
Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

97

Technology for application family creation
based on domain analysis

A. Gudoshnikova <gudoshnikova.anna@gmail.com>

Y. Litvinov <y.litvinov@spbu.ru>

Software Engineering chair,

St.Petersburg State University,

198504, Russia, St.Petersburg, Peterhof, Universitetsky prospekt, 28

Abstract. The theme of code reuse in software development is still important. Sometimes it is

hard to find out what exactly we need to reuse in isolation of context. However, there is an

opportunity to narrow the context problem, if applications in one given domain are considered.

Same features in different applications in one domain have the same context respectively so

the common part must be reused. Hence, the problem of domain analysis arises. On the other

hand, there is metaCASE-techonology that allows to generate code of an application using

diagrams, which describe this application. The main objective of this article is to present the

technology for application family creation which connects the metaCASE-techonology and

results of domain analysis activity. We propose to use some ideas of FODA (feature-oriented

domain analysis) approach for domain analysis and use feature diagrams for describing of

variability in a domain. Then we suggest to generate metamodel of the domain-specific visual

language, based on feature diagram. After that based on generated metamodel domain-specific

visual language editor is generated with the aid of metaCASE-tool. With this language user can

connect and configure existing feature implementations thus producing an application. This

technology supposed to be especially useful for software product lines.

Keywords: domain analysis; metaCASEtechnology; domain-specific language; application

family

DOI: 10.15514/ISPRAS-2016-28(2)-6

For citation: Gudoshnikova A.A., Litvinov Y.V. Technology for application family creation

based on domain analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue. 2, 2016, pp. 97-110

DOI: 10.15514/ISPRAS-2016-28(2)-6

1. Introduction

The term “reuse” in software engineering is closely associated with context. Reuse

objects can be programs, parts of programs, specifications, requirements,

architectures, test plans, etc. Reuse of one object leads to reuse of another object. This

means, there is a need to reuse something more than just code, i.e. there is a call for

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

98

increasing the abstraction level. It is commonly supposed that reuse, as some kind of

activity, can be divided into groups according to what should be reused: components,

process for gaining the product, technology or knowledge. At all accounts any reuse

object cannot be discussed without environment, where the given object exists.

Hence, the context problem still remains. However, if we reuse objects in one domain,

the context issue may be narrowed. The product line implies that there is a common

part, it can be: (1) architecture, (2) components, (3) algorithms, (4) methods, etc. —

and this part exists in the same context. This fact facilitates the reuse problem.

Consequently, the common part must be reused.

Gathering information about the domain is the crucial step in the whole process of

software development. Nowadays applications in one domain are often designed

independently; this approach leads to increase of development time and cost. Usually

such applications have similar functionality, so the reuse problem moves to the

forefront in an attempt to speed up the development and to decrease the cost for

systems in one domain. The reuse process in one domain supposes the necessity of

the domain analysis activity. At present domain analysis in software life cycle is

performed in informal way. There are some domain analysis tools, but such tools are

not integrated with development tools. As the result of the domain analysis activity

some diagrams just are put up on the board, and do not take part in following process

of software design. The risk of incorrect understanding of domain-dependent

knowledge increases. Therefore, many peculiarities of the domain may be missed in

development process because of the factor of human error. This fact may lead to

development of the product, which does not satisfy requirements at all. Hence, there

emerged a need for a tool in which domain analysis activity would play a vital role in

software development process, i.e. based on this activity would be possible to

generate some design model, so developers and other process actors could rely on this

model. At the present day there is no tool that could allow to solve this problem.

One possible solution for this problem is the use of domain analysis tool in model-

driven development, or, more precisely, domain-specific modeling. Domain-specific

approach uses visual languages to specify system under development, but, contrary

to general model-driven approach, which uses general-purpose visual languages like

UML, domain-specific languages are tailored specifically for given domain or a set

of problems. Existing studies [1-4] show that due to closeness to a problem domain

and the ability to generate complete application by visual models domain-specific

languages boost development productivity by 3 to 10 times compared to general-

purpose languages. It is clear that developing a tool for domain-specific language

“from scratch” for each domain will be prohibitively costly, so special systems are

used that allow to declaratively specify syntax of a language and to automatically

generate such tools as visual editor, source code generators, constraints checkers and

so on. Such systems are called DSM platforms, most known of these is MetaEdit+ [5-

7], Eclipse GMP [8, 9], Microsoft Modeling SDK [10].

Main idea of domain-specific modeling is to use a number of visual languages in one

tool to develop a complete system. Every language can provide a different point of

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

99

view on a system. We propose to exploit this idea to automatically produce useful

artifacts from the results of domain analysis thus seamlessly integrating this phase

into development process (such as [11]). For that, we will use specific visual language

to perform domain analysis and to build domain model, language simple enough to

be useful to analysts and domain experts who do not necessarily possess programming

skills. Then, using this domain model, we will generate actual domain-specific

language that will allow to configure various existing pre-built components and

integrate them to generate a working application. As we will see, this language will

also typically be very simple so that non-programmers can use it. The only real coding

in the proposed approach occurs when creating components from which applications

will be built, but for product lines these components will already exist anyway, as

they will in a case when a team develops many applications in one domain for some

time. Not all steps in proposed approach are fully automatic, as a visual language

needs tailoring after generation from domain model — we still need to manually

specify shapes of its elements (to be familiar for domain experts) and configure

properties which depend on existing components and cannot be derived from domain

model. It is also possible that generated application will need tailoring by hand, but

generation can significantly lower the effort needed to create application.

Main contribution of this research-in-progress paper is a novel approach to product

line development and assets reuse. Also an implementation of technology which uses

this approach is presented. Our technology is based on QReal DSM platform [12], an

open source tool developed by Software Engineering chair of St. Petersburg State

University. An evaluation of proposed approach is also presented, but on a rather

simple problem, so a much wider evaluation is needed for this study to be considered

complete, such as the applicability of this approach to complex real-life situations and

determining actual productivity boost on real-life problems.

The rest of this paper is structured as follows: in section 2 most important terminology

for domain analysis is given, also related works are considered. In section 3 we

present our method and its implementation as development platform, in section 4 an

example of application of our approach is given, we will consider a family of Android

gamepads for remote control of various robot models. Section 5 concludes the paper.

2. Domain analysis approaches

There is no any clear and long-standing definition of the term “domain analysis”.

Almost all papers, in which this term is considered, go back to 80s-90s of the

twentieth century. It was then that scientists, taking into account rapidly growing

technologies, were thinking about global reuse. Always projects are developing for

concrete user needs, so then the term “domain” took the definition. Domain is the

field of expertise, problems in which the software intends to solve. According to

Rugaber [13], the domain is described in terms of glossary, some assumptions,

architecture approach and literature.

Then the question arise, how we need to analyze the domain for acquiring the

necessary information. At present, the information gathering into knowledge bases is

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

100

understood under the term “domain analysis”. Although, Prieto-Diaz [14] confirms

that domain analysis is an activity, which is held before system analysis and its output

is used for system analysis to the same degree as system analysis’s output is used for

system design. There are other definitions of the term “domain analysis”. Ferre [15]

has presented definitions, such as: (1) the process of identification, organization and

presenting the relevant information of a given domain, (2) the process, in which the

customer’s knowledge are identified, concretized and systemized. The relevant

information of the domain should be presented in objective, readily available way,

such way is called “domain model”. Mernik [16] specifies that the domain model

includes not only glossary, but also must describe commonalities and variabilities of

terms. Such model should precisely set bounds of the domain, i.e. clear and exact

characterize a range of questions, which are considered in the domain. Term

variabilities allow to define exactly, what information must be specified in concrete

system implementation. Term commonalities are used for defining a set of shared

operations between different applications. Implementing commonalities and adding

the gained model with information, which can be specified in instance of the concrete

system, a set of different systems can be obtained based on one common model. In

such manner, based on one domain model, the set of different systems in given

domain can be implemented. Taking into account definitions above mentioned, we

can conclude that domain analysis is the activity of forward system analysis, which

goal is to provide the domain model.

As stated above, at present in many software companies the term “domain analysis”

is understood as information gathering into some knowledge bases, but it is obvious

that there are disadvantages of this approach. It may lead to incomplete glossary,

absence of agreements about understanding some terms in the domain, so any

misunderstanding of domain can result in an improper product. Therefore, several

dozens of years ago were introduced some formal approaches for domain analysis.

Here will be mentioned some of them. Main objective any domain analysis approach

is to gain the domain model.

Despite different understanding of the term “domain analysis”, Arango [17] showed

that all formal domain analysis methods follow the general process for obtaining the

domain model. This process includes next stages: (1) domain characterization, (2)

data collection, (3) data analysis, (4) classification and finally (5) evaluation of

domain model. There are following domain analysis approaches: 1) DARE (Domain

Analysis and Reuse Environment) [18]. The crucial idea of this method is to create

the domain book, that will include the universal architecture and library of reusable

components. 2) DSSA (Domain-Specific Software Architectures) [19]. Given

approach allows to create a domain glossary with the aid of use case analysis. 3) ODE

(Ontology-based Domain Engineering) [20]. This approach connects the ontology

idea with object-oriented approach. Ontology includes terms and their connections,

definitions, properties and constraints. Library of objects is built based on mapping

ontology with object-oriented entities. 4) FODA (Feature-Oriented Domain Analysis)

[21]. This method has get popularity among scientists in the research area because of

its simplicity for non-programmers. The main idea of this approach is creating feature

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

101

model. This model describes functionality, which the future product should possess.

Such model must note what features are compulsory for implement in any instance of

application in a given domain, what features must be implemented but there is some

alternative between them, and present features, which may be implemented but not

compulsory. This model can be easily built by expert in the domain.

Concerning product line creating with the aid of using domain model, Estublier [22]

presented approach, which is based on some aspects and requirements. These entities

were proposed by authors. Such approach based on MDE methodology. Domain

model is considered as metamodel, which is described on MOF or UML. There is an

interpreter, which translates each term in metamodel into Java class, and concrete

models — into instances of these classes. Domain model is accompanied with feature

model, which include some external behavior of the system. Authors use aspect-

oriented techniques for feature implementing and following their mapping with terms

in domain model. Consequently, there is a close interaction between domain

modeling and feature modeling. It seems that such approach is a bit complicated for

non-programmers. In addition, there is no any industrial use of this method, but it is

worth noting that authors describe appliance in this article [23].

3. Proposed approach

In our approach we will use some ideas of Feature- Oriented Domain Analysis

(FODA) method to perform domain analysis and to create feature models. For this

we will use visual editor that implements feature diagrams and is easy enough for

domain experts. Then, when feature models are ready, each feature is implemented

as reusable and configurable component on selected implementation language (C#,

C++, Java and so on) and feature library is formed as a collection of such components.

This process requires qualified programmers and requires more effort than to simply

create one application, but it allows to reuse features from feature library to create as

many applications as needed. Also, this process is scalable, so we may add new

features into feature library later, thus allowing to create more complex applications.

At this stage of development domain experts shall work with programmers, and they

shall use feature diagrams as an input for creation of feature library to simplify

matching between features and components in feature library.

Next step is to create domain-specific language that allows to combine and configure

features from feature library to implement applications in given domain. This is where

our approach differs from common reuse strategies. Naïve approach would be to

generate an application directly from feature diagram, somehow marking features that

shall be included into application, and it actually works fine when domain variability

is low [24]. But more common is the situation when features themselves have

properties that allow to configure them, those properties can have different types.

Also, components may be related to each other in different ways, be used in

configuration of one another, or some of their properties may be meaningless in

absence or presence of other feature. Those rules may be implemented implicitly in

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

102

application generator and require that programmers will always observe them, but we

propose that these rules will be captured explicitly by

dedicated domain-specific language. Such language may make models that do not

observe those rules syntactically incorrect, and it will greatly reduce the possibility of

human error and reduce knowledge required to efficiently use programming system.

By using DSM platforms one can relatively quickly create domain-specific language

that will capture domain knowledge, but we already have feature diagram, so we

actually can generate the language using it. Generator takes feature diagram as input

and produces metamodel of a language. Metamodel is a visual model of a language

syntax, that can be opened and edited in yet another visual editor that is part of DSM

platform, this editor is called metaeditor. Features from feature diagram become

entities in metamodel, this metamodel is then edited to provide shape and a list of

properties for each entity. Any vector image can play the role of shape, so the best

practice is to select shape that is similar to a feature it depicts. For example, if an

application can have buttons, “button” becomes entity in domain-specific language

and looks like a button on a diagram. The same happens with properties — for each

feature they are added in metaeditor to corresponding language entity with respect to

feature library that actually implements this feature and uses the property to configure

it. Properties have name, type and default value. On this step it is also possible to

define some constraints on a metamodel that will be checked when model will be

edited. If some constraints are violated, user will immediately receive warning, which

makes errors in a target application even less likely to occur.

On a next step we use editor generator of the DSM platform to create visual editor for

our newly created language. This step if fully automated, and when an editor is

generated and loaded into DSM platform, we can use it to create diagrams that specify

target applications.

The next thing we need is to generate actual code on target textual language that will

call feature library and glue features together. For this we shall return to metamodel

level and define generation rules for metamodel. This step is performed only once for

a given domain after the feature library and metamodel are finished, and then the same

generator is used for each application created by using of the technology.

Recommendations for development of domain-specific generator are well-known in

DSM literature (for example, [7]): it is the best to write first application by hand, then

draw a model that is supposed to be generated into this application, then find the

places in handwritten application that shall be parameterised by information from

model and let the generator replace such handwritten parts with data from model. This

process is continued until handwritten application becomes a template that is filled

by generator with information taken from model. Handwritten application and,

consequently, a generator shall extensively use feature library to minimize the amount

of code that is generated directly, in ideal case generator shall produce merely a glue

code that binds components from feature library together.

After all steps above are finished we have feature library, visual editor for simple

domain-specific language that allows to describe how features are combined and

configured in a concrete application, and a generator that automatically produces

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

103

complete application by a model in domain-specific language using feature library as

domain-specific runtime [7]. Now we may create as many applications as we wish by

just drawing models and automatically generate complete executable code.

Theoretically. Of course, in practice there will always be a need to modify feature

diagram, to extend feature library and, consequently, domain-specific language

metamodel, modify generator and even to make some changes in generated code,

there is no silver bullet. But we believe that our approach can provide better separation

of concerns, provides better utilization of domain experts knowledge and expertise

among a team. Summary of a process described above and relation between various

tools and roles of developers is provided on fig. 1.

This approach was implemented in a technology based on QReal DSM platform.

QReal became an enabler technology because it provides easy and effective way to

create visual editor for domain-specific languages that allows to create fully

functional editor in less than an hour. It has visual metaeditor, visual constraints

definition tool, visual shape editor and a C++ library that allows to quickly specify

generation rules. Feature diagram editor and generator that creates metamodel by

feature diagrams were both implemented as plugins to QReal core. Note that feature

diagram language is itself domain-specific language for the domain of domain

analysis, so it was implemented using QReal metaeditor. The same metaeditor

(including shape editor and constraints editor) is then used to tailor the generated

metamodel of domain-specific language. Then metaeditor generator is used to

generate yet another plugin to QReal that provides visual editor for created language.

Then the generator is implemented by hand on C++ with Qt library using generator

creation library included in QReal. Then it is possible to create special distribution of

QReal (using Qt Installer framework) that includes only QReal core, editors for

feature diagrams (at this point they are needed only as reference) and

domain-specific language, generator and feature library, thus forming a complete

technology that can be used to generate target applications.

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

104

Fig. 1. Relations between artifacts and roles in proposed approach to domain components

reuse.

4. Evaluation

For demonstration of the efficiency of proposed above approach there was

implemented a model application for remote control of various robot models —

“Joystick”. The main substantiation for implementing such application is that

controlling different robot models requires different control elements. For example,

one model can be controlled with only two pads, but another — with one pad and two

buttons. Such application was implemented in C# for Windows Phone platform.

Screenshots of this simple application are presented on fig.2.

Fig. 2. Screenshots of “Joystick” application.

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

105

As mentioned above, it was used QReal as DSM tool. A visual language was

implemented there for describing feature models. Appropriate feature model for

“Joystick” application family is proposed on fig.3. This feature model presents

explicit features, which are labeled as green, and some unite feature groups, which

are labeled as blue. Type of arrow shows which feature is compulsory (shown as solid

line with arrow on the end), which compulsory but there is some alternative between

them (shown as dash line with an arrow on the end), and optional features,

which may be implemented but not compulsory (shown as dash line with a circle on

the end).

Fig. 3. Feature model for “Joystick” application family.

Based on this feature model a metamodel for future visual language was generated,

which is required for building different models for different configurations.

Generated metamodel is presented on fig. 4. As it can be seen, metamodel is very

simple. At this stage we can propose that entities, such as “buttons” and “pads”, may

have a property “Quantity”. In addition, we can specify images for these entities,

which will be shown in visual language.

Fig. 4. Metamodel of visual language for “Joystick” application family.

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

106

Then with the aid of QReal tool a visual language was generated. Example of

generated visual language is demonstrated on Fig. 5. It can be seen that in visual

language editor can be specified property “Quantity”, explicitly noting the concrete

number of pads. As can be seen, example is quite simple for demonstrating extensive

possibilities of the approach proposed above. At present there is no rigorous

evaluation of the proposed process. Also, cohesive and consistent technology for

creating application family based on domain analysis is not implemented yet, here we

have described a conceptproof prototype. Therefore, this work requires more detailed

explorations.

5. Conclusion

The problem of not using domain analysis result for further generation of some

entities for software development process was stated. There were considered some

formal domain analysis approaches and we concluded that creation of feature

diagrams is the most elegant decision for domain analysis that can be conducted by

domain expert, i.e. non-programmer, maybe in collaboration with system analysts.

Moreover, there was discussed one of the possible solutions, which is presented by

Estublier, we specify some problems of such method. We suggested our own

approach for creation of application family in one domain based on domain analysis.

Thus, some target applications can be implemented even by non-programmers using

domain-specific language with configuring features from library. Also, there was

some evaluation of this approach, where we pointed out that this example remains

many questions because of its simplicity.

References
[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //

Modelsward, 2016, pp. 711–719.

[2]. Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —

Motorola case study // MoDELS’05: Proceedings of the 8th international conference on

Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476–491.

[3]. A software engineering experiment in software component generation / R. Kieburtz, L.

McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software

engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542–552.

[4]. Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of

using metaCASE tools // International Workshop on Model Engineering, at ECOOP.

2000. URL: http://dsmforum.org/papers/Visual_domain-specific_modelling.pdf.

[5]. Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:

MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling

(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSM07/papers/tolvanen.pdf.

[6]. Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific

modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

107

on Object oriented programming systems languages and applications / ACM. New York,

NY, USA: ACM, 2009, pp. 819–820.

[7]. Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.

Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.

[8]. Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

[9]. Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical

editor // IEEE 18th International Conference on Intelligent Engineering Systems INES

2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233–238.

[10]. Domain-specific development with Visual Studio DSL Tools / S. Cook, G. Jones, S. Kent

et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

[11]. Koznov D. Process Model of DSM Solution Development and Evolution for Small and

Medium-Sized Software Companies // Enterprise Distributed Object Computing

Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85–

92.

[12]. QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.

Kuzenkova, A. Deripaska, T. Bryksin et al. // ENASE 2013—Proceedings of the 8th

International Conference on Evaluation of Novel Approaches to Software Engineering.

Setubal, Portugal: SciTePress, 2013, pp. 205–211.

[13]. Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.

[14]. Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /

IEEE Computer Society Press. 1988, pp. 347–353.

[15]. Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8

International Workshop in Evaluation of Modeling in System Analysis and Design /

Citeseer. 1999, pp. 2–6.

[16]. Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific

languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316–344.

[17]. Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17–49.

[18]. DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //

Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125–141.

[19]. Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific

software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.

5, pp. 27–38.

[20]. Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering

// Proceedings of the 14th international conference on Software engineering and

knowledge engineering / ACM. 2002, pp. 351–358.

[21]. Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.

Hess et al.: DTIC Document, 1990.

[22]. Estublier J., Vega G. Reuse and variability in large software applications // ACM

SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316–325.

[23]. An approach and framework for extensible process support system / J. Estublier, J.

Villalobos, L. Anh-Tuyet et al. // Software Process Technology. Springer, 2003, pp. 46–

61.

[24]. The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. // VaMoS.

2010, vol. 10, pp. 45–51.

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

108

Технология создания семейства приложений на основе
анализа предметной области

А.А.Гудошникова <gudoshnikova.anna@gmail.com>

Ю.В. Литвинов <y.litvinov@spbu.ru>

Кафедра системного программирования,

Санкт-Петербургский государственный университет,

198504, Россия, Санкт-Петербург, Старый Петергоф, Университетский

проспект, д. 28

Аннотация. Тема переиспользования кода при разработке программного обеспечения

до сих пор актуальна. Иногда трудно понять, что нужно переиспользовать в изоляции от

контекста, в частности переиспользование одного объекта влечет за собой

переиспользование другого. Однако есть возможность сузить проблему контекста, если

рассматривать приложения в одной предметной области. Одни и те же характеристики

в разных приложениях, но которые относятся к одной предметной области, имеют один

и тот же контекст, поэтому важно и нужно переиспользовать эту общую часть. Таким

образом, на первый план выходит задача анализа предметной области. С другой

стороны, в настоящее время активно развиваются metaCASE-технологии, которые

позволяют сгенерировать код целевого приложения, основываясь на диаграммах,

описывающие это приложение. Главной целью данной статьи является представление

технологии для создания семейств приложений в одной предметной области, которая

соединяет деятельность по анализу предметной области и metaCASE-технологию. Мы

используем некоторые идеи метода для анализа предметной области FODA (от англ.

“Feature-Oriented Domain Analysis”), а именно создаем диаграмму характеристик для

описания предметной области. Затем на основе такой диаграммы предлагаем

генерировать метамодель предметно-ориентированного визуального языка. После этого

средствами metaCASE-инструмента генерируем редактор предметно-ориентированного

визуального языка. С помощью такого языка пользователь может соединять и

конфигурировать существующие заранее реализованные характеристики, таким

образом создавая целевое приложение. Полагается, что такая технология будет полезна

при создании линейки продуктов.

Ключевые слова: анализ предметной области; metaCASE-технология; предметно-

ориентированный язык; семейство приложений.

DOI: 10.15514/ISPRAS-2016-28(2)-6

Для цитирования: Гудошникова А.А., Литвинов Ю.В. Технология создания семейства

приложений на основе анализа предметной области. Труды ИСП РАН, том 28, вып. 2,

2016 г., стр. 97-110 (на английском). DOI: 10.15514/ISPRAS-2016-28(2)-6

Список литературы
[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //

Modelsward, 2016, pp. 711–719.

Гудошникова А.А., Литвинов Ю.В. Технология создания семейства приложений на основе анализа предметной

области. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 97-110.

109

[2]. Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —

Motorola case study // MoDELS’05: Proceedings of the 8th international conference on

Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476–491.

[3]. A software engineering experiment in software component generation / R. Kieburtz, L.

McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software

engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542–552.

[4]. Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of

using metaCASE tools // International Workshop on Model Engineering, at ECOOP.

2000. URL: http://dsmforum.org/papers/Visual_domain-specific_modelling.pdf.

[5]. Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:

MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling

(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSM07/papers/tolvanen.pdf.

[6]. Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific

modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion

on Object oriented programming systems languages and applications / ACM. New York,

NY, USA: ACM, 2009, pp. 819–820.

[7]. Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.

Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.

[8]. Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

[9]. Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical

editor // IEEE 18th International Conference on Intelligent Engineering Systems INES

2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233–238.

[10]. Domain-specific development with Visual Studio DSL Tools / S. Cook, G. Jones, S. Kent

et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

[11]. Koznov D. Process Model of DSM Solution Development and Evolution for Small and

Medium-Sized Software Companies // Enterprise Distributed Object Computing

Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85–

92.

[12]. QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.

Kuzenkova, A. Deripaska, T. Bryksin et al. // ENASE 2013—Proceedings of the 8th

International Conference on Evaluation of Novel Approaches to Software Engineering.

Setubal, Portugal: SciTePress, 2013, pp. 205–211.

[13]. Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.

[14]. Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /

IEEE Computer Society Press. 1988, pp. 347–353.

[15]. Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8

International Workshop in Evaluation of Modeling in System Analysis and Design /

Citeseer. 1999, pp. 2–6.

[16]. Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific

languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316–344.

[17]. Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17–49.

[18]. DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //

Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125–141.

[19]. Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific

software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.

5, pp. 27–38.

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN

/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

110

[20]. Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering

// Proceedings of the 14th international conference on Software engineering and

knowledge engineering / ACM. 2002, pp. 351–358.

[21]. Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.

Hess et al.: DTIC Document, 1990.

[22]. Estublier J., Vega G. Reuse and variability in large software applications // ACM

SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316–325.

[23]. An approach and framework for extensible process support system / J. Estublier, J.

Villalobos, L. Anh-Tuyet et al. // Software Process Technology. Springer, 2003, pp. 46–

61.

[24]. The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. // VaMoS.

2010, vol. 10, pp. 45–51.

