Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

Context-Based Model for Concern Markup
of a Source Code

1M.S. Malevannyy <mmxforever@mail.ru>
28.S. Mikhalkovich <miks@sfedu.ru>
! Don State Technical University,
162, Socialisticheskaja st., Rostov-on-Don, 344022, Russia
2Southern Federal University,
8A, Mil'chakova, Rostov-on-Don, 344090, Russia

Abstract. In this paper we describe our approach to representing concerns in an interface of an
IDE to make navigation across crosscutting concerns faster and easier. Concerns are
represented as a tree of an arbitrary structure, each node of the tree can be bound to a fragment
of code. It allows one to quickly locate fragments in the source code and makes switching
between software development tasks easier. We describe a model which specifies data
structures used to store the information about these code fragments and algorithms used to find
the code fragment in original or modified source code. The model describes the information
about code fragments as a set of contexts. Another important feature of the model is language
independency. The model supports different programming, mark-up, DSL-languages and any
structured text, such as a documentation. Main goal is to keep concern tree consistent with
evolving source code. Search algorithm is designed to work with a modified source code, where
the code fragment may change. The model is implemented as a tool, which supports different
programming languages and integrates into different editors and integrated development
environments. Source code analysis is performed by a set of lightweight parsers. In case of
significant changes if the code fragment may be not found automatically the tool helps a
programmer to find one by suggesting possible places in the source code based on the stored
information.

KimoueBnbie ciiosa: Concerns; Separation of Concerns; Program Comprehension; Integrated
Development Environments

DOI: 10.15514/ISPRAS-2016-28(2)-4

For citation: Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern
Markup of a Source Code. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 63-78.
DOI: 10.15514/ISPRAS-2016-28(2)-4

63



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

1. Introduction

During software development and maintenance developers usually work with several
code fragments related to their current task or concern. Most concerns are
crosscutting[1], which means that code related to it tends to be scattered across a
number of files, or different places within one file. Repeated navigation between these
code fragments requires a considerable time and effort[2]. These fragments form a
"working set". Switching to another task requires investigating the source code and
locating all fragments relevant to the task. Returning to the task after working on
another one may take significant time.

A number of techniques address to this problem, such as Aspect-Oriented
Programming[3],  Feature-Oriented  Programming[4][5][6],  Delta-Oriented
Programming[7], Subject-Oriented Programming[8] and others. Most of them are
intended to explicitly separate concerns into a number of modules and provide
different mechanisms of composition of these modules. It often requires significant
changes in the source code to use one of these techniques.

Other methods provide support of concerns by adding new tools to an IDE, such as
virtual files[9][10][11] colour markup[12] without changing the source code. These
tools are often designed for only one IDE and depend on its infrastructure and thus
are limited to only few languages, supported by the IDE. Another common limitation
is low tolerance of changes in the source code. When the code is modified some code
fragments may be lost.

Many of these tools are limited to only one programming language, while large
software projects are often developed in several languages, including DSL-languages
and markup languages, and code fragments related to a concern may be scattered
across files in different languages.

We are currently developing an approach[13] intended to mitigate the problems of
navigation across the code and switching between different tasks. The approach
doesn't require any changes to the source code. It defines a notion of a concern as a
tree-like structure, consisting of sub-concerns and code fragments. Similarly to
ConcernMapper[14] it displays a concern tree in an IDE as a toolbox and allows one
to quickly locate fragments in the source code. Unlike most other tools it and may be
used in different IDEs and allows one to work with code in different languages.
Another goal is robustness, which allows working with the code being actively
developed keeping concern tree consistent with the code.

2. Model

We present a model our approach is based on. It uses lightweight parsers to analyze
source text and to create parse tree, which will be used later. The model defines the
data being stored in the concern tree. And finally, it defines algorithms to search the
code fragments in a modified source code.

64



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

2.1. Lightweight parsing

The model is common for different languages. To minimize dependency on IDE
infrastructure we use lightweight parsing to analyze the source code and build parse
tree, which contains information about significant entities in the code. Lightweight
parsers can recover from errors and produce parse tree for code with errors or
incomplete code, which is important while the code is being modified.

Adding support of another programming language requires development of a
lightweight parser for this language. Lightweight parsers are simple and easy to
develop using our DSL language LightParse. For most languages it takes only about
10-30 lines of text to express important language features and produce a lightweight
parser. The parser is able to analyze source code and build a simple parse tree with
only nodes, corresponding to these language features. Any other parts of source code
(e.g. method bodies) are skipped. Saving information about an entity in the source
code is available for all entities returned by the parser. The more detailed parse tree
the parser produces — the more entities can be saved in the concern tree, however
development of the parser may require more time.

Lightweight parsers produce a lightweight parse tree. Nodes of the tree have type,
name and location in the source code. Node name consists of several tokens; one of
them may be marked as important. For example method name consist not only of one
identifier — name, which is marked as important, but also includes parameter names
and types, access modifiers, return value type and so on.

An example of a lightweight parser is given in subsection 2.3. Lightweight parsing is
described in our paper[15] in more detail. The paper provides examples of lightweight
parser grammar. More examples may be found in GitHub repository of the tool* (files
with extension ".Ip™).

2.2. Data

The approach is not limited to any specific programming language and therefore the
information in the concern tree should be sufficient to support different languages.
Also, we assume that the source code may change and the concern tree should
possibly store some redundant data to find the code fragment after the code has
changed.

Each code fragment in the concern tree stores next 5 items:

o Type.
e Header context. It may include entity name and any number of additional
tokens.

e Quter context. It includes names and types of all parent nodes from the
immediate parent to the root of the parse tree.

L https://github.com/MikhailoMMX/AspectMarkup/tree/master/Parsers
65



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

e Horizontal context. It consists of two subsets of names and types of

preceding and subsequent sibling nodes.

e Inner context. It includes a subset of subnodes of current code fragment.
These items form Context of the node. Except for type, any other item may be empty.
Type is used to filter non-relevant nodes when searching for the code fragments. If a
concern tree item is bound to a method only methods should be considered, other
nodes, e.g. classes, fields may be ignored.

Header context represents entity name and several additional tokens. In the
following C# code example

public void visit (TreeNode t)

public void visit (Expression e)

both methods are named visit, but have different parameter types and names.
Header context makes possible distinguishing overloaded methods and other entities
with same names. Header context is represented as a list of tokens, where one token
may be marked as important and it is considered as the name of the entity. Header
context as well as name may be empty.

Outer context stores enclosing entities for the code fragment, such as classes and
namespaces. In many languages there may be variables and methods with exactly
same names, but defined in different classes or namespaces. An example is the
implementation of one interface by different classes. In this case it's necessary to save
not only the name of the entity, but also the name of enclosing entities. In the
following example

namespace N

{
class C1 : IVisitor
{
public void visit (IVisitor v) { }
}
class C2 : IVisitor
{

public void visit (IVisitor v) { }

}

both methods have same names and header contexts, but are defined in different
classes. For example, outer context for the first method will include name and type of
class c1 and namespace N. Outer context for an entity is a list of Header contexts and
Types for each enclosing entity starting from the immediate parent to the topmost
entity in the source file.

Header context and outer context are sufficient for most programming languages,
where all names are unique, at least in a certain scope. However, there is another class
of languages, such as Yacc (grammar definition language), or markup languages, such

66



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

as XML. In these languages there may be two entities with same name in same scope.
Without additional information binding concern tree nodes to such entities is
ambiguous. To handle these cases two different kinds of context were added to the
model.
Horizontal context keeps nearest neighbors before and after the node. It consists of
two sets of pairs (Header context + Type), one for preceding entities and one for
subsequent entities. Following example is an excerpt from ANSI C grammar[16]:
selection statement

IF '(' expression ')'

statement ELSE statement

There are two occurrences of statement in a subrule of a rule
selection_ statement. Their horizontal contexts are different: token ELSE and
another non-terminal statement are located after the first occurrence of
statement and before the second one. This information makes it possible to
distinguish similar entities by their location among their neighbor entities.
It could have been achieved by saving an index of the entity. For example, first
statement gets index 1 and second one gets index 2, but saving indexes is less
tolerant to changes in the source text. Adding or removing entities in the beginning
of a subrule invalidates indexes of all subsequent entities, but has almost no effect on
horizontal context.
Inner context is intended to store subnodes of an entity. In some cases an entity can
have empty name and may be distinguished from another one only by its content. For
example, variable declaration sections in such language as Pascal ABC.NET[17] are
unnamed, but they have different variables:
var

X, Y : Double;
var

Name, Address : string;

Age : integer;
In this example, there are two sections. It may be necessary to bind a concern tree
node to a whole section. Horizontal context cannot be reliable in this case because it
keeps only type and name, which is empty — changing their order will lead to
incorrect result of the search. Inner context is a set of Header contexts and Types for
some subnodes. In the example above saving only one subnode (i.e. variable name)
is enough to distinguish these sections. Amount of subnodes to be saved as the inner
context may vary.
Inner context for leaves of a parse tree may contain lines of source code. This may
apply if the entity spans multiple lines in the source code (e.g. methods).

67



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

Inner and horizontal contexts may be empty if the entity has no neighbor nodes or
subnodes. Otherwise. it may be not necessary to store all neighbors or subnodes.
Usually, a small amount of unique nodes is enough to distinguish similar entities. In
many languages horizontal and inner contexts are a redundant information. However,
using horizontal and inner contexts increases reliability of the search even with a code
on a programming languages that normally don't need these two kinds of context.
When the code has changed this information may be useful.

Let $T$ is a parse tree node. Context(T) = (Namer, Typer, Ny, O, Hy, I7) is a
tuple of node Name, Type and its Header, Outer, Horizontal and Inner contexts
described above. When a binding to the node T is added to the concern tree,
Context(T) is saved.

Name and Type are strings. Header context Ny = (53,55, ...S,, is a list of strings.
Outer context O; = ((N, Ty), (N,, T), ... (N, T,)) is a list of pairs, where N; is a
Header Context and T; is a type of an enclosing entity. Inner Context I = {(N;, T;)}
is a set of pairs: header contexts and type of an entity. And Horizontal context H; =
(N, TS, {(Nj, Tj)}) is a pair of sets of header contexts and types of entities.

2.3. Additional markup

Our approach is focused on finding code fragments without using any modifications
of source code. Additional markup, such as comments with special keywords clutters
the code if used frequently. However, in some cases it might be feasible to mark some
places in the code with comments. First scenario is binding to code fragments in a
file, which contains a lot of very similar entities. Some XML files may have such
structure. In this example:

A

7~

B B
(I

c C

There are two nodes C, with equal contexts. Despite being subnodes of different
parent nodes, their outer contexts are equal, because both parent nodes have same
name. To handle this case it might require to save horizontal context for each parent
node, which is not implemented in the model.

Another scenario is binding to code fragments in frequently modified code, where
entities may undergo significant changes.

This kind of markup requires a lightweight parser, which builds parse tree based on
comments. Comments may define points and spans in the source code.

// ConcernBegin Serialization

// Concern SomePoint

68



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

// ConcernEnd Serialization

The code above shows an example of a markup with comments. Concern
Serialization is a span and SomePoint is a single line marked with a comment.
Lightweight parser for this markup is simple and may work with source code in many
languages. The only modification it may require to adapt the parser to a different
language is changing comment start symbols. Here is a grammar of the lightweight
parser written in LightParse:

%$Extension "*"

Token Tk [[:IsLetterOrDigit:] ]%*|

[[:IsPunctuation:] [:IsSymbol:]]
Token NewLine \r|\n|\r\n

Rule Program : [#Comment | Other] *
Rule Comment : "//"™ QCTk? QTk+
Rule CTk: @"ConcernBegin"

| @"ConcernEnd"
| @"Concern"
Rule Other : Tk
| NewLine
| #error

3. Algorithms

There are two aspects of working with the concern tree: adding a node to the tree and
searching the code fragment, related to the node. Both actions require a parse tree,
which is provided by a lightweight parser. In the following part of the section we take
into consideration only a subset of parse tree nodes whose type is equal to the type of
an entity being saved or the one being searched. Given the T is a parse tree node to
be saved in the concern tree, we consider a set Tree = {T; | Typer, = Typer}.

Next step is calculating a distance between T and every item T; € Tree.

3.1. Calculating distances

Distance two tree nodes is a vector of distances between each component of a context
for a given pair of nodes.

Distance(T,T;) = D; = (DName, DType, DN, DO, DH, DI)
where:
1,if Type; # Typer,
DType = ) '
0,if Typer = Typer,
Distance for other part of context is calculated with functions LDistance and
SDistance, described further below:

69



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

e DName = LDistance(Namer, Namer,)

e DN = LDistance(Nr, Nr,)

e DO = LDistance(Or, Or,)

e DH = LDistance(Hr, Hr,)

e DI = LDistance(Ir, Ir,)
Zero in each component of a vector D means equality of corresponding parts of
contexts of T and T;. The higher these values — the less similar two parts of contexts
are.
Calculating the distance for Name, Header context and outer context is based on a
Levenshtein metric [18]. Levenshtein distance for two strings reflects the number of
edits (insertions, deletions and substitutions) required to change one string into the
other. Names of entities are just strings, however Header contexts are lists of strings.
Levenshtein distance in this case is calculated similarly, but each edit is a deletion,
insertion or substitution of a token. Weight of a substitution in this case depends on
similarity of tokens and ranges between 0 (tokens are equal) to 2 (weight of insertion
+ weight of deletion) if two tokens have maximum possible edit distance between
them. Distance between two outer contexts is calculated similarly. Each item of an
outer context is a pair (Type, Header Context) and the weight of substitution depends
on distance between to header contexts.
Calculation of edit distance is performed by overloaded functions LDistance.
Horizontal and inner contexts contain a subset of nodes and the distance is calculated
as a number of subnodes present in T and absent in Ti.
Calculation of distance between sets is performed by function SDistance:

SDistance(l,I;) = |I \ ;|
SDistance(H,H;) = |[H, \ H;, | + |Hx \ H;

el

3.2. Saving information

Name, Type, Header and Outer contexts are required parts of a context and are saved
always. Inner and Horizontal contexts are optional in some cases. To determine
should they be saved or not and how much nodes they should contain we are looking
for other nodes in the parse tree with similar Header Contexts.

Given the T is the parse tree node to be saved we define two sets of parse tree nodes:
TreelL = {T; |Or, = Or}
TreeG = {T; |07, # Or}
In other words, one subset consists of all neighbour nodes for T (Local scope) and
other one - of all other nodes (Global scope).
After that, we calculate two values: NearL and NearG.

70



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

NearL = LDistance(NT, NTl.) : T; € Treel; VT; € Treel, LDistance (NT, NT].)
> LDistance(Nr, Nr,)

In other words, we find a distance between header contexts of T and the most similar
node within the scope of a node T.

NearG = LDistance(NT, NTi) : T; € TreeG; VT; € TreeG, LDistance (NT, NTJ.)
> LDistance(Nr, Nr,)

similar to NearL, but outside of the scope of T.

When NearG > 0, NearL > 0 there are no other nodes with same header. In this case

Inner and Horizontal contexts are optional and may be omitted. If NearG = 0, NearL

> 0 there are similar nodes with different outer context. Again, saving Inner and

Horizontal contexts is optional, but may improve search results if the source file is
modified. In case of NearL = 0 saving inner and horizontal context is required.

The values NearL and NearG are saved within the concern tree and will be used for
the search.

3.3. Searching
A node in the concern tree keeps Context of some node T.

Context(T) = (Namey, Types, Ny, O, Hy, I)
After some modifications were applied to the source file, target node may change as
well. In some cases target node may be absent in the parse tree, if the code fragment
related to the concern was removed. We do not address this case in our research and
the tool is designed to always try to find target node or suggest a list of most similar
entities.

The search begins with parsing a file and calculating edit distance D; =
Distance(T,T;) VT; € Tree

Next step — checking if there is only one node in the tree, which is similar to the
target node and therefore considered as the result of the search. It depends on values
NearG and NearL.

If NearL>0, then there was only one entity in the source file with Header context Hr.
In this case if there is only one node T; with similar Header context in the tree — it is
returned as the result:

) Min(NearG, NearL)

Result =T; € Tree : LDlstance(NT, Nri) < > ;

) Min(NearG,NearlL)
VT; #+ T; LDistance (NT, NT].) > >

If NearL = 0, then there were other entities in the source tree, but only in the same
scope as T. In addition to the condition above we can return T; if it has minimal
distance for Header, Inner and Horizontal contexts among all other nodes:

71



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

Result =T, € Tree: VT; #T;: LDistance(NT, NTi) < LDistance (NT, NTJ.)
SDistance(IT, ITi) « SDistance (IT, ITJ.)

SDistance(HT, HTi) « SDistance (HT, HTj)

These conditions are correct if NearG > 0. Otherwise there were other entities in the
source file with same Header Context outside of the scope of T. In this case we add
requirements LDistance(Or, Or,) =0 and LDistance (OT, OT].) =0 to both
conditions.

If there are no exactly one node Ti,, which satisfies the requirements above we
consider the search result as ambiguous and cannot return only one node as the result.
It may occur when the source code was modified significantly, the target entity was
changed or removed and there are 0 or 2 or more nodes in the parse tree, similar to
the target node. In this case the set of all nodes is sorted according to the product of
D; - W, where vector W defines weights of parts of contexts.

3.4. Complexity

Wagner-Fischer algorithm[19] is used to calculate edit distances. It has a time
complexity of O(NM) where N and M are lengths of two strings. Calculating edit
distance of Header Contexts requires calculating edit distance between two strings at
each step. For simplicity, we assume that all tokens and all header contexts have
similar length. It gives a time complexity of O(N2M?), where N is the length of Header
contexts (in tokens) and M is length of tokens.

Calculating edit distance between two Outer Contexts has a time complexity of
O(N2M2K?), where K is a length of Outer Context (depth of the parse tree).

In most cases values N, M and K are relatively small. Length of separate tokens
usually ranges between 1 and 10-15, longer identifiers are rare. Header Context
contains usually not more than 10-15 tokens. Outer context in case of most
programming languages contains 1-3 items (e.g. a namespace and a class).
Calculating edit distance is performed for each item in set Tree.

Other operations have a time complexity between O(N) (calculating NearG and
NearL, finding exact match) and O(N log N) (sorting), where N is a number of items
in set Tree.

4. Tool

he tool? based on the model was designed to be easily integrated into different
integrated developer environments and text editors, such as Microsoft Visual Studio
and Notepad++.

2 Available at https://github.com/MikhailoMMX/AspectMarkup
72



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

4.1. Architecture
The tool is separated into 3 main parts:

e A collection of lightweight parsers and a parser generator. A parser
analyzes source files written in a specific language and provides a parse
tree which is then used by the core. To make development of new parsers
easier a DSL-language {\em LightParse} was implemented along with an
utility which generates lex/yacc and C\# code of the parser from an input
LightParse file.

o Core. It implements the model with algorithms. It loads and runs parsers to
get a parse tree when it's necessary for saving or searching for a code
fragment. A visual component with user interface ready to be integrated
into different IDEs is also implemented.

¢ A collection of plug-ins for integrated development environments or text
editors. Since the tool relies on lightweight parsers rather than on a specific
IDE, and the visual part of the tool along with algorithms is provided by
the core, the tool can be very easily integrated into different IDEs. A plug-
in for an IDE should only display the Ul component and implement simple
interface, which defines 10 methods, such as getting and setting cursor
position, accessing the text of currently open files and event handlers for
opening and closing the IDE.
At this moment implemented lightweight parsers include: C#, Lex and Yacc, Java,
XML, Pascal ABC.NET and a parser for our own language LightParse. Plug-ins for
Microsoft Visual Studio, Notepad++ and PascalABC.NET[20] are developed and the
tool is also integrated into a grammar editor Yacc MC.

4.2. Functionality

The tool adds a concern tree to the interface of a IDE. Concern tree may have arbitrary
structure and is created by a developer. Each tree node has title and optional
description and subnodes. Description length is not limited. It's displayed as a tooltip
and may be edited in a separate window.

Each node may be bound to a fragment of code. In this case the node is marked with
an arrow. Double click performs navigation to the code fragment if the code fragment
may be identified unambiguously. Otherwise, the tool suggests several most similar
code fragments. Each code fragment may be navigated to in one click and if the code
fragment is found, double click updates the information in the concern tree, so next
navigation will not require any additional actions.

A reverse search is also possible. The tool can find a node in the concern tree by
cursor position in a current file. Along with the descriptions for tree nodes it may be
used to extract some long comments from the code into the concern tree and still be
able to easily find and read them.

73



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

There are several scenarios of using the concern tree. First, it may be used to maintain
a "working set" of fragments, related to a current task. Concern tree is relatively small
and finding the node in the tree may be much faster than finding the code fragment in
one of currently open files manually.

Concern tree significantly simplifies re-creating working set when returning to a task.
Instead of recalling class and method names, performing cross-reference search it’s
only necessary to expand a subnode in the concern tree related to the task.

Concern tree is very helpful when a new developer starts working with unfamiliar
project. Concern tree resembles a table of contents, it's easy to find concerns in it and
each concern contains all code fragments related to it with descriptions. Reading
description and navigating across the code helps to understand how the code is
organized and how it works.

The functionality, concern tree examples and the tool usage scenarios were presented
at CEE-SEC(R) 2015 Conference?®.

5. Conclusion

We propose an approach to working with crosscutting concerns. Concerns are
organized in a tree-like structure and tree nodes are bound to code fragments scattered
across the project. Concern tree is added to the interface of IDE as a toolbox. Concern
tree simplifies navigating across scattered fragments and is helpful for investigating
and re-investigating a concern. We describe a model our approach is based on. A
metrics of distance between entities in a code is defined. A description of data, stored
in a concern tree is given. Algorithms of identifying a minimal amount of data to store
and searching an entity in a modified source code are provided.

The model is implemented in a tool, which supports different programming languages
and integrates into different editors end integrated development environments. It
performs either navigation to a saved code fragment if it can be determined precisely,
or shows most similar code fragments otherwise. The concern markup tool is used in
development of Pascal ABC.NET and the tool itself.

At this moment some features of the model are not implemented yet, such as
horizontal context.

We are currently collecting statistical data and enhancing algorithms to better handle
most frequent changes in the source code. Some parameters, such as weights of
operations need adjustments.

References

[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying
crosscutting concerns” in Proceedings of the First International Workshop on Assessment

3 http://2015.secr.ru/lang/ru/program/submitted-presentations/aspect-markup-of-a-
source-code-for-quick-navigating-a-project
74



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

(2].

[3].

[4].

[5].

(6].

[71.

[8].

(9.

[10].

[11].

[12].

[13].

of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC,USA:
IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007 4.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006. DOI:
10.1109/TSE.2006.116.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of AspectJ” in Proceedings of the 15thEuropean Conference on Object-Oriented
Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327-353.
(http://dl.acm.org/citation.cfm?id=646158.680006)

D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca
model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89-94, Sep. 1994.
DOI: /10.1109/52.311067.

D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in
Proceedings of the 25th International Conference on Software Engineering, ser. ICSE *03.
Washington, DC, USA: |EEE Computer Society, 2003, pp. 187-197.
(http://dl.acm.org/citation.cfm?id=776816.776839).

S. Apel, C. Kastner, and C. Lengauer, “Featurechouse: Language independent, automated
software composition” in Proceedings of the31st International Conference on Software
Engineering, ser. ICSE *09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
221-231. DOI: 10.1109/ICSE.2009.5070523.

I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of
software product lines” in Proceedings of the 14th International Conference on Software
Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 77-91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”
in Proceedings of the Eighth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,
1993, pp. 411-428. DOI: 10.1145/165854.165932.

M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through
multidimensional program storage” in Proceedings of the 2nd International Conference
on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,
2003, pp. 188-197. DOI: 10.1145/643603.643623.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.
Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code
understanding and maintenance” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp.
2503-2512. DOI: 10.1145/1753326.1753706.

S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to
extend syntax for advanced modularity?” in Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,
USA: ACM, 2012, pp. 95-106. DOI: 10.1145/2162049.2162061.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in
Proceedings of the 30th International Conference on Software Engineering, ser. ICSE ’08.
New York, NY, USA: ACM, 2008, pp. 311-320. DOI: 10.1145/1368088.1368131.

M. Malevannyy and S. Mikhalkovich, [Implementation of support of aspects in integrated
development environments], in Sovremennye informatsionnye tekhnologii: tendentsii i

75



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

perspektivy razvitiya: materialy konferentsii [Modern information technologies:
tendencies and perspectives of evolution], 2015, pp. 351-353 (in Russian).

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation
of scattered concerns” in Proceedings of the 200500PSLA Workshop on Eclipse
Technology eXchange, ser. eclipse '05.New York, NY, USA: ACM, 2005, pp. 65-69.
DOI: 10.1145/1117696.1117710.

[15]. M. Malevannyy, [Lightweight parsing and its application in development environment].
Informatizatsiya i svyaz’ [Informatization and communication], vol. 3, pp. 89-94, 2015,
(in Russian).

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. Pascal ABC.NET. (in Russian). http://pascalabc.net/

[18]. V. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals”
Soviet Physics — Doklady, vol. 10, no. 8, pp. 707-710,1965, (in Russian).

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.
21, no. 1, pp. 168-173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. I. V. Bondarev, Y. V. Belyakova, and S. S. Mikhalkovich, [System pascalabc.net 10 years
of evolution], in ”XX Nauchnaya konferentsiya Sovremennye informatsionnye
tekhnologii: tendentsii i perspektivy razvitiya. Materialy konferentsii [XX Scientific
conference Modern information technologies: tendencies and perspectives of evolution™],
2013, pp.69-71, (in Russian).

KoHTeKCTHO-OpMeHTUpOBaHHAA MoAernb ANA pa3MeTKu
CKBO3HOM (pYHKLMOHANBLHOCTU B UCXOOQHOM Kope

IM.C. Manesannsiii < mmxforever@mail.ru>
2C.C. Muxanxosuu <miks@sfedu.ru>
! Honckoii Tocyoapemeennuiii Texnuueckuii Yuueepcumen,
344022, Poccus, 2. Pocmog-na-/lony, yn. Coyuanucmuueckas, 0. 162.
2 [Ooicnwui dDedepanvhviii Yuusepcumenn,
344090, Poccus, Pocmos-ua-/[ony, Munvuaxosa, 0. 84.

AHHOTamMsA. B naHHOW cTaThe OMMCHIBAETCS MOAXOMA K YIPOILIEHHIO paboThl CO CKBO3HOM
(YHKIMOHATIBHOCTBIO B UCXO/HOM KOJie 3a cyeT J00aBieHHs K cpeAe pa3paboTKu CpelcTB
pa3MeTKu CKBO3HOH (hYHKIIMOHATIBHOCTU. Pa3mMeTka npeacTaBieHbl B BUIE IePeBa, OTACIbHbIC
Y3JI6I KOTOPOT'O MOTYT OBITh MPHUBSI3aHEI K OJIOKaM KoJa, o0ecredrBasi ObICTPYIO HABUTAIHIO
0 (pparMeHTaM KoJia, pea3yoIM CKBO3HYIO (YHKIIMOHAILHOCTH. [IpUBsI3Ka y37I0B iepeBa
K KOJIy OCYIIECTBIISETCS 3a CUET COXpaHEHHs B JepeBe Habopa mHbopMamuu o pparMeHTax
koxa. CoxpanseMast HHPOPMAIHS COCPKUT UMS U THIT ()parMeHTa KoJa, a TAK)Ke HECKOJIBKO
BHUJOB KOHTEKCTOB, KOTOPBIC IO3BOJIAIOT OAHO3HAYHO HalTH (I)parmeHT B KoOzEC. 3TI/I
KOHTCKCTBI ITO3BOJIAIOT B paMKaXx O)lHOI>’I MOJC/IN paGOTaTl) C KOJIOM Ha pa3JIMYHBIX A3bIKaX, KaK
NpOrpaMMHpPOBAHMs, TaK M s3blkax pa3Merkd, DSL-sa3bikax, a Takke ¢ JII0ObIM
CTPYKTYpHPOBAaHHBIM TEKCTOM, HAIlpUMep, JOKyMEHTaluel. Peaausamus anropuTMoB OMCKa
(parMeHTa o COXpaHEHHOH MH(OPMAIMU YIUTHIBAET BO3MOXHOCT BHECCHNUS HI3MCHEHHH B
KOJI B IIpoIiecce pa3paboTKH, 4To 00ecHednBaeT ycmotyugocms NpuBs3ky. [1pn HeOOmbIIHX
HM3MEHEHUSIX HCXOIHOTO KoJla parMeHT MOXKeT OBITh HaliieH aBToMaTH4YecKu. B cirydae 6omnee
CEepbe3HBIX H3MEHEHUH pean30BaH M0JIyaBTOMATHIECKUH MOUCK IIPH MUHUMAJIBHOM yIaCTHH

76



Masesannsiit M.C., Muxankosuu C.C. KOHTEKCTHO-OpHEHTUPOBAHHAS MOJIEIIb 1JIs PA3METKH CKBO3HOM
(DYHKIHOHATBHOCTH B HCXOAHOM Koze. Tpyowt UCII PAH, 2016, Tom 28, Bhimyck 2, c. 63-78.

nporpammucta. VIcxonHslil Ko aHaIU3UPYETCs JIETKOBECHBIMU NTapcepaMy, HE I0JIarasich Ha
HHOPACTPYKTYPY Ccpedbl pa3paboTKU. 3a CUET 3TOrO JOCTUTACTCSl BO3MOXKHOCTH PaboTaTh C
MIUPOKUM CIIEKTPOM S3BIKOB, a TAaKXKe HHTErpalis HHCTPYMEHTa B pa3jIHUYHBIE CPEJIbI
pa3paboTKH ¢ MUHUMAJIbHBIMHU YCHIMAMHU. B cTaThe npeacTaBieHa MoeIb XpaHEH!ST JaHHBIX,
AJITOPUTMBI OUCKA, a TAKXKe 0030p HHCTPYMEHTA, PEaTM3YIOLIEro JAHHYIO MOJEINb.

KiroueBbie cioBa: pasieneHue OTBETCTBEHHOCTEH; aCMEKThI; SI3bIKM IPOrPaMMHUPOBAHHUS;
cpebl pa3paboTKH

DOI: 10.15514/ISPRAS-2016-28(2)-4

Jost mmrupoBanusi: Manesanusiii M.C., Muxankosud C.C. KoHTeKcTHO-OpHEeHTHPOBaHHAS
MOJIEITh ISl pa3METKH CKBO3HOU (PYHKIIMOHANBHOCTH B ricxoaHoM koje. Tpynst UCIT PAH,
oM 28, Beim. 2, 2016 1., crp.63-78 (na anruiickom). DOI: 10.15514/ISPRAS-2016-28(2)-4

Cnucok nutepaTtypbl

[1]. M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning, and quantifying
crosscutting concerns” in Proceedings of the First International Workshop on Assessment
of Contemporary Modularization Techniques, ser. ACoM ’07. Washington, DC, USA:
IEEE Computer Society, 2007, p. 2. DOI: 10.1109/ACOM.2007 4.

[2]. A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006. DOI:
10.1109/TSE.2006.116.

[3]. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of Aspect]” in Proceedings of the 15thEuropean Conference on Object-Oriented
Programming, ser. ECOOP’01. London, UK, UK: Springer-Verlag, 2001, pp. 327-353.
(http://dl.acm.org/citation.cfm?id=646158.680006)

[4]. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The genvoca
model of software-system generators” IEEE Softw., vol. 11, no. 5, pp. 89-94, Sep. 1994.
DOI: /10.1109/52.311067.

[5]. D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement” in
Proceedings of the 25th International Conference on Software Engineering, ser. ICSE 03.
Washington, DC, USA: |EEE Computer Society, 2003, pp. 187-197.
(http://dl.acm.org/citation.cfm?id=776816.776839).

[6]. S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language independent, automated
software composition” in Proceedings of the31st International Conference on Software
Engineering, ser. ICSE ’09.Washington, DC, USA: IEEE Computer Society, 2009, pp.
221-231. DOI: 10.1109/ICSE.2009.5070523.

[7]. I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented programming of
software product lines” in Proceedings of the 14th International Conference on Software
Product Lines: Going Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 77-91. (http://dl.acm.org/citation.cfm?id=1885639.1885647).

[8]. W. Harrison and H. Ossher, “Subject-oriented programming: A critique of pure objects”
in Proceedings of the Eighth Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’93. New York, NY, USA: ACM,
1993, pp. 411-428. DOI: 10.1145/165854.165932.

77



Malevannyy M.S., Mikhalkovich S.S. Context-Based Model for Concern Markup of a Source Code. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 63-78.

[9]. M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual separation of concerns through
multidimensional program storage” in Proceedings of the 2nd International Conference
on Aspect-oriented Software Development, ser. AOSD ’03. New York, NY, USA: ACM,
2003, pp. 188-197. DOI: 10.1145/643603.643623.

[10]. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.
Adeputra, and J. J. LaViola, Jr., “Code bubbles: A working set-based interface for code
understanding and maintenance” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI *10. New York, NY, USA: ACM, 2010, pp.
2503-2512. DOI: 10.1145/1753326.1753706.

[11]. S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto, “Do we really need to
extend syntax for advanced modularity?” in Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, ser. AOSD ’12. New York, NY,
USA: ACM, 2012, pp. 95-106. DOI: 10.1145/2162049.2162061.

[12]. C. Kaistner, S. Apel, and M. Kuhlemann, “Granularity in software product lines” in
Proceedings of the 30th International Conference on Software Engineering, ser. ICSE *08.
New York, NY, USA: ACM, 2008, pp. 311-320. DOI: 10.1145/1368088.1368131.

[13]. M.C. ManeBanupiii, C.C. MuxankoBud,  Peanuszanmsi  MOAJEPKKHA  aclEKTOB
NPOrPaMMHOTO KOJa B HHTCTPUPOBAHHBIX cpemax pa3pabotku. CoBpeMeHHbBIE
MH(QOPMAIMOHHBIC TEXHOJIOTUH: TCHJCHIIMH U MepCreKTHBhl passutus, 2015, ctp. 351—
353.

[14]. M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation
of scattered concerns” in Proceedings of the 200500PSLA Workshop on Eclipse
Technology eXchange, ser. eclipse ’05.New York, NY, USA: ACM, 2005, pp. 65-69.
DOI: 10.1145/1117696.1117710.

[15]. M.C. ManeBanHblif, JIETKOBECHBII MAPCHHT M €r0 UCIOJIb30BaHKE Ui DYHKIMI CPEeIbl
paspabotku. Madopmaruzanms u cBsa3b, Tom 3, ctp. 89-94, 2015.

[16]. ANSI C grammar. (http://www.quut.com/c/ANSIC-grammar-y.html)

[17]. Pascal ABC.NET. http://pascalabc.net/

[18]. B. U. JleBenmreiin. [IBou4HbIE KOJABI C HCIPABIEHHEM BBINAJCHUM, BCTABOK U
3aMemeHnit cuMBoJoB. JJokmaner Axanemuit Hayk CCCP, 1965. 163.4, ctp. 845-848.

[19]. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem” J. ACM, vol.
21, no. 1, pp. 168-173, Jan. 1974. DOI: 10.1145/321796.321811.

[20]. Boumapes U. B., benskosa 0. B., Muxankosuu C. C. Cucrema mporpaMMHpOBaHHUS
Pascal ABC.NET — 10 ner passutus // XX Hayunas kondepenius «CoBpeMeHHbIC
MHGOPMAIIMOHHBIC TEXHOJOTHH: TEHJACHIMH M IEPCIEKTHUBHI Pa3BUTHs». Marepuaibl
koH(epenmu. Poctos v//], 2013. C. 69-71.

78



