 = {𝑇𝑖 |𝑂𝑇𝑖
= 𝑂𝑇}

𝑇𝑟𝑒𝑒𝐺 = {𝑇𝑖 |𝑂𝑇𝑖
≠ 𝑂𝑇}

In other words, one subset consists of all neighbour nodes for T (Local scope) and

other one - of all other nodes (Global scope).

After that, we calculate two values: NearL and NearG.

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

71

𝑁𝑒𝑎𝑟𝐿 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
) ∶ 𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒𝐿; ∀𝑇𝑗 ∈ 𝑇𝑟𝑒𝑒𝐿, 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁𝑇 , 𝑁𝑇𝑗

)

≥ 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
)

In other words, we find a distance between header contexts of T and the most similar

node within the scope of a node T.

𝑁𝑒𝑎𝑟𝐺 = 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
) ∶ 𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒𝐺; ∀𝑇𝑗 ∈ 𝑇𝑟𝑒𝑒𝐺, 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁𝑇 , 𝑁𝑇𝑗

)

≥ 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
)

similar to NearL, but outside of the scope of T.

When NearG > 0, NearL > 0 there are no other nodes with same header. In this case

Inner and Horizontal contexts are optional and may be omitted. If NearG = 0, NearL

> 0 there are similar nodes with different outer context. Again, saving Inner and

Horizontal contexts is optional, but may improve search results if the source file is

modified. In case of NearL = 0 saving inner and horizontal context is required.

The values NearL and NearG are saved within the concern tree and will be used for

the search.

3.3. Searching

A node in the concern tree keeps Context of some node T.

𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑇) = (𝑁𝑎𝑚𝑒𝑇 , 𝑇𝑦𝑝𝑒𝑇 , 𝑁𝑇 , 𝑂𝑇 , 𝐻𝑇 , 𝐼𝑇)

After some modifications were applied to the source file, target node may change as

well. In some cases target node may be absent in the parse tree, if the code fragment

related to the concern was removed. We do not address this case in our research and

the tool is designed to always try to find target node or suggest a list of most similar

entities.

The search begins with parsing a file and calculating edit distance 𝐷𝑖 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇, 𝑇𝑖) ∀𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒

Next step — checking if there is only one node in the tree, which is similar to the

target node and therefore considered as the result of the search. It depends on values

NearG and NearL.

If NearL>0, then there was only one entity in the source file with Header context HT.

In this case if there is only one node Ti with similar Header context in the tree — it is

returned as the result:

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒 ∶ 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
) <

𝑀𝑖𝑛(𝑁𝑒𝑎𝑟𝐺, 𝑁𝑒𝑎𝑟𝐿)

2
;

∀𝑇𝑗 ≠ 𝑇𝑖 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁𝑇 , 𝑁𝑇𝑗
) >

𝑀𝑖𝑛(𝑁𝑒𝑎𝑟𝐺, 𝑁𝑒𝑎𝑟𝐿)

2

If NearL = 0, then there were other entities in the source tree, but only in the same

scope as T. In addition to the condition above we can return Ti if it has minimal

distance for Header, Inner and Horizontal contexts among all other nodes:

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

72

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇𝑖 ∈ 𝑇𝑟𝑒𝑒 ∶ ∀𝑇𝑗 ≠ 𝑇𝑖 ∶ 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑇 , 𝑁𝑇𝑖
) ≤ 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑁𝑇 , 𝑁𝑇𝑗

)

𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐼𝑇 , 𝐼𝑇𝑖
) ≪ 𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐼𝑇 , 𝐼𝑇𝑗

)

𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻𝑇 , 𝐻𝑇𝑖
) ≪ 𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐻𝑇 , 𝐻𝑇𝑗

)

These conditions are correct if NearG > 0. Otherwise there were other entities in the

source file with same Header Context outside of the scope of T. In this case we add

requirements 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑇 , 𝑂𝑇𝑖
) = 0 and 𝐿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑂𝑇 , 𝑂𝑇𝑗

) = 0 to both

conditions.

If there are no exactly one node Ti,, which satisfies the requirements above we

consider the search result as ambiguous and cannot return only one node as the result.

It may occur when the source code was modified significantly, the target entity was

changed or removed and there are 0 or 2 or more nodes in the parse tree, similar to

the target node. In this case the set of all nodes is sorted according to the product of

𝐷𝑖 ∙ 𝑊, where vector 𝑊 defines weights of parts of contexts.

3.4. Complexity

Wagner-Fischer algorithm[19] is used to calculate edit distances. It has a time

complexity of O(NM) where N and M are lengths of two strings. Calculating edit

distance of Header Contexts requires calculating edit distance between two strings at

each step. For simplicity, we assume that all tokens and all header contexts have

similar length. It gives a time complexity of O(N2M2), where N is the length of Header

contexts (in tokens) and M is length of tokens.

Calculating edit distance between two Outer Contexts has a time complexity of

O(N2M2K2), where K is a length of Outer Context (depth of the parse tree).

In most cases values N, M and K are relatively small. Length of separate tokens

usually ranges between 1 and 10–15, longer identifiers are rare. Header Context

contains usually not more than 10–15 tokens. Outer context in case of most

programming languages contains 1–3 items (e.g. a namespace and a class).

Calculating edit distance is performed for each item in set Tree.

Other operations have a time complexity between O(N) (calculating NearG and

NearL, finding exact match) and O(N log N) (sorting), where N is a number of items

in set Tree.

4. Tool

he tool2 based on the model was designed to be easily integrated into different

integrated developer environments and text editors, such as Microsoft Visual Studio

and Notepad++.

2 Available at https://github.com/MikhailoMMX/AspectMarkup

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

73

4.1. Architecture

The tool is separated into 3 main parts:

 A collection of lightweight parsers and a parser generator. A parser

analyzes source files written in a specific language and provides a parse

tree which is then used by the core. To make development of new parsers

easier a DSL-language {\em LightParse} was implemented along with an

utility which generates lex/yacc and C\# code of the parser from an input

LightParse file.

 Core. It implements the model with algorithms. It loads and runs parsers to

get a parse tree when it's necessary for saving or searching for a code

fragment. A visual component with user interface ready to be integrated

into different IDEs is also implemented.

 A collection of plug-ins for integrated development environments or text

editors. Since the tool relies on lightweight parsers rather than on a specific

IDE, and the visual part of the tool along with algorithms is provided by

the core, the tool can be very easily integrated into different IDEs. A plug-

in for an IDE should only display the UI component and implement simple

interface, which defines 10 methods, such as getting and setting cursor

position, accessing the text of currently open files and event handlers for

opening and closing the IDE.

At this moment implemented lightweight parsers include: C#, Lex and Yacc, Java,

XML, PascalABC.NET and a parser for our own language LightParse. Plug-ins for

Microsoft Visual Studio, Notepad++ and PascalABC.NET[20] are developed and the

tool is also integrated into a grammar editor Yacc MC.

4.2. Functionality

The tool adds a concern tree to the interface of a IDE. Concern tree may have arbitrary

structure and is created by a developer. Each tree node has title and optional

description and subnodes. Description length is not limited. It's displayed as a tooltip

and may be edited in a separate window.

Each node may be bound to a fragment of code. In this case the node is marked with

an arrow. Double click performs navigation to the code fragment if the code fragment

may be identified unambiguously. Otherwise, the tool suggests several most similar

code fragments. Each code fragment may be navigated to in one click and if the code

fragment is found, double click updates the information in the concern tree, so next

navigation will not require any additional actions.

A reverse search is also possible. The tool can find a node in the concern tree by

cursor position in a current file. Along with the descriptions for tree nodes it may be

used to extract some long comments from the code into the concern tree and still be

able to easily find and read them.

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

74

There are several scenarios of using the concern tree. First, it may be used to maintain

a "working set" of fragments, related to a current task. Concern tree is relatively small

and finding the node in the tree may be much faster than finding the code fragment in

one of currently open files manually.

Concern tree significantly simplifies re-creating working set when returning to a task.

Instead of recalling class and method names, performing cross-reference search it’s

only necessary to expand a subnode in the concern tree related to the task.

Concern tree is very helpful when a new developer starts working with unfamiliar

project. Concern tree resembles a table of contents, it's easy to find concerns in it and

each concern contains all code fragments related to it with descriptions. Reading

description and navigating across the code helps to understand how the code is

organized and how it works.

The functionality, concern tree examples and the tool usage scenarios were presented

at CEE-SEC(R) 2015 Conference3.

5. Conclusion

We propose an approach to working with crosscutting concerns. Concerns are

organized in a tree-like structure and tree nodes are bound to code fragments scattered

across the project. Concern tree is added to the interface of IDE as a toolbox. Concern

tree simplifies navigating across scattered fragments and is helpful for investigating

and re-investigating a concern. We describe a model our approach is based on. A

metrics of distance between entities in a code is defined. A description of data, stored

in a concern tree is given. Algorithms of identifying a minimal amount of data to store

and searching an entity in a modified source code are provided.

The model is implemented in a tool, which supports different programming languages

and integrates into different editors end integrated development environments. It

performs either navigation to a saved code fragment if it can be determined precisely,

or shows most similar code fragments otherwise. The concern markup tool is used in

development of PascalABC.NET and the tool itself.

At this moment some features of the model are not implemented yet, such as

horizontal context.

We are currently collecting statistical data and enhancing algorithms to better handle

most frequent changes in the source code. Some parameters, such as weights of

operations need adjustments.

References
[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying

crosscutting concerns” in Proceedings of the First International Workshop on Assessment

3 http://2015.secr.ru/lang/ru/program/submitted-presentations/aspect-markup-of-a-

source-code-for-quick-navigating-a-project

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

75

of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC,USA:

IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007.4.

[2]. A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how

developers seek, relate, and collect relevant information during software maintenance

tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006. DOI:

10.1109/TSE.2006.116.

[3]. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An

overview of AspectJ” in Proceedings of the 15thEuropean Conference on Object-Oriented

Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327–353.

(http://dl.acm.org/citation.cfm?id=646158.680006)

[4]. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca

model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89–94, Sep. 1994.

DOI: /10.1109/52.311067.

[5]. D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in

Proceedings of the 25th International Conference on Software Engineering, ser. ICSE ’03.

Washington, DC, USA: IEEE Computer Society, 2003, pp. 187–197.

(http://dl.acm.org/citation.cfm?id=776816.776839).

[6]. S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language independent, automated

software composition” in Proceedings of the31st International Conference on Software

Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.

221–231. DOI: 10.1109/ICSE.2009.5070523.

[7]. I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of

software product lines” in Proceedings of the 14th International Conference on Software

Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,

pp. 77–91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

[8]. W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”

in Proceedings of the Eighth Annual Conference on Object-oriented Programming

Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,

1993, pp. 411–428. DOI: 10.1145/165854.165932.

[9]. M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through

multidimensional program storage” in Proceedings of the 2nd International Conference

on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,

2003, pp. 188–197. DOI: 10.1145/643603.643623.

[10]. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.

Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code

understanding and maintenance” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp.

2503–2512. DOI: 10.1145/1753326.1753706.

[11]. S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to

extend syntax for advanced modularity?” in Proceedings of the 11th Annual International

Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,

USA: ACM, 2012, pp. 95–106. DOI: 10.1145/2162049.2162061.

[12]. C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in

Proceedings of the 30th International Conference on Software Engineering, ser. ICSE ’08.

New York, NY, USA: ACM, 2008, pp. 311–320. DOI: 10.1145/1368088.1368131.

[13]. M. Malevannyy and S. Mikhalkovich, [Implementation of support of aspects in integrated

development environments], in Sovremennye informatsionnye tekhnologii: tendentsii i

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

76

perspektivy razvitiya: materialy konferentsii [Modern information technologies:

tendencies and perspectives of evolution], 2015, pp. 351–353 (in Russian).

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation

of scattered concerns” in Proceedings of the 2005OOPSLA Workshop on Eclipse

Technology eXchange, ser. eclipse ’05.New York, NY, USA: ACM, 2005, pp. 65–69.

DOI: 10.1145/1117696.1117710.

[15]. M. Malevannyy, [Lightweight parsing and its application in development environment].

Informatizatsiya i svyaz’ [Informatization and communication], vol. 3, pp. 89–94, 2015,

(in Russian).

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. PascalABC.NET. (in Russian). http://pascalabc.net/

[18]. V. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals”

Soviet Physics – Doklady, vol. 10, no. 8, pp. 707–710,1965, (in Russian).

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.

21, no. 1, pp. 168–173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. I. V. Bondarev, Y. V. Belyakova, and S. S. Mikhalkovich, [System pascalabc.net 10 years

of evolution], in ”XX Nauchnaya konferentsiya Sovremennye informatsionnye

tekhnologii: tendentsii i perspektivy razvitiya. Materialy konferentsii [XX Scientific

conference Modern information technologies: tendencies and perspectives of evolution¨],

2013, pp.69–71, (in Russian).

Контекстно-ориентированная модель для разметки
сквозной функциональности в исходном коде

1 M.C. Малеванный < mmxforever@mail.ru>
2 С.С. Михалкович <miks@sfedu.ru>

1 Донской Государственный Технический Университет,

344022, Россия, г. Ростов-на-Дону, ул. Социалистическая, д. 162.
2 Южный Федеральный Университет,

344090, Россия, Ростов-на-Дону, Мильчакова, д. 8А.

Аннотация. В данной статье описывается подход к упрощению работы со сквозной

функциональностью в исходном коде за счет добавления к среде разработки средств

разметки сквозной функциональности. Разметка представлены в виде дерева, отдельные

узлы которого могут быть привязаны к блокам кода, обеспечивая быструю навигацию

по фрагментам кода, реализующим сквозную функциональность. Привязка узлов дерева

к коду осуществляется за счет сохранения в дереве набора информации о фрагментах

кода. Сохраняемая информация содержит имя и тип фрагмента кода, а также несколько

видов контекстов, которые позволяют однозначно найти фрагмент в коде. Эти

контексты позволяют в рамках одной модели работать с кодом на различных языках, как

программирования, так и языках разметки, DSL-языках, а также с любым

структурированным текстом, например, документацией. Реализация алгоритмов поиска

фрагмента по сохраненной информации учитывает возможность внесения изменений в

код в процессе разработки, что обеспечивает устойчивость привязки. При небольших

изменениях исходного кода фрагмент может быть найден автоматически. В случае более

серьезных изменений реализован полуавтоматический поиск при минимальном участии

Малеванный M.C., Михалкович С.С. Контекстно-ориентированная модель для разметки сквозной

функциональности в исходном коде. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 63-78.

77

программиста. Исходный код анализируется легковесными парсерами, не полагаясь на

инфраструктуру среды разработки. За счет этого достигается возможность работать с

широким спектром языков, а также интеграция инструмента в различные среды

разработки с минимальными усилиями. В статье представлена модель хранения данных,

алгоритмы поиска, а также обзор инструмента, реализующего данную модель.

Ключевые слова: разделение ответственностей; аспекты; языки программирования;

среды разработки

DOI: 10.15514/ISPRAS-2016-28(2)-4

Для цитирования: Малеванный M.C., Михалкович С.С. Контекстно-ориентированная

модель для разметки сквозной функциональности в исходном коде. Труды ИСП РАН,

том 28, вып. 2, 2016 г., стр.63-78 (на английском). DOI: 10.15514/ISPRAS-2016-28(2)-4

Список литературы

[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying

crosscutting concerns” in Proceedings of the First International Workshop on Assessment

of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC, USA:

IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007.4.

[2]. A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how

developers seek, relate, and collect relevant information during software maintenance

tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006. DOI:

10.1109/TSE.2006.116.

[3]. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An

overview of AspectJ” in Proceedings of the 15thEuropean Conference on Object-Oriented

Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327–353.

(http://dl.acm.org/citation.cfm?id=646158.680006)

[4]. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca

model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89–94, Sep. 1994.

DOI: /10.1109/52.311067.

[5]. D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in

Proceedings of the 25th International Conference on Software Engineering, ser. ICSE ’03.

Washington, DC, USA: IEEE Computer Society, 2003, pp. 187–197.

(http://dl.acm.org/citation.cfm?id=776816.776839).

[6]. S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language independent, automated

software composition” in Proceedings of the31st International Conference on Software

Engineering, ser. ICSE ’09.Washington, DC, USA: IEEE Computer Society, 2009, pp.

221–231. DOI: 10.1109/ICSE.2009.5070523.

[7]. I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of

software product lines” in Proceedings of the 14th International Conference on Software

Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,

pp. 77–91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

[8]. W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”

in Proceedings of the Eighth Annual Conference on Object-oriented Programming

Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,

1993, pp. 411–428. DOI: 10.1145/165854.165932.

Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

78

[9]. M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through

multidimensional program storage” in Proceedings of the 2nd International Conference

on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,

2003, pp. 188–197. DOI: 10.1145/643603.643623.

[10]. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.

Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code

understanding and maintenance” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp.

2503–2512. DOI: 10.1145/1753326.1753706.

[11]. S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to

extend syntax for advanced modularity?” in Proceedings of the 11th Annual International

Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,

USA: ACM, 2012, pp. 95–106. DOI: 10.1145/2162049.2162061.

[12]. C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in

Proceedings of the 30th International Conference on Software Engineering, ser. ICSE ’08.

New York, NY, USA: ACM, 2008, pp. 311–320. DOI: 10.1145/1368088.1368131.

[13]. М.С. Малеванный, С.С. Михалкович, Реализация поддержки аспектов

программного кода в интегрированных средах разработки. Современные

информационные технологии: тенденции и перспективы развития, 2015, стр. 351–

353.

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation

of scattered concerns” in Proceedings of the 2005OOPSLA Workshop on Eclipse

Technology eXchange, ser. eclipse ’05.New York, NY, USA: ACM, 2005, pp. 65–69.

DOI: 10.1145/1117696.1117710.

[15]. М.С. Малеванный, Легковесный парсинг и его использование для функций среды

разработки. Информатизация и связь, том 3, стр. 89–94, 2015.

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. PascalABC.NET. http://pascalabc.net/

[18]. В. И. Левенштейн. Двоичные коды с исправлением выпадений, вставок и

замещений символов. Доклады Академий Наук СССР, 1965. 163.4, стр. 845–848.

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.

21, no. 1, pp. 168–173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. Бондарев И. В., Белякова Ю. В., Михалкович С. С. Система программирования

PascalABC.NET — 10 лет развития // XX Научная конференция «Современные

информационные технологии: тенденции и перспективы развития». Материалы

конференции. Ростов н/Д, 2013. С. 69–71.

