TOroB A.C. TToaxon k 06GHApYKEHHIO aHTH-TIATTEPHOB B CEPBHC-OPHCHTUPOBAHHBIX cucteMax. Tpyowr UCIT PAH, 2016,
ToM 28, BhIMyCK 2, ¢. 79-96.

Approach to Anti-pattern detection in
Service-oriented Software Systems

A.S. Yugov <yugovas@live.ru>
National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia.

Abstract. A service-based approach is a method to develop and integrate program products in
a modular manner where each component is available through any net and has the possibility
of being dynamically collaborated with other services of the system at run time. That approach
is becoming widely adopted in industry of software engineering because it allows the
implementation of distributed systems characterized by high quality. Quality attributes can be
about the system (e.g., availability, modifiability), business-related aspects (e.g., time to
market) or about the architecture (e.g., correctness, consistency). Maintaining quality-attributes
on ahigh level is critical issue because service-based systems lack central control and authority,
have limited end-to-end visibility of services, are subject to unpredictable usage scenarios and
support dynamic system composition. The constant evolution in systems can easily deteriorate
the overall architecture of the system and thus bad design choices, known as anti-patterns, may
appear. These are the patterns to be avoided. If we study them and are able to recognize them,
then we should be able to avoid them. Knowing bad practices is perhaps as valuable as knowing
good practices. With this knowledge, we can re-factor the solution in case we are heading
towards an anti-pattern. As with patterns, anti-pattern catalogues are also available. In case of
continues evolution of systems, it is metric-based techniques that can be applied to obtain
valuable, factual insights into how services work. Given the clear negative impact of anti-
patterns, there is a clear and urgent need for techniques and tools to detect them. The article
will focus on rules to recognize symptoms of anti-patterns in service-based environment,
automated approaches to detection and applying metric-based techniques to this analysis.
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1. Introduction

Service-based style of software systems is very widely spread at the industrial
development because it allows implementing flexible and scalable distributed
systems at a competitive price. The result of development are autonomous, reusable,
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and independent units of a platform — services — that can be consumed via any network
including the Internet [1].

Traditional approaches to software delivery are based on life cycle phases of the
system, when in the development process became involved various teams inside a
company or even by different companies [2]. Moreover, in classical approach, the
focus is on one vendor supplying the entire system or subsystem. The emergence of
service-oriented architecture approach introduces a model divided into levels. It
enables the existence of different design approaches; whereby different parties deliver
service layers as separate elements. Experience in development of joint projects,
divided into separate services, shows that errors may appear in potentially dangerous
areas. As part of this work, we will call these areas as anti-patterns.

Anti-patterns in software systems based on services are “bad” solutions recurring
design problems. In contrast to design patterns, anti-patterns are well-proven
solutions that engineers should avoid. Anti-patterns can also be introduced as a
consequence of various changes, such as new user requirements or operating
environment changes.

This paper presents an introduction to the anti-pattern detection domain and describes
proposed approach for the automated detection of anti-patterns.

2. Examples of Anti-patterns in Service-based Systems

Design (architecture) quality is vitally important for building a well thought-out, easy
to maintain and evolving systems. The presence of patterns as antipattern in the
system design was recognized as one of the most effective ways to express
architectural problems and their solutions, and hence higher quality criterion among
different systems [3].

A number of efforts have been taken to formalize the properties of the concept of
"bad" practices, i.e., decisions that adversely affect the quality of the system. Despite
the emerging interest to service based systems, the literature is not really consistent
with respect to pattern and anti-pattern definition and specification in this area.
Indeed, the available catalogs use different classification, either based on their nature,
scope or objectives.

Some completely new approaches were introduced to identify and detect code
vulnerabilities and anti-patterns [4], [5]. The methods used in these campaigns were
very diverse: completely manual, based on the research guidelines; metrics based on
heuristic methods using rules and thresholds for various metrics; or Bayesian
networks. Some approaches [6] are applicable to the application level and can be
applied to initial stages of the software life cycle.

Quite a large number of methodologies and tools exist for the detection of anti-
patterns, in particular, in object-oriented (OO) systems [7], [8]. However, the
detection of anti-patterns in service-based systems, in contrast to the OO systems is
still in its infancy. One of the last works by detecting of antipattern in service-oriented
architectures (SOA) has been proposed in Moha et al. In 2012 [4].
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The authors proposed an approach to the determination and detection of an extensive
set of SOA anti-patterns operating such concepts as granularity, cohesion and
duplication. Their instrument is able to detect the most popular SOA anti-patterns,
defined in literature. In addition to these antipatterns, authors identified three
antipatterns, namely: bottleneck service, service chain and data services. Bottleneck
is a service that is used by many other components of the system, and as a result, is
characterized by high incoming and outgoing connections affecting the response time
of service. Chains of services occur when a business object is achieved by a long
chain of successive calls. Data service is a service that performs a simple operations
of information search or data access, which may affect the connectivity of the
component.

In 2012, Rotem-Gal-Oz [9] identified the “knot” antipattern, a small set of connected
services, which, however, is closely dependent on each other. Anti-pattern, thus, may
reduce the ease of use and response time.

Another example of anti-pattern is “sand pile” defined by Kr'al et al [10]. It appears
when many small services use shared data, which can be accessed through the service,
which represent the “data service” anti-pattern.

In the paper of Scherbakov et al. proposed “duplicate service” antipattern [11] that
affects sharing services that contain similar functions, causing problems in the support
process.

In 2003 Dudney et al. [12] have identified a set of anti-patterns for the J2EE
applications. “Multi service” anti-pattern stands out, among others, a “tiny service”
and “chatty service”. Multi service is a service that provides a variety of business
operations, which have no practical similarity (for example, belong to different
subsystems) that can affect service availability and response time. Tiny service is a
small service with few methods, which are always used together. This can lead to the
inability of reuse. Finally, an anti-pattern “chatty service” represents such services
that constantly call each other, passing small amount of information.

3. Metric-based Approach to the Detection of Anti-patterns

As DeMarco noted [13], in order to control the quality of development, correct
quantitative methods are needed. Already in 1990 Card emphasized that metrics
should be used to assess the development of software in terms of quality [14]. But
what should be measured? In the above context of design rules, principles and
heuristics, this question should be rephrased as follows: is it possible to express the
principles of “good design” in a measurable way?

The main goal of this approach is to provide a mechanism for engineers, which will
allow them to work with metrics on a more abstract level, which is conceptually much
closer to real conditions of applying numerical characteristics. Mechanism defined
for this purpose is called a discovery strategy:
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Detection strategy is a quantitative expression of the rules by which specific pieces
of software (architectural elements), corresponding to this rule, can be found in the
source code.

By this reason, the detection strategy is a common approach to analysis of the source
code model using metrics. It should be noted that in the context of the above
definition, "quantitative expression of the rule™ means that the rule should be properly
expressible using metrics. The use of metrics in detection strategies grounded filtering
mechanisms and composition. In the following subsections, these two mechanisms
will be considered more detailed.

The key problem in data filtering is reducing the initial collection of information, so
that there remain only those values that are of particular value. This is commonly
referred to as data reduction [15]. The aim is to detect those elements of the system,
which have special properties. Limits (boundaries) of the subset are determined on
the basis of the type of filter. In the context of the measurement process with respect
to the software, we usually try to find the extreme (abnormal) values or those values
that lay within a certain range. Therefore, distinguish types of filters [16]:

e Marginal filter is a data filter, in which one limit (border) in the result set is
clearly identified with a corresponding restriction of the original data set.

e Interval filter is a data filter, in which the lower and upper limits of the
resulting subset are explicitly specified in the definition of the data set.
Marginal filters consist of two depending on how we specify the borders, resulting
dataset limiting filters may be semantical or statistical.

e Semantical. For these filters two parameters must be specified: a threshold
value that indicates a limit value (to be explicitly indicated); and the
direction that determines whether the threshold upper or lower limit of the
filtered data set. This category of filters is called semantical as the choice of
options is based on the semantics of specific metrics in the framework of the
model chosen for the interpretation of this metric.

e Statistical. Unlike semantical filters, statistical ones do not require explicit
specifications for the threshold, as it is defined directly from the original data
set using statistical methods (e.g., scatter plot). However, the direction is still
to be specified. Statistical filters are based on the assumption that all the
measured entities of the system are designed using the same style, and
therefore, the measurement results are comparable.

In this paper, a set of specific data filters of the two previous categories were used.
Basing on practical use and interpretation of the selected models, these filters may be
grouped as follows:

e Absolute semantic filters: HigherThan and LowerThan. These filtering
mechanisms are parameterized by a numerical value representing the border.
We will only use data filters are to express "clear" design rules or heuristics,
such as “class should not be associated with more than 6 other classes.” It
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should be noted that the threshold is specified as a parameter of the filter,
while the two possible directions are defining by two particular filters.

Relative semantic filters: TopValues and BottomValues. These filters
differentiate the filtered data set according to the parameter that determines
the number of objects to be recovered, and do not indicate the value of the
maximum (or minimum) values are permitted in the result set. Thus, the
values in the result set will be considered with respect to the original data
set. The parameters used may be absolute (for example, "select 20 objects
with the highest values™) or percentile (for example, "to remove 10% of the
measured objects with the lowest values™). This type of filter is useful in
situations where it is necessary to consider the highest (or lowest) values of
a given data set, rather than indicating the exact thresholds.

Statistics: scatter plots. Scatter diagram is a statistical method that can be
used to detect outliers in the data set [17]. Data filters based on these
statistical techniques, which, of course, not limited to only the scatter
diagrams, are useful in the quantification of rules. Again, we need to specify
the direction of the deviation of adjacent values based on design rules of
semantics.

Interval Filters. Obviously, for the data interval it is necessary to define two
thresholds. However, in the context of the detection strategies, where, in
addition to the mechanism of filtering, the composition mechanism exists,
filter interval is defined by composition of two semantic absolute filters of
opposite directions.

Unlike simple metrics and interpretation models of it, detection strategy should be
able to draw conclusions on the basis of a number of rules. Consequently, in addition
to the filtering mechanism, which supports the interpretation of the particular metric
results, we need a second mechanism for comparing the results of calculations of a
number of metrics — a mechanism of composition. Composition mechanism is a rule
combining the results of calculating several metric values. In the literature three
composition operators were observed: “and”, “or” and “butnot” [16].

These operators can be discussed from two different perspectives:

From a logical point of view. These three operators are a reflection of rules
to combine multiple detection strategies, where operands are descriptions of
the design characteristics (symptoms). They facilitate reading and
understanding of the detection strategy, because operators of composition
are generally expressed in the form of quantitative characteristics, so it is
similar to the original wording of the informal thoughts. From this point of
view, for example, the operator «and» presupposes that the investigated
object has both symptoms that are combined by the operator.

From the point of sets. This view helps to understand how to build the
ultimate result of the detection strategy. The initial set of calculation results
on each of the metrics is carried out through the filtering mechanism. Then
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remains limited set of system elements (and calculated metrics for these
elements), which are interesting for further investigation. The resultant
plurality of filtered sets should be merged with the operators using the
formulation. Thus, in terms of operations on sets, the operator "and" will
correspond to the operation of intersection (N), the operator "or" to reunion
operation, and the operator “butnot” to minus operation.

4. Definition of detection strategy

This section will be written in the formation of a strategy on the example of the
detection of a particular anti-pattern "God Object" [18]. The starting point is the
presence of one (or more) of the informal rules that describes the problem situation.
In this example, we will proceed from the three heuristics found in the book of
Riel [18]:

e The top-level services should share equally the responsibility.

e Services should not contain large amounts of semantically separate

functions.

e Services should not have access to fields or properties of other services.

The initial step to create a detection strategy is to translate the set of informal rules
into symptoms that can be evaluated by a particular metric. In the case of God Object
anti-pattern, the first rule refers to an equal sharing of responsibilities among services,
and therefore it refers to service complexity. The second rule tells us about the
intensity of communications among this service and all other services; thus, it refers
to the low cohesion of services. The third heuristic describes a special coupling i.e.,
the direct access to data items manipulated by other services. In this case, the
symptom is access to “foreign” data.
The second step is to find appropriate metrics, which evaluate more precisely every
of the discovered properties. For the God Service anti-pattern, these properties are
complexity of the service, cohesion of the service and access to data from other
services. Therefore, we found the following set of metrics:

e  Weighted Method Count (WMC) is the sum of the static complexity of all
methods in a class [19]. We considered the McCabe’s approach as a
complexity measure [20].

e Tight Class Cohesion (TCC) is the relative number of directly connected
methods [21].

e  Access to Foreign Data (ATFD) represents the number of external classes
from which a given class accesses attributes, directly or via accessor-
methods [22].

The next step is to select an appropriate filtering scheme that should be applied to all
metrics. This step is mainly done basing on the rules described earlier. Therefore, as
the first symptom is a “high service complexity” the TopValues relative semantical
filter was chosen for the WMC metric. For the “low cohesion” symptom it was also
chosen a relative semantical filter, but now the BottomValues one. For the third
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symptom, an absolute filter was selected as we need to catch any try to access a
“foreign” data; thus, we the HigherThan filter will be used.

One of vital issues in creating a detection strategy is to choose proper parameters (i.e.,
threshold values) for all data filters. Several approaches exist to do this, but now we
just take a 25% value for both the TopValues filter for to the WMC metric and to the
BottomValues filter for the TCC metric. As for filter boundary for the ATFD metric,
the decision is pretty simple: no direct access to the data of other services should be
allowed, therefore, the threshold value is 1.

The final step is to join all the symptoms, with applying of the special operators
described before. From the unstructured heuristics as presented in [18], it was inferred
that all three symptoms should be combined if a service is supposed to be a behavioral
God Object.

The intention of this work is to use detection strategies in rule definitions in order to
facilitate detection of anti-patterns in service based software systems i.e., to select
such areas of the system (subsystem) that are participated in a particular anti-pattern.
From this point of view, it should be emphasized that the detection strategy approach
and the whole method is not limited by finding problems, but it also can facilitate
completely different objectives too. For instance, different investigation purposes
could be in reverse engineering [23], design pattern detection [22], identification of
components in legacy systems [24], etc.

5. Implementing a Tool for Detection of Anti-patterns in
Service-based Systems

5.1. Description of Metrics
Calculations intended to detect antipatterns is conducted basing on several basic
metrics:

e incoming call rate;

e outcoming call rate;

e response time;

e number of service connections;

e cohesion with other services;

o efc.
Each metric has its specific model and its specific algorithm to calculate. Values of
this metric have decisive influence on detection of services participating in
antipatterns.
In calculation of metrics, objective measures of occurrence pattern interestingness of
data mining like confidence and support are used. These are based on the structure of
discovered patterns and the statistics underlying them.
A measure for association rules of the form X—Y is called support, representing the
percentage of transactions from a log database that the given rule satisfies. This is
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intended to be the probability P(X U Y), where X U Y indicates that a transaction
contains both X and Y, that is, the union of item sets X and Y.

Another objective measure for association rules from data mining is confidence,
which addresses the degree of certainty of the detected association. In classical data
mining this is taken to be the conditional probability P(X N Y), that is, the probability
that a transaction containing X also contains Y. More formally, confidence and
support are defined as

Support(X - Y)=P(X U Y),
Confidence(X — Y)=P(X NY).

In general, each measure of interestingness is associated with a threshold, which may
be controlled. For calculation of metrics each final value of metric is confidence
(which is calculated not as in classical data mining but more complexly) divided by
support measure (which is calculated in the same manner as in classical data mining).
Further, each metric is described in more details.

Incoming and Outcoming Call Rates. The model for calculation of IncomingCallRate
metric is call matrix. This matrix represents calls services make to each other. For
building this matrix and some other models, we need to identify the order of calls.
This information is not stored in logs, therefore, the first task is to mine service calls
from log. Procedure of mining calls consists of several main steps. The first is
ordering log events by traces. This is necessary because occurrence of events in
particular order in boundaries of one trace gives us evidence of one particular service
call. To mine all the service calls properly it is needed to sort events in the log
chronologically within every trace. Once ordering on both levels (trace and
timestamp) is finished, we can go through the log and reconstruct service calls.
Received values in mined matrix will represent generalized number of calls among
services for as IncomingCallRate as OutcomingCallRate.

Response Time. Response time metric represent general bandwidth of a particular
service. This parameter is crucial for systems having high load. Calculation of this
metric uses assumptions made for both metrics IncomingCallRate and
OutcomingCallRate but with some modifications. As we are aimed here at measure
of time characteristic, the object to explore will be time stamp parameter of the log.
Given defined algorithm for incoming and outcoming call rates, we modify it with
calculation of time prospect. Instead of just number of calls, we calculate general
length of service response. In such a way the summarized time while service was busy
is calculated. As a result of precious calculations, the matrix of general time every
service spent on work was obtained. Following step is to normalize real values, i.e. to
measure not in absolute number but in relative number. This relative number will
show percentage of time where the service was working on processing calls. This
metric can be used for detection of both highly loaded services and rarely used
services.

Cohesion with Other Services. For calculation of this metric classical data mining
rules are implemented. For this the conditional probability P(X N Y) is taken. That
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is, the probability that a transaction containing X also contains Y. Additionally, the
special rule for ordering is added. This means that X—Y and Y—X is different
relations. l.e. we observe not only occurrence at one trace but also the order of
occurrences. High rate of confidence of this metric is evaluated as high cohesion of
several services and, therefore, high behavioral dependency.

Number of Service Connections. All the previous metrics were dynamic
characteristics of a system under consideration while number of service connections
is a static property of the system. For mining this property, it is enough to have the
incidence matrix of service calls. If one service called once another service, we do
not consider the same connections in future. Obtained incidence matrix allows us to
calculate all existing connections in the system.

The basic model to calculate each of metrics is Graph model (fig. 1) which is extended
in each particular metric calculation algorithm with specific attributes. As part of this
work, it is assumed that each object, once appeared in the system, initiates a sequence
of operations to be performed on the object. This sequence of operations is called
workflow. It is worth noting that not every service-oriented system is based on this
principle, but we will consider only such systems.

funcA

funcB

Fig. 1. Base graph model for calculation of metrics.

In this model, services of a software system are presented by graph nodes. Arcs of the
graph represent the call ratio, i.e., oriented arc from Srv1 to Srv2 shows that Srv1 in
the process of operation calls one of Srv2 functions. Depending on what metric should
be calculated, edges of the graph are marked by specific values. For example, on fig. 1
arcs are labeled by amount of calls in a particular direction and, in parentheses, some
weighted value of the transmitted data.

5.2. Extracting Data from Event Logs

The main weakness of previously observed works was the necessity to modify source
code of a particular system in order to evaluate concrete metrics. In this work we use
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event logs to create a process model of the system and calculate metrics basing on
this model. To apply these, it is assumed that the information system records data of
events. These logs also contain unstructured and irrelevant data, e.g. information on
hardware components, errors and recovery information, and system internal
temporary variables. Therefore, extraction of data from log files is a non-trivial task
and a necessary pre-processing step for analysis. Business processes and their
executions related data are extracted from these log files. Such data are called process
trace data. For example, typical process trace data would include process instance id,
activity name, activity originator, time stamps, and data about involved elements.
Extracted data are converted into the required format.

To be able to analyze log content, the log should have specified structure. In our case
the minimal requirements for log is as follows:

e TracelD: shows the identity for a particular trace;
e ServicelD: shows the identity for a particular service;

e FunctionID: shows the identity attribute for a particular function in the
service;

e Timestamp: shows the time of occurrence of the event.
The log sample is presented in table 1.

Table 1. Source log sample

Traceld | Service | Function | TimeStamp

1 Srv2 C 2015-06-15 00:25:20
1 Srvl A 2015-06-15 00:33:24
2 Srv4 F 2015-06-15 00:32:25
3 Srv3 E 2015-06-15 00:24:13
1 Srv2 C 2015-06-15 00:31:52
3 Srvl B 2015-06-15 00:34:05
4 Srv4 G 2015-06-15 00:25:12
3 Srv3 E 2015-06-15 00:26:28
4 Srvl A 2015-06-15 00:28:21
4 Srv2 C 2015-06-15 00:30:32
2 Srvl A 2015-06-15 00:29:48
2 Srv2 C 2015-06-15 00:29:51

Each field included in log has its own purpose in future usage. TracelD is needed for
distinguishing events among execution sequences, i.e. for majority of metrics it is
necessary to connect events in boundaries of one trace. Moreover, inside traces events
appears in chronological order. That is why timestamp is included in log format.
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ServicelD and FunctionID describe source of each event. In addition, dimensions of
functions and services are main structural units in analysis and creation of models.

5.3. Specification of Rule Cards

The rule cards are storing in XML format. The structure of XML represents scheme
of rule card structure. The scheme of XML is presented in fig. 2 in graphical mode.
In fig. 3 for more detailed view in XSD standard. The XML should have specialized
namespace: “RuleCardNS”. The root element is “RuleCard”. It has name element
called “AntipatternName”. This also plays the role of identification attribute.

[5] schema Root

Aftribute Form Defsut Ungualified
Element Form Defsult  Qualified
Target Namespace RuleCardN$

o1
[E] AntipatternName : string
0.1
[E] Rulecard o o1 o [E] RuleName : string
[E] Rules off [E] Rule £ o
[E] MetricvValue : string

Fig. 2. Structure of antipattern XML

Each Rule is defined through type attribute, metric value and its own name. The type
attribute describes what metric (from a set of available metrics) should be calculated.
Metric value refers to specific value of calculated metric, which shows whether the
service under analysis has a particular symptom or not. Finally, rule name is an
identification property for rule.
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<oxml —uq n _n nos,
<xs:schema ="

=" ">
<xsd:element =" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element
<xsd:element =" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element =" " ="
=" ">
<xsd:complexType>
<xsd:sequence>
<xsd:element
<xsd:element
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xs:schema>

1
1

-
Vv

I 1l
1
-
\

Fig. 3. Detailed structure of antipattern XML.

5.4. Description of Research Prototype of Analytic System

To automate process of anti-pattern detection the research prototype of information
system, which implements the described approach, has been developed. The scheme
of the proposed approach is shown in fig. 4. The workflow of the software system
consists of several steps. At the point of entry, the program takes log, which is reading
from the relational database implemented in SQL Server, and rule card describing
rules to detect particular antipattern.
General workflow structure is presented in fig. 5. It starts with reading input data,
which are:
¢ log from some software system implemented according to SOA principles;
e rule card describing all the rules and metrics needed for detection of each
particular antipattern.
Once the XML with antipattern description is read the system starts calculation of
metrics. Each metric is calculated against its specific algorithm. So for each rule the
process of metric calculation has been launching. First, the special model used for
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analysis of a particular metric is build. All the models were defined previously. Then
with use of received model metrics are calculated. As a result of this process, services
suspected in participation in the antipattern are selected.

Next step is to integrate results received in threads of calculation of metrics. The
integration is conducted as intersection of result sets from previous threads. Finally,
we obtain set of suspicious services, which are parts of antipattern. Commonly there
are several services, but is always can be that just one service represents antipatterns
or no such services at all were discovered.

Results of analysis is depicting in general graph representation (fig. 4).

Vol

Fig. 4. Graphical representation of results.

Nodes in this graph are services and edges in this graph are direct references among
services. Each node represents one service observed in the system whose log has been
observed. As for example on fig. 5, nodes such as for services Srv2, Srv3, and Srv4
represent proper developed services, i.e. they are not participated in antipatterns.
Suspicious services are marked with “!”” sign, that means that this particular service
is a part (or is whole) of antipattern. In our example this is service number 1 (Srv1).
Edges represent calls made of one service to another one. Concerning example from
fig. 2.6, Srv4 calls Srv1 therefore one edge directed from Srv4 to Srv1l is depicted.
Srvl and Srv2 calls functions of each other therefore the edge is bidirectional.
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Fig. 5. Base graph model for calculation of metrics.

6. Conclusion

This work addresses the issue of necessity of monitoring circumstance of software
systems implemented through service-based approach in conditions of continuous
development and enhancement when number and complexity of systems is expanding
faster than a human being can handle.

During the exploration of process mining and data mining domains the general
service-based specific antipattern detection rules were invented. All rules consist of
several metrics and its specific values, describing symptoms of antipatterns. At the
time, five metrics are available for usage in detection rules: incoming call rate,
outcoming call rate, response time, cohesion, and number of service connections.
With applying these metrics several antipatterns was specified and algorithms for it
detection were introduced.

Algorithms of antipattern detection based on metric calculation were implemented as
a software tool (research prototype), which allows by specifying rule cards in XML
format and log in SQL Server database to detect antipatterns. The software tool is
developed with usage of Windows Presentation Foundation framework.

Itis planned that in future the information system will be refined according to analysis
of real life logs from and number of available metrics and possible to detect
antipatterns will be significantly greater. The following step will be introducing
dynamic analysis of system behavior in addition to implemented analysis of static
footprints. Furthermore, some fuzziness can be introduced for the evaluation of the
threshold values thus to make antipattern detection rules more flexible.
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Moaxoa K OoGHapy)XeHU0 aHTU-NaTTEPHOB B cepBuUC-
OPUEHTUPOBAHHbIX CUCTEMaXxX

A.C. FO206 <yugovas @live.ru>
Hayuonanenouii Hccreoosamenvckuii Yuusepcumem «Buvicwas Llxona
DKoHOMUKWY,
101000, Poccus, Mocksa, ya. Macuuyxas, 0.20.

AnHoTaumsi. CepBUC-OPUEHTHPOBAHHBIC CHCTEMBI, KaK CTUJIb B apXUTEKTYpe MPUIOKCHHH,
IIMPOKO MPUHAT B IPOMBIIUICHHOI pa3paboTKe IPOrpaMMHOT0 00€CIIeUeHu s, IIOTOMY ITO 3TO
HO3BOJIIET pa3padaThiBaTh '’HOKUE U MaclITaOUpyeMble paclpeiesiCHHbIe CUCTEMBI 110 Ooliee
BBITOJHOHM IieHe. Pe3ynbraToM pa3pabOTKH CTaHOBSTCS AaBTOHOMHBIC, MHOTOPA3OBBIE M
HE3aBUCUMBIE OT IUIaT(GOPMBI UCTIOIB30BaHMs (YHKIMOHATIA SIUHULEI — cepBHCHL. CepBHUC-
OPHEHTUPOBAHHBIC CHCTEMBI, KaK M JIFOObIE IPYrHe MPOrpaMMHBIC CHCTEMBI, PAa3BUBAIOTCS C
TEYECHHEM BPEMCHH, HE3aBUCHMO OT TOTO, KAKUMH OBUIM NPEANOCHUIKA M3MEHEHHMil: HOBbIC
TpeGoBaHMs, U3MEHEHHE CPEbl QYHKIIMOHHUPOBAHMUS, U T.I1. DTa 3BOJIIOLHUS MOXKET YCIOKHHUTD
TOJIBKO YTO M3MEHCHHBIC CHUCTEMbI, U TEM CAMbIM YBEJIHYHMTH TPYJHOCTh UX TEXHHYECKOU
HNOANCPKKH M JajbHeWIero pa3BuTHs. [IOCTOSHHBIE H3MEHEHUs MOTYT IIPHBECTH K
HOSIBJICHUIO B CHCTEME «IUIOXUX) PEIICHUH — aHTU-NIATTEPHOB, UTO, B CBOIO OYepeb, CHIKAET
KauecTBO MPOTPaMMHON CHCTEMBI M TpeOyeT OOJbIIero BHUMaHUS pa3pabOTYNKOB Ha BCeX
JTanax JKM3HEHHOTO IMKJIAa CUCTEMBl. AHTH-TIATTEPHBI B MPOLIECCe IKCILTyaTallMy CHCTEM Ha
0a3e CEepBHCOB TPEACTABISIIOT COOOH («IUIOXHE» pEIICHHUS IOBTOPSIOMIUXCA TPOOIeM
MPOSKTUPOBaHMS. B MPOTHBOIONOKHOCTh MATTEPHAM HPOCKTHPOBAHHS, KOTOPBIC SBISIOTCS
XOPOIIMMH MPOBEPEHHBIMH PELICHUSMH, aHTH-TIATTEPHBI HMHXKEHEpaM ClieqyeT H30erars.
AHTH-TIATTEPHBI TAKKe MOTYT OBITh BBEJCHBI KaK CIIEICTBHE PA3IMYHBIX W3MEHEHHMIl, TaKUX
Kak, HalpuMmep, HOBbIe TpeOOBaHWA  IOJb30BaTeNied MM  W3MEHCHHS  CPEHbl
(YHKIMOHMPOBaHUs. 3HAaHME aHTH-TIATTEPHOB SIBISICTCS TAKUM JK€ BaXKHBIM, KaK M 3HaHHE
AQHTHU-TIATTEPHOB, I0O3TOMY aHTH-TIATTEPHBI omuchBaloTcs cnenuaiaucramu UT oGmacty, a
CaMH OIUCAHUs COOMPAIOTCS B KaTanory. 1 gaiie Bcero UMEHHO METPUKO-OPUEHTHPOBAHHBIH
MOAXOA MOXeT ObITh NpUMEHEH /Ul IOJydYeHWs IIeHHOW, OCHOBaHHON Ha (dakTax,
nHOOPMAIMK O TOM, KaK pabOTalOT CEPBHCHL. B IaHHOW CTaThe paccMaTpHBAIOTCS MPHMEPHI
AQHTH-TIATTEPHOB M METOJOB HX aBTOMAaTHYECKOro OOHapykeHus. Bce mertomsl Oyayt
COCPEIOTOYCHBI Ha METPHKO-OPHEHTHPOBAHHOM IOJIXO/IE K aHAIN3Y MPOIPAMMHBIX CHCTEM.

KitoueBble cj10Ba: CepBUC-OPHEHTUPOBAHHBIC CHCTEMBI, aHTH-TIATTEPHbI, CliCU(bHKALUST U
obHapyxKeHHe, KaueCTBO POrPaMMHOI0 00eCTICUeHUs.
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