Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Visual Parallel Programming as PaaS Cloud
Service with Graph-Symbolic Programming
Technology

Darya Egorova <dasharapova@mail.ru>,

Victor Zhidchenko <vzhidchenko@yandex.ru>
Software Systems Department, Information Science Faculty
Samara State Aerospace University (SSAU)
Samara, Russia

Abstract. Most computer programs are created in textual form. From high-level
programming languages to CPU instructions both programmer and computer work with
sequences of characters and words. Textual representation of the program combines
centuries-old tradition of writing as the universal form of fixing human thoughts with ease of
interpretation and analysis of text by computer. The sequential nature of text makes it suitable
for description of instruction sequences and sequential algorithms. At the same time the text
is inconvenient for clear representation of parallel programs. In such programs it is important
to depict instructions that can be executed concurrently. In this case the graphical (visual)
representation is more suitable.

In this paper we present the visual approach to parallel programming provided by Graph-
Symbolic Programming Technology. This technology uses text to represent small sequential
subprograms (mathematical expressions or small methods). Visual representation in graph
form is used to depict program logic and concurrency. The basics of this technology are
considered as well as advantages and disadvantages of visual parallel programming.
Synchronization primitives used in Graph-Symbolic Programming Technology and their
visual form are described. The method is proposed for compact and clear representation of
multiple similar parallel processes.

The technology is being implemented as a PaaS cloud service that provides the tools for
creation, validation and execution of parallel programs on cluster systems. The current state
of this work is also presented. We argue that visual programming and cloud technologies
provide the capability of shared development of programs and algorithms that text
programming lacks. The visual programming in such implementation gains the features of the
visual modeling.

Keywords: parallel; programming; visual; graph; tool; cluster; cloud

DOI: 10.15514/ISPRAS-2015-27(3)-3

For citation: Egorova Darya, Zhidchenko Victor. Visual Parallel Programming as PaaS
Cloud Service with Graph-Symbolic Programming Technology. Trudy ISP RAN/Proc. ISP
RAS, vol. 27, issue 3, 2015, pp. 47-56. DOI: 10.15514/ISPRAS-2015-27(3)-3.

47

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

1. Introduction

Text is traditionally used for describing computer programs. While programs are
sequential, it is convenient to express them as text, because the nature of text is
sequential. A sequence of letters comprises a word. A sequence of words comprises
a sentence. A sequence of sentences forms a text. An order of letters in a word, an
order of words in a sentence and an order of sentences in a text are very important.
Changing any of them can substantially change the text, especially when this text
describes some computer program.

On the other hand, when a program is parallel, its text representation becomes
inconvenient. In parallel program you want to see which parts of a program can run
concurrently and sequential text form can not show it. You have to imagine
interdependencies between different program parts and guess possible combinations
of their concurrent execution. When the program is large you have to scroll it up
and down to see the parts which actually can run concurrently.

This is where a graphical representation can help. A graphical or visual form is
usually bidirectional, so you can easily distinguish sequential and parallel parts of a
program. Another important factor is that visual representation is more suitable for
human comprehension then a text. When you want to explain something you often
get a piece of paper and begin to draw a scheme. The drawing is usually more
explanative than a text, it is more compact and is easier to remember.

There is also a substantial disadvantage in using graphics for parallel programs
representation. A parallel program often consists of hundreds or thousands of
threads or processes and the actual number of them is may be unknown prior to
program’s execution. Moreover, the number of threads can vary during execution.
When you write such a program in the text, it can be very compact. The clarity still
suffers but due to the compactness it is quite easy to imagine the threads structure.
Trying to depict such program graphically leads to more complex representation of
it. As you can not display thousands of threads on one picture, you have to replace
them with some abstract graphics structure. The clarity suffers as well as in the case
of the text. So instead of the intuitively clear picture you get some abstraction which
is less compact than text and whose usability depends on the chosen abstract form.
There are many ways the visual means are used in programming. Most of them are
auxiliary to the "traditional" text programming as they help to perform some
particular tasks like building class diagrams, dependency graphs or trace logs.
Natural visual programming is provided by visual programming languages. Most of
them represent a program as a graph which consists of nodes connected to each
other by some links (directed or undirected). Depending on the meaning of nodes
and links there are many different approaches to represent a program which can be
split into several sets:

e UML diagrams [1]
e Domain-specific Visual Languages
e Petri Nets

48

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

e Finite-state and Automata-based Programming [2]

e Data Flow Diagrams

e Control Flow Diagrams
In this paper we describe the present results of the work carried out during several
years in Samara State Aerospace University (SSAU) in developing methods and
tools for visual parallel programming. We use as a basis the visual programming
technology for sequential programming, which is called Graph-Symbolic
Programming Technology (GSP-technology) also developed in SSAU [3]. We have
extended this technology to describe parallel programs and have evolved it through
several desktop versions to development environment working with computing
cluster. Today we are working on migrating this technology to the cloud and
making PaaS service for visual parallel programming. The results of our work have
been used as methods and tools of parallel programming in the education process in
SSAU and in research activity in the area of numerical analysis.

2. The Basics of Graph-Symbolic Programming Technology

GSP-technology represents the program as a graph. The nodes of this graph are little
programs (modules), which perform simple operations on variables of project
domain. The set of variables form a data dictionary.
The nodes are connected with links. The links show the flow of control between the
nodes. Every link is provided with the predicate — a logic condition, which permits
or denies the flow of control by this link. This condition is a logical function,
defined on variables from the data dictionary.
There are situations, when several links going from one node have a true predicate.
To resolve this issue, each link has a priority. The link with the highest priority
defines the flow of control.
A graph may contain another graph as a node — so, the program is a graph hierarchy.
Fig. 1 shows an example graph that solves quadratic equations.
The benefits of GSP are:

e Clear and compact representation of the control flow in a program.

e Elimination of many programming errors as graphic representation is very
simple for a human and helps to see many logic errors and inconsistencies.

e Simplicity of the program modification.

e Automatic data flow between the nodes. A programmer is protected from
making an error on this stage.

e The program structure is stored into a database. It helps to perform many
automatic tasks, such as graph structure verification, measuring of graph
complexity, automatic control of graph hierarchy consistency, automatic
testing and convenient debugging of programs, automatic creating of
program documentation.

49

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

D=0 D =Thth - a==[

varc,

1] 2

Coraplex=1, Coraplex=0,
4 8 Ei]
H1="h2ia, L 1=(Cb-seprt A1=H2=ch;
L 2=zqrt(D2

Z2=(-htsqrh
] Predicates:
sprintf{si1," 1. a==0
- 2 2: D=0
i, 21,22,

m c 3: 1 (always TRUE)
3

Fig. 1. Graph of a program for solving quadratic equations

Being sequential by default, the GSP-technology was further developed for creating
parallel programs. GSP graphic representation of programs helps to solve main
parallel programming problems:

e Program's visualization.

e Complexity of the interprocess synchronization.
Many tasks have explicit parallelism. The trivial example is determination of real
roots of a quadratic equation. GSP graphic representation is very suitable for such
tasks. You can simply draw two (or several) parallel branches instead of thinking
how to put in order different tasks and how to represent them in a convenient
manner.
The graphic language of GSP-technology is expanded with two types of links:

e The parallel link (a link that shows the beginning of a parallel branch) is
labeled with the circle in the beginning.

e The terminating link (a link which determines the end of a parallel branch)
is labeled with inclined segment.

The program is divided into several processes, which can be performed in parallel.
Each process is represented as a separate branch - a set of nodes interconnected with
ordinary links and executed sequentially. The number of branches is unlimited. It is
forbidden to connect two nodes from different branches.
All branches operate on the same set of data defined in data dictionary. Sometimes,
for the purposes of performance optimization and convenience, it is necessary to
define local copies of the same data for each parallel branch. It is accomplished by
setting the flag "local" for the corresponding variable in data dictionary. The
variables with "local" flag set are created in each process separately during
execution.

50

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Synchronization is accomplished with a semaphore technique. A special
“synchronization graph” is constructed together with the main program graph. The
nodes remain unchanged while the links represent nodes interdependences. A link,
drawn from Node; to Node,, means, that Node,’s execution depends on Nodei’s
state. Transmitting of Nodes’ state is made by means of messages.

Lc = [CNojo, Chisja, ... Climjir] is @ Message list, where C¥jj is a message with the
number k, sent to Node; from Node;.

If L contains C;j, then Node; informs Node; about the finish of its execution.

Every node checks messages addressed to it, before execution. A special semaphore
predicate is evaluated on these messages. In accordance with the previous example:

R;j = f(Ckioj, CXuj, ..., Ckimj) is a semaphore predicate of Node;. R; is a logical
function. If R; = TRUE, then Node; starts execution, in other case it waits for the
truth of R;.

If all data in a program are independent and there is no need to synchronize parallel
branches, the synchronization graph becomes unnecessary and is not built. When it
is necessary to synchronize some parts of parallel branches, the user draws
synchronization links between the corresponding nodes depicting the sources and
targets of synchronization messages. The rest of synchronization graph is implicit
and is built automatically.
The process of parallel program development in GSP-technology includes the
following steps:
o Data dictionary setup — determining types and variables, needed to solve a
problem.
e Modules generation. Modules are written in one of the programming
languages (C++ is now supported). They are executed sequentially.
e Drawing the program graph.
e Predicates generation. Predicates are written as boolean functions in the
same programming language as modules.
e Drawing the synchronization graph if necessary.
e Semaphore predicates generation for the nodes being synchronized.
e Program compiling and building an executable file.
Fig. 2 shows an example of the graph of the parallel program.
The programming environment of GSP-technology comprises the visual editor for
drawing of graphs and defining data and modules, the graph compiler for generating
C-source files from graphs and the C-compiler for generating of executable file.
Execution environment of GSP-technology uses Message Passing Interface (MPI)
for parallel programs execution. Programs generated with GSP-technology can
work on clusters and other systems with MPI support.

Each parallel branch is presented with dedicated MPI process.

51

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

————O 0
0 O
T r —||
Znl [0)=0.25 ol [0)=0.75 Kl [0]=0.75] Smd [0] =075
Hn0]=0.25 Kn2[0]=0.75 W [0]=0.75 n2[0]=0 75

Pl

Fig. 2. Graph of a parralel program for global optimizaion

To emulate shared memory model in MPI environment, a special memory manager
is developed. It allocates memory for data dictionary, initializes program’s
variables, transmits data to and from the processes and frees unused memory.
Memory manager is executed in dedicated MPI process. It is a program that
receives data requests from different processes and reads/writes data to or from the
memory. Memory manager eliminates memory conflicts between processes.

The parallel program can contain many processes. When there are hundreds or
thousands of processes it is inconvenient or just impossible to draw such number of
parallel branches on the graph. For such cases GSP-technology uses a special kind
of graph nodes called "multitop™.

Multitop is represented as one node on the graph and has three parameters
associated with it: the module or graph being executed with many processes, the
number of parallel processes (branches) represented by the multitop, and the name
of the variable which holds the sequence number of each process generated by the
multitop. The variable is used within the multitop’s module or graph to define its
actual function in the same manner as the process rank is used in MPI.

Fig. 3 shows an example of the graph which uses multitops to describe the program
similar to that on the Fig. 2 running on 500 processes.

52

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

Fig. 3. Graph of a parralel program for global optimizaion with multitops

Large number of processes in parallel program is usually used to perform some
similar tasks on different independent data without synchronization between the
processes. Representation of such tasks as a multitop seems to be a tradeoff
between the clarity and the compactness.

3. Present state and future development

For a long time the graph editor in GSP-technology was a desktop application. It
comprised graph compiler as a component and was dependent on external C-
compiler and database management system (DBMS). This had led to the difficulties
in deployment of the system. To install the system in some new location (for
example in laboratory classes) one should install the graph editor, then install and
properly configure an external C-compiler and DBMS. Using a cluster as a target
system for the programs built in GSP-technology requested the direct access to the
cluster through the SSH protocol.

To make the use of the GSP-technology easier the web-version of the graph editor
was developed. The web-server and DBMS were installed together on the same host
and provided remote access to the editor. The editor worked with the database
locally and had an SSH connection to the cluster. The main disadvantage of such a
system is that the web-interface applies some restrictions to the editor making it less
convenient for the users than a desktop application.

Cloud computing has made it possible to combine the rich interface capabilities of
desktop graph editor with the centralized management of the hole system for many
users. We are working on the development of the Platform as a Service (PaaS)
system which will provide visual parallel programming with GSP-technology. PaaS
system comprises one virtual machine which hosts the web-server and database and

53

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

has an SSH connection to the cluster. Many virtual machines can also be run in the
same cloud environment each hosting the desktop version of the graph editor. As
the database is the same for the web-based and desktop graph editors, it is possible
to work on the same project for the team of developers using both versions of
editors concurrently.

Some additions have been made to the desktop version of the system. The
registration and subsequent authorization of the users running the desktop version
was added. During the logon process the user can see the status of other users
(online/offline or working with the same project as the current user). All changes
made by the user during the session are logged to the database. It is necessary for
producing the snapshots - the states of the project development process when some
valuable results are achieved, for example, for saving the intermediate working
versions of the algorithm which is under development. Another goal of user activity
logging is to track the changes made by different users and by the same user in
different versions of the system. With logging it is much easier to remember what
exactly you have changed while working with the project from the other place (for
example, from home) or to understand (and also to explain) the changes made to the
graphic model of the program by some other person.

Visual programming can benefit from cloud computing as it provides the capability
of shared development that text programming lacks. With text programming the
basic tool of team software development is version control system. The concurrent
editing of the same file with source code is practically useless. The basic approach
is the division of project to smaller tasks, assigning them to different developers and
combining results with version control system. With visual programming tool
running in the cloud it becomes possible to work on the same graph concurrently.
Such shared work is meaningful and can be convenient due to the compactness of
visual representation. Editing the same graph concurrently you can easier develop
the proper solution of a problem or find the error in a program faster. The visual
editing process is similar to the process of discussing something, while graphically
illustrating the main ideas being discussed. The visual programming in such
implementation gains the features of the visual modeling.

The main issues to resolve in PaaS visual programming service being developed are
the following: concurrent work of several users with one project, versioning,
compiling and running parallel programs from the desktop virtual machines on the
cluster, optimization of the communication between the system and the cluster.
There are also many tasks in the development of the GSP-technology: dynamic
processes creation in MPI programs generated by GSP-technology, direct local data
exchange between the parallel branches, creation of graph compilers for other
parallel programming technologies like OpenMP and CUDA, making interfaces
with other programming languages, technologies and libraries in order to leverage
code reuse.

54

Japes Eroposa, Bukrop Xunuenko. O6naunbiii PaaS-cepsrc BU3yanbHOIo IapauiebHOro IporpaMMHUPOBAHHUS B
TexHoJ0rHHU rpado-cumMBonndeckoro nporpammuposanus. Tpyast UCII PAH, tom 27, Beim. 3, 2015 ., c. 47-56

References

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with
UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming,” SPb.: Piter, 2009
[[MomkapmoBa H.M., Ilamsiro A.A. AromarHoe mnporpammupoBanue. CII6:ITutep,
2008. — 167 c.]

[3]. ANN. Kovartsev, V.V. Zhidchenko, D.A. Popova-Kovartseva, P.V. Abolmasov "The
basics of graph-symbolic programming technology," Proceedings of the Open semantic
technologies for intelligent systems (OSTIS-2013) 111 international conference, pp. 195-

204, 2013 [Kosapueg, AH. "[lpHHIUIIBL ~ TTOCTPOGHMS TEXHOJIOTHH
rpadocumBonyeckoro nporpammupoBanus’” / A.H. Kosapues, B.B. Xunuenxko, I.A.
TTonoBa-Koapuesa, IL.B. A6onmacoB // Tpyaet |l MexaynaponHoit HaydHO-

TeXHHUeCKOH KoH(pepeHmn «OTKPHITHIE CEMaHTHYECKHUE TEXHOIOTHH TIPOSKTHPOBAHUS
HHTEJUIEKTyalbHBIX cuctem». -2013. - C. 195-204.]

O6nayHbIn PaaS-cepBuc BU3yanbLHOro
napannesibHoOro nporpaMM1MpoBaHuA B
TexXHonorum rpaco-cMMBOSIMYECKOro
nporpamMmMupoBaHus

Hapws E2oposa <dasharapova@mail.ru>,
Bukxmop)Kuouenxo <vzhidchenko@yandex.ru>
Camapckuii 2ocyoapcmeennblil aspokocmuydeckuti yrusepcucmem (CIAY),
443086, Poccus, . Camapa, Mockosckoe uiocce, 34

Annortanusi. BOJIBIIMHCTBO mporpamMm cozfaercs B TeKCTOBOM Buae. OT SI3BIKOB
BBICOKOTO YPOBHSI JUIsS MALIMHHBIX UHCTPYKIUI TPOTPAMMHUCT U KOMITBIOTEP UMEIOT
JeI0 ¢ IOCIEeAOBAaTEIbHOCTAMH CHMBOJIOB UM cioB. TekcroBas Qopma
NPE/CTAaBICHUS] MPOTPaMMbl COueTaeT B ceOe MHOTOBEKOBBIE TpPaJAULHMU
MHCBMEHHOCTH KaK YHHMBEPCAJIBHOTO CIOco0a (pHKCALMU YETIOBEYECKUX MBICIIEH C
y0OCTBOM MHTEPIIPETAIMU U aBTOMATHYECKOTO aHAJIN3a TEKCTa BBHIYMCIUTEIbHBIM
ycrpoiictBoM. [locnenoBaTenbHas HpUpoja TEKCTa MAENAeT E€CTECTBEHHBIM €ro
NpUMEHEHWe AJsl ONHMCAaHWs IIOCIENOBAaTEeIbHOCTEH MHCTPYKIMH U
MOCJIEIOBATENBHBIX ~ aNropuTMoB. C Jpyroil CTOpPOHBI, OHAa MPEMATCTBYET
HarJIIIHOMY OIMCAHUIO TAapaiyIeNbHBIX IPOTpaMM, KOrAa BaKHO II0Ka3aTh He
MIOCJIE/IOBATENIbHBIE, @ OJHOBPEMEHHO HCIIOMHSIONINECS HHCTpYKuuu. it aTtnx
nesneii 6onee ynoOHsI rpaduueckue (BU3yalbHbIE) CPEACTBA.

B pabore mpeacTaBieH — BH3yaNbHBIA = NMOAXOX K IApaUIeIbHOMY
NPOTPaMMHUPOBAHHUIO, PEATM30BaHHBIH B TEXHOJOIMU rpado-CHMBOJIMYECKOTO
NpOrpaMMHUpPOBaHUsl. TEXHOJNOrHs HUCMONb3YeT TEKCT MAJsl ONMHCAHHs HEOOJbIIMX
MOCJIEIOBATENbHBIX (PparMeHTOB MporpaMmbl (MaTeMaTHYECKUX BBIPAKEHUH WU

55

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic
Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

HPOCTHIX OATIporpaMm). JJist HarJIAAHOTO N300PAKEHHS JIOTHKH NTPOTPaMMBbI U IS
ONMCaHMs Napajulesin3Ma NPUMEHSIETCs] BU3yallbHOE NPE/ICTaBICHUE B BHJE rpada.
B cratbe paccMOTpeHBI ~ OCHOBBI ~ TEXHOJOTHMH TIpado-CHMBOIMYECKOTO
NpOrpaMMHUPOBAaHUs, a TaKXKe IPEUMYIIECTBAa W HEIOCTaTKH BU3yaJbHOI'O
HapajulelIb-HOrO IporpaMMmupoBaHus. lIpuBegeHO — omMcaHHe MEXaHU3MOB
CHHXPOHHM3ALlMK, WCIIOJb3YEeMbIX B paccMaTpuBacMOM TEXHOJIOTHH, a TaKkke
BU3YaJIbHOTO IIPEACTABICHUS dTHUX MeXaHHW3MOB. [IpeaioxkeH crnocod HarisaHoro
M300pakeHHsT OOJBIIOr0 KOJIWYECTBA OAHOTHIHBIX IPOLECCOB HapallIeNbHOM
HPOTPAMMBEL.

OnmcaHo TeKymee COCTOSHHE paboT 10 peanu3alid TEXHOJOTHH Tpado-
CHMBOJIMYECKOI'O NIpOrpaMMHpOBaHMsS B BHAe oOnagHoro PaaS-cepsuca,
NPEJOCTaBISIONIEI0 CPEACTBAa MU CO3IaHMs, aHalu3a ¥ BBIIOJHECHUS
HapajuleJIbHBIX MPOTrpaMM Uil KJIacTepHbIX cucteM. [lokasaHo, uyTo oOnavHbIe
TCXHOJIOTUH B COUYCTaHHUU C BU3YyaJIbHBIM IMporpaMMUpPOBaAHNUEM JACIarT
BO3MOYKHBIM TPHHIUIINAIBHO HOBBIM MOAXOJ K KOJUICKTUBHOW pa3pabOTKe He
TOJIBKO IporpaMm, HO U aJI'OPUTMOB, HeI[OCTyHHI)Iﬁ B TpaAWMIHUOHHOM TEKCTOBOM
IMpOTpaMMHUpPOBaHUK. BusyanbHOe NporpaMMHpOBaHHME IIPH 3TOM INpHOOpETaeT
CBOMCTBa BU3YyaJIbHOTO MOZEIHPOBAHUSI.

Keywords: parallel, programming, visual, graph, tool, cluster, cloud
DOI: 10.15514/ISPRAS-2015-27(3)-3

Jas uurupoBanusi: Eroposa /[lapes, JKumuenko Bukrtop. OOmaunsnii PaaS-cepsuc
BU3YaJIbHOTO MNapaJUIeNbHOTO INPOTrPAaMMHUPOBAHUS B TEXHOJOTHU Tpado-CHMBOINYECKOTO
nporpammupoBanus. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ctp. 47-56 (Ha aHrmiickoM
azbike). DOI: 10.15514/ISPRAS-2015-27(3)-3.

Cnucok nutepartypbl

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with
UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming,” SPb.: Piter, 2009
[[Monmukapmosa H. W., Illaneito A. A. ABTomatHoe mporpammuposanue. CII6:ITurep,
2008. - 167 c.]

[3]. KoBapueB, A.H. "IIpuHUMIBI TOCTPOEHHS TEXHOJOTHH TIPadOCHMBOINIECKOTO
nporpammupoBanusa” / A.H. Kosapues, B.B. XKumguenko, /I.A. [TomoBa-Kosapruesa, I1.B.
Ab6ommacoB // Tpymst |l MexayHapoqHO# HaydHO-TEXHHYECKOW KOH(DEpeHIHH
((OTKprTbIe CEMAHTHYCCKHE TECXHOJIOTUH IPOCKTUPOBAHUA UHTEJUIEKTYaJIbHbIX

cucrem». -2013. - C. 195-204.

56

