
Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

29

Pitfalls of C# Generics and
Their Solution Using Concepts

Julia Belyakova <julbel@sfedu.ru>,

Stanislav Mikhalkovich <miks@math.sfedu.ru>

Institute for Mathematics, Mechanics and Computer Science,

Southern Federal University,

344006, B. Sadovaya str., 105/42, Rostov-on-Don, Russia

Abstract. As was shown in earlier studies, in comparison with Haskell type classes

and C++ concepts such mainstream object-oriented languages as C# and Java pro-

vide much limited mechanisms of generic programming based on F-bounded poly-

morphism. Main pitfalls of C# generics are carefully considered in this paper. A

special attention is given to drawbacks of recursive constraints (F-constraints), am-

biguous semantics of interfaces, lack of language support for multi-type constraints

and retroactive interface implementation, and subtle problems of the Concept design

pattern, which is widely used not only in C#, but in Java and Scala as well. To solve

the problems of C# generics, extending C# language with concepts is proposed: as a

new language construct, concepts are to be used as constraints on type parameters

exclusively, with object-oriented interfaces being used as types. In contrast to basic

C++ concepts, C# concepts may include subtype and supertype constraints, allow

constraints aliasing and automatic generation of default models. The major differ-

ence of the concepts design proposed is language support for multiple models. The

latter feature is supported neither in C++ concepts, nor in Haskell type classes. In

conclusion, a mechanism of implementation of concepts via translation to basic C#

is outlined. The most important property of the translation is a possibility to recover

a source code in extended language from a compiled module.

Keywords: generic programming; (C++) concepts; generics; C# language; concept pattern;

recursive constraints; generic interfaces.

DOI: 10.15514/ISPRAS-2015-27(3)-2

For citation: Belyakova Julia, Mikhalkovich Stanislav. Pitfalls of C# Generics and Their

Solution Using Concepts. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-47.
DOI: 10.15514/ISPRAS-2015-27(3)-2.

mailto:julbel@sfedu.ru
mailto:miks@math.sfedu.ru

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

30

1. Introduction

Generic programming is supported in different programming languages by various

techniques such as C++ templates, C# and Java generics, Haskell type classes, etc.

Some of these techniques were found more expressive and suitable for generic pro-

gramming, other ones more verbose and worse maintainable [1]. Thus, for example,

the mechanism of expressive and flexible C++ unconstrained templates suffers from

unclear error messages and a late stage of error detection [2], [3]. A new language

construct called concepts1 was proposed for C++ language as a possible substitution

of unconstrained templates. A design of C++ concepts2 conforms to main principles

of effective generic tools design [1].

In comparison with concepts and Haskell type classes [1], [7], such mainstream

object-oriented languages as C# and Java provide much limited mechanisms of ge-

neric programming based on F-bounded polymorphism. Pitfalls of C# generics are

analysed in this paper in detail (Sec. 2): we discuss some known drawbacks and

state the problems of subtle semantics of recursive constraints (Sec. 2.2) and con-

straints-compatibility (Sec. 2.3). To manage the pitfalls considered, extending of C#

with concepts is proposed: a design of concepts is briefly presented in Sec. 4. We

also discuss a translation of such extension to standard C#.

C# language is used in this paper primarily for the sake of syntax demonstration. As

for the pitfalls of C# generics, they hold for Java as well with slight differences.

However, while the concepts design proposed in the paper could be easily adapted

for Java (and also for any .NET-language with interface-based generics), the tech-

nique of language extension translation (which we consider in Sec. 4) cannot be

applied for Java directly. Unlike Java Virtual Machine, .NET Framework preserves

type information in its byte code, this property being crucial for the translation

method.

2. Pitfalls of C# Generics

C# and Java interfaces originally developed to be an entity of object-oriented pro-

gramming were later applied to generic programming as constraints on generic type

parameters. There are several shortcomings of this approach.

2.1 Lack of Retroactive Interface Implementation

C# and Java interfaces originally developed to be an entity of object-oriented pro-

gramming were later applied to generic programming as constraints on generic type

parameters. There are several shortcomings of this approach.

1

 Term “concept” was initially introduced in a documentation of the Standard Template Library

(STL) [4] to describe requirements on template parameters in informal way.
2

 There were several designs of C++ concepts [3], [5], [6]; all of them share some general ideas.

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

31

Interfaces cannot be implemented retroactively, i. e. it is impossible to add the rela-

tionship “type T implements interface I” if type T is already defined. Consider a

generic algorithm for sorting arrays Sort<T> with the following signature:

Sort<T>(T[]) where T : IComparable<T>;

If some type Foo provides an operation of comparison but does not implement the

interface IComparable<Foo>, Sort<Foo> is not a valid instance of

Sort<>. What one can do in this case? If type cannot be changed (it may be de-

fined in external .dll, for instance), the only way to cope with sorting is to define an

adapter class FooAdapter which implements Sort<FooAdapter>

interface, pack all Foo objects into FooAdapter ones, sort them and unpack

back to an array of Foo objects. Apparently, there must be a better approach.

Fortunately, in the .NET Framework standard library the Array.Sort<T>

method [8] is provided with two “branches” of overloads:

1. For any type T which implements IComparable<T> interface

((s-1) example, Fig. 1).

2. For any type T with an external comparer of type IComparer<T>

provided ((s-2) example, Fig. 1).

Hence, if some type is already defined, values of this type can be compared, but this

type does not implement IComparable<> interface (as in the Foo example

above), Sort<> with IComparer<> (branch 2) is to be used. Thus one can

simulate retroactive modeling property (in Scala the similar approach is referred to

as a programming with the “concept pattern” [9]). Consequently, if retroactive

modeling is required, a programmer has to write a generic code twice — in “inter-

face-oriented” and in “concept pattern” styles. The amount of necessary overloads

grows exponentially: if one needs two retroactively modeled constraints on generic

type, corresponding generic code would consist of four “twins”, if three — eight

“twins” and so on.

(ICmp-1) interface IComparable<T> {int CompareTo(T other);}

(ICmp-2) interface Icomparer<T> {int Compare(T x, T y);}

(s-1) Sort<T>(T[]) where T : IComparable<T>;

(s-2) Sort<T>(T[], IComparer<T>);

Fig. 1. IComparable<T>/IComparer<T> interfaces and its applications

(1) interface IComparableTo<S> { int CompareTo(S other); }

(2) interface IComparable<T> where T : IComparable<T>

 { int CompareTo(T other); }

Fig. 2. IComparable<T> vs IComparableTo<S> example

interface IDataVertex<Vertex, DataType>

 where Vertex : IDataVertex<Vertex, DataType>

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

32

{ ...

 IEnumerator<Vertex> OutVertices { get; } // (*)

 ...

}

interface IDataGraph<Vertex, DataType>

 where Vertex : IDataVertex<Vertex, DataType> // (#)

{ ... }

Fig. 3. IDataGraph<,> and IDataVertex<,> interfaces

2.2 Drawbacks of Recursive Constraints

Example 1. The following reason about the Sort<T> method for ICompa-

rable<T> may be not obvious. The notation of Sort<T> in (s-1) ex-

ample (Fig. 1) looks a little bit redundant; such a recursive constraint on type T

might look even frightening, but it is well formed. Furthermore, the word “compa-

rable” in this context is very likely associated with the ability to compare values of

type T with each other. But the interface IComparable<T> ((ICmp-1),

Fig. 1) does not correspond this semantics: it designates the ability of some type

(which implements this interface) to be comparable with type T. The same problem

with Comparable<X> interface in Java is explored in [10]. The particular role

of recursive constraints in generic programming is explored in [11].

It would be better to split the single IComparable<> interface into two dif-

ferent interfaces (Fig. 2):

1. IComparableTo<S> which requires some type (which implements

this interface) to be comparable with S.

2. IComparable<T> which requires values of type T to be comparable

with each other.

Note that the definition of the latter interface needs the constraint (q.v. Fig. 2):

where T: IComparable<T>

Example 2. As an another example consider a generic definition of graph with pe-

culiar structure: graph stores some data in vertices; every vertex contains infor-

mation about its predecessors and successors thereby defining arcs. A graph itself

consists of set of vertices instead of set of edges. Such kind of graph is suitable for a

task of data flow analysis in the area of optimizing compilers [12] because “move-

ment along arcs up and down” is intensively used action in an analysis of a control

flow graph.

Fig. 3 illustrates parts of the corresponding definitions: IData-

Graph<Vertex, DataType> describes interface of a data graph;

IDataVertex<Vertex, DataType> describes interface of a vertex

in such graph. While the graph interface really depends on type parameters Ver-

tex and DataType, we have to include Vertex as a type parameter into the

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

33

vertex interface IDataVertex<,> as well. Similarly to ICompara-

ble<> example the constraints (*) and (#) in Fig. 3 are not superfluous.

Suppose we have the following types:
class V1 : IDataVertex<V1, int> { ... }

class V2 : IDataVertex<V1, int> { ... }

Thanks to the constraints (*) and (#) the instantiation of graph IData-

Graph<V2, int> is not allowed, since type V2 does not implement inter-

face IDataVertex<V2, int>. Without these constraints we might accept

some inconsistent graph with vertices of type V2 which refer to vertices of type

V1.

Vertex and graph interface definitions are unclear and nonobvious. If programmers

might be used to use interface IComparable<>, it is more difficult to manage

such things as IDataGraph<,> example. In some cases one may prefer to

abandon writing generic code because of this awkwardness.

2.3 Ambiguous Semantics of Generic Types

When using flexible Sort<T> method with an external parameter (Fig. 1), a pro-

grammer has clear understanding of how elements are sorted, since such a comparer

is a parameter of an algorithm. But when one uses generic types, this information is

implicit. For instance, SortedSet<T> class takes Icomparer<T>

object as a constructor parameter, HashSet<T> class taking IEquali-

tyComparer<T>. Therefore, given two sets of the same generic type one

cannot check at compile time whether these sets are constraints-compatible (in case

of HashSet<T> “constraints-compatibility” means that the given sets use the

same equality comparer). And it seems that a programmer usually does not suppose

that objects of the same type can have different comparers (or addition operators,

coercions, etc). But they can, and it leads to subtle errors.

Suppose we have a simple function GetUnion<T> (q.v. Fig. 4) which returns a

union of the two given sets. If some arguments a and b provide different equality

comparers (e.g., case-sensitive and case-insensitive comparers for type string), the

result of GetUnion(a, b) would differ from the result of

GetUnion(b, a). Note that Haskell type classes do not suffer from such an

ambiguity because every type provides only one instance of a type class.

static HashSet<T> GetUnion<T>(HashSet<T> s1, HashSet<T> s2)

{

 var us = new HashSet<T>(s1, s1.Comparer);

 us.UnionWith(s2);

 return us;

}

Fig. 4. Union of HashSet<T> objects

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

34

interface IObserver<O, S> where O : IObserver<O, S>

 where S : ISubject<O, S>

{ void update(S subj); }

interface ISubject<O, S> where O : IObserver<O, S>

 where S : ISubject<O, S>

{

 List<O> getObservers();

 void register(O obs);

 void notify();

}

Fig. 5. Observer pattern in C#

2.4 The Problem of Multi-Type Constraints

The well-known problem of multi-type constraints holds for C# interfaces. Re-

quirements concerning on several types cannot be naturally expressed within inter-

faces. The paper [10] deals with the example of Observer pattern in Java. The Ob-

server pattern connects two types: Observer and Subject. Both types has

methods which take the another type of this pair as an argument: the Observer pro-

vides update(Subject), the Subject — register(Observer).

Fig. 5 shows the interface definitions IObserver<O, S> for Observer and

ISubject<O, S> for Subject in standard C#. We need two different inter-

faces and have to duplicate the constraints on O and S in both definitions to estab-

lish consistent connection between type parameters O and S . And again we face

with recursive constraints on types O (which represents the Observer) and S (which

represents the Subject). This example looks even worse than the case of vertex and

graph interfaces presented in Fig. 3. But it is the only way to define a type fami-

ly [13] of Observer pattern correctly.

2.5 Constraints Duplication and Verbose Type Parameters

All constraints required by a definition of generic type are to be repeatedly specified

in every generic component which uses this type. Consider the generic algorithm

GetSubgraph<,,> depending on type parameter G which implements

IDataGraph<,> interface (q.v. Fig. 3).

G GetSubgraph<G, Vertex, DataType>(G g, Predicate<DataType> p)

where G : IDataGraph<Vertex, DataType>, new()

where Vertex : IDataVertex<Vertex, DataType> { ... }

GetSubgraph<G, Vertex, DataType> method is not correct

without explicit specification of constraint on type parameter Vertex . This con-

straint is induced by the definition of IDataGraph<Vertex,

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

35

DataType> interface and should be repeated every time one uses Idata-

Graph<,>.

Another property of GetSubgraph<...> definition is a plenty of generic

parameters. Clearly, vertex and data types are fully determined by the type of spe-

cific graph. At the level of GetSubgraph<...> signature vertex type even

does not matter at all. Such types are often referred to as associated types. Some

programming languages allow to declare associated types explicitly (SML, C++ via

traits, Scala via abstract types and some other), but in C# and Java they can only be

represented by extra type parameters. It makes generic definitions verbose and

breaks encapsulation of constraints on associated types. Issues of repeated con-

straints specification and lack of associated types are considered in [14], [1] in more

detail.

3. Related Work

We consider two studies concerning modification of generic interfaces in this sec-

tion:

1. [14] proposes the extension of C# generics with associated types and con-

straint propagation.

2. [10] generalizes Java 1.5 interfaces enabling retroactive interface imple-

mentation, multi-headed interfaces (expressing multi-type constraints) and some

other features.

Both studies revise interfaces to improve interface-based mechanism of generic

programming and to approach to C++ concepts and Haskell type classes, which are

considered being rather similar [7]. Some features of Scala language in respect to

problems considered in Sec. 2 will also be mentioned.

interface ObserverPattern[O, S] {

 receiver O { void update(S subj); }

 receiver S {

 List<O> getObservers();

 void register(O obs) { getObservers().add(obs); }

 void notify() { ... }

 }

}

class MultiheadedTest {

 <S,O> void genericUpdate(S subject, O observer)

 where [S,O] implements ObserverPattern {

 observer.update(subject);

 }

}

Fig. 6. Observer pattern in JavaGI

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

36

3.1 C# with Associated Types and Constraint Propagation

Member types in interfaces and classes are introduced in [14] to provide direct sup-

port of associated types. A mechanism of constraint propagation is also proposed to

lower verbosity of generic components and get rid of constraints duplication as was

mentioned in Sec. 2-5. The example of Incidence Graph concept from the Boost

Graph Library (BGL) [15] is considered. It is shown that features proposed can sig-

nificantly improve a support of generic programming not only in C# language but in

any object-oriented language with F-bounded polymorphism.

But the problems of multi-type constraints and recursive constraints cannot be

solved with this extension. Thus, the code of Observer pattern (Fig. 5) cannot be

improved at all because of recursive constraints; the same holds for ICompara-

ble<T> interface. The issue of retroactive implementation is also not touched

upon in [14]: extended interfaces are still interfaces which cannot be implemented

retroactively.

3.2 JavaGI: Java with Generalized Interfaces

In contrast to [14], the study [10] is mainly concentrated on the problems of retroac-

tive implementation, multi-type constraints (solved with multi-headed interfaces)

and recursive interface definitions3. For instance, Observer pattern is expressed in

JavaGI with generalized interfaces as shown in Fig. 6 [10]. Methods of a whole in-

terface are grouped by a receiver type with keyword receiver. A syntax of an

interface looks a little bit verbose but it is essentially better than two interfaces with

duplicated constraints shown in Fig. 5. Moreover, JavaGI interfaces allow default

implementation of methods (as register and notify). Retroactive imple-

mentation of interfaces is also allowed, but it is possible to define only one imple-

mentation of an interface for the given set of types in a namespace.

It turns out that interfaces become some restricted version of C++ concepts [5], [16]

(in particular, they do not support associated types) and, moreover, they lose a se-

mantics of object- oriented interfaces4. JavaGI interfaces only act as constraints on

generic type parameters, but they cannot act as types, so one cannot use JavaGI in-

terfaces as in Java.

(s-s) def Sort[T : Ordering](elems: Array[T]) { ... }

(s-u) def Sort[T](elems: Array[T]) (implicit ord: Ordering[T]) {...}

trait ObserverPattern[S, O] {

 def update(obs: O, subj: S);

 def getObservers(subj: S): Seq[O];

 def setObservers(subj: S, observers: Seq[O]);

3

 This problem is usually connected with so-called binary methods problem.

4
 The way to preserve compatibility with Java code is considered in [10], but “real interfaces”

no longer exist in JavaGI.

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

37

 def register(subj: S, obs: O)

 { setObservers(subj, getObservers(subj) :+ obs); }

 def notify(subj: S) { ... }

}

object MultiheadedTest {

 def genericUpdate[S, O](subject: S, observer: O)

 (implicit obsPat: ObserverPattern[S, O]) {

 obsPat.update(observer, subject);

 }

}

Fig. 7. Sort[T] and ObserverPattern[S,O] examples in Scala

3.3 “Concept Pattern” and Context Bounds in Scala

The idea of programming with “concept pattern” has been reflected in Scala lan-

guage [9]. Due to the combination of generic traits (something like interfaces with

abstract types and implementation), implicits (objects used by default as function

arguments or class fields) and context bounds (like T : Ordering in Fig. 7)

Scala provides much more powerful mechanism of generic programming than C# or

Java. Fig. 7 illustrates the examples of sorting and observer pattern.

Context bounds provide simple syntax for single-parameter constraints: the sugared

(s-s) version of Sort[T] algorithm is translated into (s-u) one by

desugaring. Retroactive modeling is supported since one can define new Order-

ing[] object and use it for sorting. And one does not need to provide two ver-

sions of the sort algorithm as for C# language (q.v. Fig. 1): Sort[] with one

argument would use default ordering due to implicit keyword. Observ-

erPattern[S, O] looks rather similar to corresponding JavaGI interface

(Fig. 6). There is no syntactic sugar for multi-parameters traits, so the notation of

genericUpdate[S, O] cannot be shortened.

In respect to the constraints-compatibility problem discussed in Sec. 2-3 Scala’s

“concept pattern” reveals the same drawback as C#. Generic types take “concept

objects” as constructor parameters. In such a way TreeSet[A] [17] implicitly

takes Ordering[A] object, therefore, for instance, the result of intersection

operation would depend on an order of arguments if they use different ordering.

4. Design of Concepts for C# Language

4.1 Interfaces and Concepts

It seems that a new language construct for generic programming should be intro-

duced into such object-oriented languages as C# or Java. If we extend interfaces

preserving their object- oriented essence [14], a generic programming mechanism

becomes better but still not good enough, since such problems as retroactive model-

ing or constraints-compatibility remain. If we make interfaces considerably better

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

38

for generic programming purposes [10], they lose their object-oriented essence and

can no longer be used as types.

We advocate the assertion that both features have to be provided in an object-

oriented language:

1. Object-oriented interfaces which are used as types.

2. Some new construct which is used to constrain generic type parameters.

C++ like concepts are proposed to serve this goal.

Construct of extended language Construct of base language

Concept Abstract class

Concept parameter Type parameter

Associated type Type parameter

Concept refinement Subtyping

Associated value Property (only read)

Nested concept requirement Type parameter

Concept requirement in generic code Type parameter

Model Class

Fig. 8. Translation of C# extension with concepts

4.2 C# with Concepts: Design and Translation

In this section we present a sketch of C# concepts design. Concept mechanism in-

troduces the following constructs into the programming language:

1. Concept. Concepts describe a named set of requirements (or constraints)

on one or more types called concept parameters.

2. Model. Models determine the manner in which specific types satisfy con-

cept. Models are external for types; they can be defined later than types. It means

that a type can retroactively model a concept if it semantically conforms to this con-

cept. Types may have several models for the same concept. In some cases a default

model can be implicitly generated by a compiler.

3. Constraints are used in generic code to describe requirements on generic

type parameters.

Concepts support the following kinds of constraints:

• associated types and associated values;

• function signatures (may have default implementation);

• nested concept requirements (for concept parameters and associated types);

• same-type constraints;

• subtype and supertype constraints;

• aliases for types and nested concept requirements.

The main distinction of C# concepts proposed in comparison with other concepts

designs (C++ , G [16]) is the support of subtype constraints and anonymous models

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

39

(like anonymous classes). Concept-based mechanism of constraining generic type

parameters surpasses the abilities of interface-based one. At the same time interfaces

can be used as usual without any restrictions.

Concepts can be implemented in existing compilers via the translation to standard

C#. Fig. 8 presents correspondence between main constructs of extended and stand-

ard C# languages. To preserve maximum information about the source code seman-

tics, some additional metainformation has to be included into translated code. In

particular, one needs to distinguish generic type parameters in the resultant code as

far as they may represent concept parameters, associated types or nested concept

requirements. To resolve such ambiguities we propose using attributes.

The method of translation suggested is strongly determined by the properties of

.NET Framework. Due to preserving type information and attributes in a .NET byte

code, translated code can be unambiguously recognized as a result of code- with-

concepts translation. Moreover, it can be restored into its source form, what means

that modularity could be provided: having the binary module with definitions in

extended language one can add it to the project (in extended language either) and

use in an ordinary way.

Fig. 9 illustrates several concept definitions (in the left column) and their translation

to standard C# (in the right column). Basic syntax of concepts is shown: concept

declarations (start with keyword concept), signature constraints, signature con-

straints with default implementation (NotEqual in CEquatible[T]),
refinement (concept CComparable[T] refines CEquatible[T], i.e. it

includes all requirements of refined concept and adds some new ones), associated

types (Data in CTransferFunction[TF]), multi-type concept COb-

serverPattern[O, S], nested concept requirements (CSemilat-

tice[Data] in CtransferFun-ction[TF]).

concept CEquatible[T]

{ // function signature (FS)

 bool Equal(T x, T y);

 // FS with default implementation

 bool NotEqual(T x, T y)

 { return !Equal(x, y); }

}

// refining concept

concept CComparable[T]

 refines CEquatible[T]

{

 int Compare(T x, T y);

 // overrides Equal from refined

 // concept CEquatible[T]

 override bool Equal(T x, T y)

 { ... }

}

concept CTransferFunction[TF]

{

 type Data; // associated type

 // nested concept requirement

[Concept] abstract class

CEquatible<[IsConceptParam]T>

{

 public abstract bool Equal(T x, T y);

 public virtual bool NotEqual(T x, T y)

 { return !this.Equal(x, y); }

}

[Concept] abstract class CComparable<

 [IsConceptParam]T> : CEquatible<T>

{

 public abstract int Compare(T x, T y);

 public override bool Equal(T x, T y)

 { ... }

}

[Concept] abstract class

CTransferFunction<

 [IsConceptParam]TF, [IsAssocType]Data,

 [IsNestedConceptReq]CSemilattice_Data>

where CSemilattice_Data

 : CSemilattice<Data>, new()

{

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

40

 require CSemilattice[Data];

 Data Apply(TF trFun, Data d);

 TF Compose(TF trFun1, TF trFun2);

}

concept CObserverPattern[O, S]

{

 void UpdateSubject(

 O obs, S subj);

 ICollection<O> GetObservers(

 S subj);

 void RegisterObserver(

 S subj, O obs)

 { GetObservers(subj).Add(obs); }

 void NotifyObservers(S subj)

 { ... }

}

 public abstract Data Apply(

 TF trFun, Data d);

 public abstract TF Compose(

 TF trFun1, TF trFun2);

}

[Concept] abstract class CObserverPattern<

 [IsConceptParam]O, [IsConceptParam]S>

{

 public abstract void UpdateSubject(

 O obs, S subj);

 public abstract ICollection<O>

 GetObservers(S subj);

 public virtual void RegisterObserver(

 S subj, O obs)

 { GetObservers(subj).Add(obs); }

 public virtual void NotifyObservers(

 S subj) { ... }

Fig. 9. Concept examples and their translation to basic C#

Concepts are translated to generic classes. Function signatures are translated to ab-

stract or virtual (if implementation is provided) class methods. Concept parameters

and associated types are represented by type parameters (marked with attributes) of

a generic abstract class as well as nested concept requirements. For instance,

CSemilattice_Data type parameter of CTransferFunction<>

denotes Csemilattice[Data] concept requirement because this parame-

ter is attributed with [IsNestedConceptReq], corresponding subtype

constraint being in a where-clause.

static void Sort<T>(T[] values)

 where CComparable[T]

{ ... }

class BinarySearchTree<T>

 // concept requirement with alias

 where CComparable[T] using cCmp

{

 private BinTreeNode<T> root;

 ...

 private bool AddAux(

 T x, ref BinTreeNode<T> root)

 {

 ...

 // refer. to concept by alias

 if (cCmp.Equal(x, root.data))

 return false;

 ...

}

[GenericFun] static void Sort<

 [IsGenericParam]T,

 [IsRequireConceptParam]CComparable_T>

(T[] values) where CComparable_T

 : CComparable<T>, new() { ... }

[GenericClass]

[ConceptAlias("CComparable_T", "cCmp")]

class BinarySearchTree<[IsGenericParam]T,

[IsRequireConceptParam]CComparable_T>

 where CComparable_T : CComparable<T>,

 new()

{ private BinTreeNode<T> root;

 ...

 private bool AddAux(

 T x, ref BinTreeNode<T> root)

 { ...

 CComparable_T cCmp = ConceptSingleton

 <CComparable_T>.Instance;

 if (cCmp.Equal(x, root.data))

 return false;

 ...

}

Fig. 10. Generic code and its translation to basic C#

// class for rational number

// with properties

// Num for numenator and Denom

class Rational { ... }

[ExplicitModel] class

Ccomparable_Rational_Def : CComparable

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

41

// for denominator

class Rational { ... }

model CComparable[Rational]

{

 bool Equal(

 Rational x, Rational y)

 { return (x.Num == y.Num)

 && (x.Denom == y.Denom); }

 int Compare(Rational x,

 Rational y) { ... }

}

...

 BST<Rational> rations // *

 = new BST<Rational>();

 <Rational>

{

 public override bool Equal(

 Rational x, Rational y)

 { return (x.Num == y.Num)

 && (x.Denom == y.Denom); }

 public override int Compare(

 Rational x, Rational y){ ... }

}

...

 BST<Rational, CComparable_Rational_Def>

 rations // *

 = new BST<Rational,

 CComparable_Rational_Def>();

* “BST” is used instead of “BinarySearchTree” for short.

Fig. 11. Model CComparable[Rational] and its translation to basic C#

Some examples of generic code with concept constraints are presented in the left

column of Fig. 10. Concept requirements can be used with alias (as CCompara-

ble[T] in the class of binary search tree). Note that a singular definition of generic

component is sufficient. Translated generic code (in the right column) demonstrates

significant property of translation: concept requirements are translated into extra

type parameters instead of extra method and constructor parameters (as it is in Scala

and G [16]). Therefore, constraints-compatibility can be checked at compile time,

methods and objects being saved from unnecessary arguments and fields.

Fig. 11 presents the model of concept CComparable[] for class Ration-

al of rational number. It is translated to derived class CCompara-

ble_Rational_Def of Ccomparable<Rational> and then used

as the second type argument of generic instance BST<,>. Fig. 12 demonstrates

using of anonymous model to find a number with a numerator equal to 5.

static bool Contains<T>(T x, IEnumerable<T> values)

 where CEquatible[T] { ... }

static void TestContains

{

 Rational[] nums = ...;

 var hasNumer5 = Contains[model CEquatible[Rational] {

 bool Equal(Rational x, Rational y) { return x.Num == y.Num; }

 }](new Rational(5), nums);

}

Fig. 12. Anonymous model example

5. Conclusion and Future Work

Many problems of C # and Java generics seem to be well understood now. Investi-

gating generics and several approaches to revising OO interfaces, we faced with

some pitfalls of these solutions which were not considered yet.

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

42

1. Recursive constraints used to solve the binary method problem appear to

be rather complex and often do not correspond a semantics assumed by a program-

mer.

2. The “concept pattern” breaks constraints-compatibility.

3. Using interfaces both as types and constraints on generic type parameters

leads to awkward programs with low understandability.

To solve problems considered we proposed to extend C# language with the new

language construct — concepts. Keeping interfaces untouched, concept mechanism

provides much better support of the features crucial for generic programming [1].

The support of these features in C# with concepts extension and its comparison with

some other generic mechanisms are presented in Fig. 13. The design of C# concepts

is rather similar to C++ concepts designs, but it supports subtype and supertype con-

straints.

We also suggested a novel way of concepts translation: in contrast to

G concepts [16] and Scala “concept pattern” [9], C# concept requirements are trans-

lated to type parameters instead of object parameters; this lowers the run-time ex-

penses on passing extra objects to methods and classes.

Feature G C++ C#ext JGI Scala C#concept

multi-type constraints + + ±1 + +2 +

associated types + + + – + +

same-type constraints + + + – + +

subtype constraints – – + + + +

retroactive modeling + + ±1 + +3 +

multiple models + – ±1 – + +

anonymous models – – – – +3 +

concept-based overloading + + – – ±4 –

constraints-compatibility + + – + – +

“C#ext” means C# with associated types [1] “C#concept” means C# with concepts.
1 partially supported via “concept pattern” 2 supported via “concept pattern”
3 supported via “concept pattern” and implicits 4 partially supported by prioritized overlapping implicits

Fig. 13. Comparison of “concepts” designs

Much further investigation is to be fulfilled. First of all, type safety of C# concepts

has to be formally proved. The design of concepts proposed seems to be rather ex-

pressive, but it needs an approbation. So the next step is developing of the tool for

compiling a code in C# with concepts. Currently we are working on formalization

of translation from extended language into standard C#.

6. Acknowledgement

The authors would like to thank the participants of the study group on the founda-

tions of programming languages Vitaly Bragilevsky and Artem Pelenitsyn for dis-

cussions on topics of type theory and concepts.

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

43

References
[1]. R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “An Extended Comparative

Study of Language Support for Generic Programming”, J. Funct. Program., vol. 17,

no. 2, pp. 145–205, Mar. 2007.

[2]. B. Stroustrup and G. Dos Reis, “Concepts — Design Choices for Template Argument

Checking”, C++ Standards Committee Papers, Technical Report N1522=03-0105,

ISO/IEC JTC1/SC22/WG21, October 2003.

[3]. G. Dos Reis and B. Stroustrup, “Specifying C++ Concepts”, in Conference Record of

the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, ser. POPL ’06. New York, NY, USA: ACM, 2006, pp. 295–308.

[4]. M. H. Austern, Generic Programming and the STL: Using and Extending the C++

Standard Template Library. Boston, MA, USA: Addison- Wesley Longman Publish-

ing Co., Inc., 1998.

[5]. D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine, “Concepts:

Linguistic Support for Generic Programming in C++”, in Proceedings of the 21st Annu-

al ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,

and Applications, ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 291–310.

[6]. B. Stroustrup and A. Sutton, “A Concept Design for the STL”, C++ Standards Commit-

tee Papers, Technical Report N3351=12-0041, ISO/IEC JTC1/SC22/WG21, Janu-

ary 2012.

[7]. J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz, “A Comparison of

C++ Concepts and Haskell Type Classes”, in Proceedings of the ACM SIGPLAN

Workshop on Generic Programming, ser. WGP ’08. New York, NY, USA: ACM, 2008,

pp. 37–48.

[8]. “System.Array.Sort(T) Method”,

URL: http://msdn.microsoft. com/library/system.array.sort.aspx.

[9]. B. C. Oliveira, A. Moors, and M. Odersky, “Type Classes As Objects and Implicits”, in

Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, ser. OOPSLA ’10. New York, NY, USA: ACM,

2010, pp. 341–360.

[10]. S. Wehr, R. Lmmel, and P. Thiemann, “JavaGI: Generalized Interfaces for Java”, in

ECOOP 2007 Object-Oriented Programming, ser. Lecture Notes in Computer Science,

E. Ernst, Ed., vol. 4609. Springer Berlin Heidelberg, 2007, pp. 347–372.

[11]. B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-bounded Polymorphism into

Shape”, in Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,

pp. 89–99.

[12]. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,

and Tools (2Nd Edition). Boston, MA, USA: Addison- Wesley Longman Publishing

Co., Inc., 2006, ch. Code Optimization.

[13]. E. Ernst, “Family Polymorphism”, in Proceedings of the 15th European Conference on

Object-Oriented Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,

2001, pp. 303–326.

[14]. J. Jarvi, J. Willcock, and A. Lumsdaine, “Associated Types and Constraint Propagation

for Mainstream Object-oriented Generics”, in Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object- oriented Programming, Systems, Languages, and Ap-

plications, ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 1–19.

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

44

[15]. The Boost Graph Library: User Guide and Reference Manual. Boston, MA, USA: Addi-

son-Wesley Longman Publishing Co., Inc., 2002.

[16]. J. G. Siek, “A Language for Generic Programming”, Ph.D. dissertation, Indianapolis,

IN, USA, 2005.

[17]. “TreeSet[A] Class”,

URL: http://www.scala-lang.org/api/current/ #scala.collection.mutable.TreeSet.

Проблемы обобщений C# и способы их
решения с помощью концептов

Ю.В. Белякова <julbel@sfedu.ru>,

С.С. Михалкович <miks@math.sfedu.ru>

Институт математики, механики и компьютерных наук им. И.И. Воровича,

Южный федеральный университет,

344006, Россия, г. Ростов-на-Дону, ул. Б. Садовая, д. 105/42

Аннотация. Как было показано в предыдущих исследованиях, по сравнению с

классами типов Haskell и концептами C++ такие промышленные объектно-

ориентированные языки как C# и Java предоставляют намного менее вырази-

тельные механизмы обобщённого программирования на основе F-

ограниченного полиморфизма. В этой статье подробно рассматриваются ос-

новные подводные камни обобщений C#. Особое внимание уделяется недо-

статкам рекурсивных ограничений (F-ограничений), неоднозначной семантике

интерфейсов, отсутствию языковой поддержки для ограничений на несколько

типов и ретроактивной реализации интерфейсов, а также проблемам паттерна

проектирования «Концепт», который широкой применяется не только в C#, но

также и в языках Java и Scala. Для решения проблем обобщений C# предлага-

ется расширить язык концептами: концепты, как новая языковая конструкция,

должны использоваться исключительно в роли ограничений на типовые пара-

метры обобщённого кода, в то время как интерфейсы используются в роли

типов. В отличие от базовых концептов C++, концепты C# могут содержать

ограничения подтипирования и надтипирования, допускают синонимы кон-

цепт-требований и возможность автоматической генерации моделей. Основ-

ным отличием предлагаемого дизайна является поддержка множественных

моделей. Эта последняя возможность не поддерживается ни в концептах C++,

ни в классах типов Haskell. В заключение очерчены основные принципы реа-

лизации концептов путём трансляции кода в базовый C#. Наиболее важной

чертой этой трансляции является возможность восстановить исходный код на

расширенном языке из скомпилированного модуля.

Ключевые слова: generic programming; (C++) concepts; generics; C# language; concept

pattern; recursive constraints; generic interfaces.

mailto:julbel@sfedu.ru
mailto:miks@math.sfedu.ru

Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и способы их решения с помощью концептов. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 29-46

45

DOI: 10.15514/ISPRAS-2015-27(3)-2

Для цитирования: Ю.В. Белякова, С.С. Михалкович. Проблемы обобщений C# и

способы их решения с помощью концептов. Труды ИСП РАН, том 27, вып. 3, 2015 г.,

стр. 29-46 (на английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-2.

Список литературы

[1]. R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “An Extended Comparative

Study of Language Support for Generic Programming”, J. Funct. Program., vol. 17,

no. 2, pp. 145–205, Mar. 2007.

[2]. B. Stroustrup and G. Dos Reis, “Concepts — Design Choices for Template Argument

Checking”, C++ Standards Committee Papers, Technical Report N1522=03-0105,

ISO/IEC JTC1/SC22/WG21, October 2003.

[3]. G. Dos Reis and B. Stroustrup, “Specifying C++ Concepts”, in Conference Record of

the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, ser. POPL ’06. New York, NY, USA: ACM, 2006, pp. 295–308.

[4]. M. H. Austern, Generic Programming and the STL: Using and Extending the C++

Standard Template Library. Boston, MA, USA: Addison- Wesley Longman Publish-

ing Co., Inc., 1998.

[5]. D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine, “Concepts:

Linguistic Support for Generic Programming in C++”, in Proceedings of the 21st Annu-

al ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,

and Applications, ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 291–310.

[6]. B. Stroustrup and A. Sutton, “A Concept Design for the STL”, C++ Standards Commit-

tee Papers, Technical Report N3351=12-0041, ISO/IEC JTC1/SC22/WG21, Janu-

ary 2012.

[7]. J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz, “A Comparison of

C++ Concepts and Haskell Type Classes”, in Proceedings of the ACM SIGPLAN

Workshop on Generic Programming, ser. WGP ’08. New York, NY, USA: ACM, 2008,

pp. 37–48.

[8]. “System.Array.Sort(T) Method”,

URL: http://msdn.microsoft. com/library/system.array.sort.aspx.

[9]. B. C. Oliveira, A. Moors, and M. Odersky, “Type Classes As Objects and Implicits”, in

Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, ser. OOPSLA ’10. New York, NY, USA: ACM,

2010, pp. 341–360.

[10]. S. Wehr, R. Lmmel, and P. Thiemann, “JavaGI: Generalized Interfaces for Java”, in

ECOOP 2007 Object-Oriented Programming, ser. Lecture Notes in Computer Science,

E. Ernst, Ed., vol. 4609. Springer Berlin Heidelberg, 2007, pp. 347–372.

[11]. B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-bounded Polymorphism into

Shape”, in Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,

pp. 89–99.

[12]. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,

and Tools (2Nd Edition). Boston, MA, USA: Addison- Wesley Longman Publishing

Co., Inc., 2006, ch. Code Optimization.

Julia Belyakova, Stanislav Mikhalkovich. Pitfalls of C# Generics and Their Solution Using Concepts. Trudy ISP RAN

/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 29-46

46

[13]. E. Ernst, “Family Polymorphism”, in Proceedings of the 15th European Conference on

Object-Oriented Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,

2001, pp. 303–326.

[14]. J. Jarvi, J. Willcock, and A. Lumsdaine, “Associated Types and Constraint Propagation

for Mainstream Object-oriented Generics”, in Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object- oriented Programming, Systems, Languages, and Ap-

plications, ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 1–19.

[15]. The Boost Graph Library: User Guide and Reference Manual. Boston, MA, USA: Addi-

son-Wesley Longman Publishing Co., Inc., 2002.

[16]. J. G. Siek, “A Language for Generic Programming”, Ph.D. dissertation, Indianapolis,

IN, USA, 2005.

[17]. “TreeSet[A] Class”,

URL: http://www.scala-lang.org/api/current/ #scala.collection.mutable.TreeSet.

