Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Seamless Development Applicability:
an Experiment

Alexandr Naumchev <a.naumchev@innopolis.ru>,
Innopolis University, Innopolis, Russian Federation

Abstract. Requirements and code, in conventional software engineering wisdom, belong to
entirely different worlds. The usual view in software engineering considers requirements
documents and source code as different artifacts, under the responsibility of different people.
This approach, however, introduces communication overhead, and raises the question of how
to keep the various artifacts consistent when either of them needs to change. A change
introduced to any of the mentioned artifacts needs to be synchronized with the others. At
some point the control is inevitably lost: for example, a critical bug is found during the
software operation, and the software developers dig into the fixing process directly, because
there is no time to wait until the requirements analysts and system architects update their
documents to let the developers actually fix the problem. Is it possible to unify the two
worlds? A unified framework could help make software easier to change and reuse. To
explore the feasibility of such an approach, the case study reported here takes a classic
example from the requirements engineering literature and describes it using a programming
language framework to express both domain and machine properties. The paper describes the
solution, discusses its benefits and limitations, and assesses its scalability.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel
DOI: 10.15514/ISPRAS-2015-27(3)-4

For citation: Naumchev Alexandr. Seamless Development Applicability: an Experiment.
Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 57-72. DOI: 10.15514/ISPRAS-
2015-27(3)-4.

1. Introduction

Nowadays the dominating view on the software engineering discipline includes an
implicit assumption that engineering the requirements, designing the architecture
and implementing the code are all separate activities. “Separate” means that an
engineer performs only one of them at the same time and produces different artifacts
as the output. This implicit assumption is cultivated by the top software engineering
schools who promote the idea explicitly enough to push it to the students’
subconscious level.

57


mailto:a.naumchev@innopolis.ru

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

1.2 Problems with the Current Approach

The usual view in software engineering considers requirements documents
and source code as different artifacts, under the responsibility of different people.
This approach, however, introduces communication overhead, and raises the
question of how to keep the various artifacts consistent when either of them needs to
change. A change introduced to any of the mentioned artifacts needs to be
synchronized with the others. At some point the control is inevitably lost: for
example, a critical bug is found during the software operation, and the software
developers dig into the fixing process directly, because there is no time to wait until
the requirements analysts and system architects update their documents to let the
developers actually fix the problem. The problem is partially solved with
complicated configuration management, which is expensive and difficult to
maintain, and may serve as a source of evil as well: there are so called ”technical
commits”. Only senior developers are allowed to make them, and the basic idea is
that such commits do not have to be linked to some task, bug or user story (if the
team practices Agile). Quite often the technical commits contain basically whole
new features or big chunks of code not linked to any document.

Why should we try to minimize gaps between requirements and code? At the very
least because successful software evolves. The customers want more features, they
want to improve existing features, and they want to know how much money it will
cost and how much time it will take. If it is possible to relate the ideas to the
artifacts, then by comparing complexity of some new idea with an existing one,
already implemented, it will be possible to estimate the resources required for
implementing the new idea.

The list of the problems discussed above does not pretend to be exhaustive of
course, but it should be sufficient to start thinking about changing the overall
approach.

1.2 Existing Solutions

Typically the problems from Section 1.1 are resolved by carefully choosing
appropriate notations for every development life cycle phase. The selection criteria
include possibility of establishing traceability links between different notations.
Each phase requires the output of the previous phase on its input and on its output
produces the input for the next phase. In [2], authors give an example of applying
this approach. This work also contains an overview of the most popular notations
used in formal software development. For instance, the software development case
described in work [2] uses natural language for requirements document, RSML [7]
for specification document, Event-B [1] for developing software formal model,
formalizing the requirements and formally verifying the model against the
requirements. Finally, EventB2Java [8] generates executable Java source code
equipped with JML specs from a model expressed in Event-B. For moving from the
requirements document to the specification document the Problem Frames

58



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Approach [5] is applied. The latter method produces a problem frames model on the
output.

Needless to say, such approach requires people with very rich set of skills: for
example, to produce a specification document expressed in RSML, the responsible
person also has to understand the Problem Frames Approach. In a similar fashion
the person responsible for modeling in Event-B also has to be proficient with
RSML, and so on.

As a software engineer we should not forget why there is a huge gap between
requirements and code at all. The fundamental reason is in limited expressive power
of programming languages compared to expressive power of any natural language.
That is why there are many “intermediate” notations serving for smooth transition
from natural language requirements to source code; that is why the coding phase
and the requirements engineering phase typically have tiny overlaps in time, and
there are other software development life cycle phases between them. If it was
possible to express any executable requirement using a subset of some programming
language, then the problem would disappear.

1.3 Unified View on Software: The Hypothesis

It is possible to design such a software development process that:
1. By specifying the requirements the analyst at the same time will
also design the solution
2. The resulting document may be linked in an intuitive way to an
algorithmic implementation
3. The resulting implementation will be formally provable against
the requirements specification
4. Small change in the requirements specification will cause
proportionally small change in the design and the
implementation
Parts 1, 2 and 3 promote consistency between the requirements,
design and implementation; part 4 promotes predictability of resources
estimations.

1.4 How to Test the Hypothesis
The following process seems to be feasible for testing adequacy of the
stated hypothesis:

1. Propose a candidate process

2. Select some real projects which are presumably prone to the
problems stated in section 1.1

3. Apply the proposed process to the selected projects and see how
it goes

59



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

In [11] Meyer sketched such a process based on using object
orientation for representing the relationships between the conceptual
objects mentioned in the requirements document. The basic idea was
to have an object-oriented code along with the natural language
description of a requirements item. Each code fragment in its turn may
be represented graphically as a BON diagram [15].

The main problem with [11] was the example used for the
demonstration purposes: it was self-referential. That is, it contains
“requirements for the requirements”.

Nevertheless, it demonstrates that object orientation contributes to
understanding the relationships between the objects. However,
requirements (in their general form) are beyond this: to specify
requirements, as described by Jackson and Zave in [6], is also to specify
all allowed sequences of events associated with a given problem area.
The present work provides an example of how one could combine
approaches from [11] and [6] by adding fully-fledged contracts, both in
their classical and model-based semantics, to the requirements
specification notation. More precisely, it contains every requirements
item from the Zoo Turnstile example discussed in [6] represented using the
model-based [13] contracts-equipped [10] object-oriented [9] notation
(Eiffel).

2. Theoretical and Technical Background

2.1 Design By Contract

A comprehensive description of Design By Contract is given in [10].
Design By Contract integrates Hoare-style assertions [3] within object-
oriented programs [9]. This concept assumes that each class feature
(member), is equipped with its pre- and postcondition, which are
predicates on the class. The postcondition has to hold whenever the
precondition held and the feature finished its computation before the next
feature is invoked. The class itself is equipped with an invariant
expression which holds in all states of the corresponding instantiated
objects.

2.2 Model-Based Contracts

If classical contracts are for constraining the data actually held by run-
time objects, model-based contracts are ”meta” contracts for constraining
the objects as mathematical entities (sets, sequences, bags, relations etc.),
and the corresponding mathematical representations are not actually
instantiated at run-time asparts of the objects. Model-Based Contracts
are needed when it is not possible to capture all the nuances by means

60



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

of classical contracts. Some examples of such situations and a
comprehensive description of the concept is given in the PhD thesis[13].

2.3 AutoProof

Object-oriented classes constrained with contracts (both classical and
model-based) may be formally verified using an automation called
AutoProof [14]. AutoProof traverses over the class features and proves
formally that the precondition conjuncted with the class invariant
ensures the postcondition together with the class invariant after the
feature application. If all the class features are verified, then the class is
considered verified.

3. Unifying the Two Worlds: an Example

This section shows the approach at work. It takes the example
introduced by Jackson and Zave in [6] in 1995 and specifies the example
using Eiffel programming language [16] as a formal notation. Originally
this example was used to demonstrate the process of deriving specifications
from requirements, and the unified approach captures all the nuances of
this process.

3.1 Example Overview

The authors of [6] start with giving the overall context: ”...Our small
example concerns the control of a turnstile at the entry to a zoo. The turnstile
consists of a rotating barrier and a coin slot, and is fitted with an electrical
interface...” This small paragraph describes mostly relationships between the
conceptual objectsand thus may be expressed in the style of work [11]:

deferred classZOO
feature

turnstile : TURNSTILE
end

deferred class TURNSTILE
feature
coinslot: COINSLOT
barrier : BARRIER
invariant
coinslot. turnstile = Current
barrier. turnstile = Current
end

deferred class COINSLOT
feature

61



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

turnstile : TURNSTILE
invariant

turnstile.coinslot = Current
end

deferred class BARRIER
feature

turnstile : TURNSTILE
invariant

turnstile.barrier = Current
end

Fig. 1: Expressing the context formally

Translating this code (fig. 1) back to English using the object-oriented
semantics results in almost the same initial description: "A ZOO has a
TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a
BARRIER barrier so that coinslot has Current TURNSTILE as turnstile
and barrier has Current TURNSTILE as turnstile...” COINSLOT and
BARRIER hold references to the TURNSTILE instances in order to
capture the “electrical interface” phenomena: the word ”interface” means
something over which the parties are able to communicate with each
other; communicating means sending messages to each other, and to
send message to someone in the object-oriented world is to take the
corresponding instance and perform a qualified call. So at the very least
the parties should hold references to each other to be able to
communicate in two directions.

3.2 The Designation Set

After stating the problem context the authors of [6] describe a designation
set. Each designation basically corresponds to a separate type of events
observed in the problem area. The designations are provided in form of
the predicates:

e Push(e): In event e a visitor pushes the barrier to its intermediate
position

e Enter(e): In evente a visitor pushes the barrier fully home and so
gainsentry to the zoo

e Coin(e): Inevent e a valid coin is inserted into the coin slot

e Lock(e): In event e the turnstile receives a locking signal

e Unlock(e): In event e the turnstile receives an unlocking signal

62



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

The representation of this designation set provided below (fig. 2) uses
Eiffel features names as labels for the events types (entities introduced
earlier are not repeated afterwards). The aforementioned natural
language descriptions provide heuristics on which feature should be
added to which class (the association is highlighted with bold). Not only
different types of events, but also the history of the corresponding
events, are designed using Eiffel features. For example, enters
MML_SEQUENCE [INTEGER_64] is a sequence of moments in time
expressed in milliseconds when events of type enter took place. model
annotation says that enters feature will be used for expressing the model-
based part of the contract (model-based contracts were introduced in
section 2.2). MML_SEQUENCE is a class from the MML (Mathematical
Modeling Library) and denotes mathematical sequence. MML was
designed specially to express model-based contracts. Although it is
possible to instantiate some simple objects from these classes (like a
sequence containing one element), one cannot modify the instances.

note
model:entersdeferred class ZOO
feature
enter deferred ensure
enters.butlast”oldenters
enters.last >oldenters.last
end
enters : MML SEQUENCE[INTEGER_64 ]
end
note
model:locks,unlocks deferredclass
TURNSTILE feature
lock deferred ensure
locks.butlast~oldlocks
locks.last >oldlocks.last
end
unlock
deferred
ensure
unlocks.butlast ~ old unlocks
unlocks.last >old unlocks.last
end
locks: MMLSEQUENCE[INTEGER_64]
unlocks: MMLSEQUENCE[INTEGER_64]
end

63



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

note
model: coins
deferred class COINSLOT
feature coin deferredensure
coins.butlast 7 old coins
coins.last >o0ld coins.last

end

coins: MML SEQUENCE[INTEGER_64]
end
note

model: pushesdeferred class BARRIER
feature

push deferred ensure
pushes.butlast
old pushes.last
end
pushes: MMLSEQUENCE[INTEGER_64]
end

old pushespushes.last >

Fig. 2: Specifying the designation set formally

The deferred keyword is used to highlight that the events are only
specified formally, without specifying the corresponding operational
reactions of the software to the events. The ensure clause is used to specify
what conditions should be satisfied after reacting on an event. These
specifications are intuitively plausible: the events history should be
complemented with the new event occurrence, and the time of the new
event should be strictly bigger than the time of the previous event.

3.3 Shared Phenomena

The authors of [6] introduce the notion of shared phenomena that is, the
phenomena visible to both the world and the machine (the notions of the
world and the machine were introduced by Jackson in [4]). In the
present approach this notion is covered by using the “has a” relationships
between the ZOO and the TURNSTILE classes, accompanied with the
model-based contracts. Namely,since a ZOO has a turnstile as its feature,
it can see any phenomena hosted by the turnstile: locks, unlocks, coins,
pushes. And since a TURNSTILE does not hold any references to a ZOO, it
can not observe nor control the enter events modeled by ZOO.

3.4 Specifying the System

All the properties of the problem derived in [6] be they optative or
indicative descriptions can be conceptually divided into the three main
categories.

64



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Properties which hold at any moment in time An example of such properties is
the OPT1 requirement saying that entries should never exceed payments
(the authors of [6] use OPT« for labeling properties expressed in an
optative mood). Within the present approach this requirement can be
expressed in the following way (fig. 3):

deferred class ZOO
feature
enters : MML SEQUENCE[INTEGER_64]
turnstile : TURNSTILE
invariant
enters.count <= turnstile.coinslot.coins.count
end

Fig. 3: Entries should never exceed payments

The ”something always holds” semantics fits perfectly into the semantics of
Eiffel invariant: ”something holds in all states of the object”.

Properties which hold depending on the type of the next event to occur The
indicative property IND2 saying that it is impossible to push the barrier
if the turnstile is locked will serve as an example. Below (fig. 4) is
the corresponding specification:

deferred class BARRIER
feature pushrequire
notturnstile.unlocks.is_.empty
notturnstile.locks.is_emptyimplies
turnstile.unlocks.last >turnstile.locks.last
deferred end
pushes: MML SEQUENCE[INTEGER_64]
end

Fig. 4: It is impossible to use locked turnstile

The initial description is divided into the two different claims: first, the
turnstile should be unlocked at least once, and second, if the turnstile has
ever been locked, the last unlock should have occurred later than the last
lock.

Real Time Properties The authors of [6] derive several timing constraints on
the events. For example, the OPT7 requirement says that the amount of
time between the moment when the number of the barrier pushes
becomes equal tothe number of coins inserted and the moment when the
turnstile is locked should be less than 760 milliseconds. It is possible to
make this property finer grained. First (fig. 5), if after the next push event
the number of pushes becomes equal to thenumber of coins, then after

65



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

reacting on the push event the turnstile should be locked at some point
before the next push event occurs.
deferred class BARRIER
feature
turnstile : TURNSTILE push
deferred ensure
(oldturnstile.unlocks.last >old turnstile.locks.last
and
pushes.count =turnstile.coinslot.coins.count)
impliesturnstile.locks.last >pushes.last

end
pushes: MML SEQUENCE[INTEGER_64 ]
end

Fig.5: The machine locks the turnstile timely

Second (fig. 5), if the last lock event occurred later than the last push
event, then thetime distance between them is smaller than 760.

deferred class TURNSTILE

feature
barrier : BARRIER
locks : MML SEQUENCE[INTEGER 64]unlocks: MML SEQUENCE[
INTEGER_64]

invariant -
locks.last >barrier.pushes. lastlmplles

(locks.last —barrier.pushes.last) <760
end

Fig.5: The machine locks the turnstile timely

3.5 Specifying the “Unspecifiable”

One of the requirements mentioned in [6] was OPT 2 saying that the visitors
who pay are not prevented from entering the Zoo. The authors give
only informal statement of this requirement:

w,m,n « ((Enter#(v,m) A Coin#(v,n) 4 (m <n)) ='The machine will
not prevent another Enter event'

The antecedent of this implication should be read like “number of entries is
less than the number of coins inserted”. In the present specification system
thisrequirement can be formalized easily (fig. 6).

66



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

deferred class ZOO
feature
enter
require
enters.count<turnstile.coinslot.coins.count
deferred end
enters : MML SEQUENCE[INTEGER_64]
end

Fig. 6: The turnstile let 7peop|e who pay enter

It works because semantically the require clause specified above is the
strongest precondition of the enter feature. That is, if some class inherits
from ZOO and redefines the enter feature, it will be allowed to redefine
the precondition by using only the require else clause that weakens the
precondition by ”or”-ing it with the original one. And so, if the enters.count <
turnstile.coinslot.coins.count condition is satisfied, the precondition of the
enter feature will always be satisfied,thus allowing an enter event to occur.
Not only this specification formalizes OPT 2 it also ensures satisfaction of
OPT 1 (together with the ensure clause for the enter feature introduced
earlier): indeed, if the number of enters is always strictly smaller than the
number of coinsinserted before any enter event occurrence, then after the
event occurrence the number of entries will not exceed the number of coins
inserted.

In the process of research the author of the present work identified that
the aforementioned reasoning about formalizing OPT 2 requirement is
farfetched and is not scalable. For example, if Zoo management decides to
install one more appliance for controlling Zoo entrance, and the
corresponding requirements will enrich the precondition of the enter
feature, the whole reasoning will be invalidated. The author found more
scalable and intuitively plausible way to formalize this requirement in
Eiffel. The corresponding formalism will be available in work [12].

4. Conclusion

The specification method discussed in this work is suitable not only
for formalizing statements which were also formalized in [6], but also for
formalizing statements which cannot be formalized with the classical
tools used in [6]. Not only the requirements specification items were
expressed, but also the object-oriented blueprint was built ready to equip
it with code actually doing something useful. Such implementation
exists and is available here: https://github.com/anaumche/Zoo-
Turnstile-Multirequirements.

67



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

4.1 Pros & Cons

It is necessary to evaluate the method against the characteristics of the
hypothesis introduced in section 1.3:

1.

Simultaneity of specifying the requirements and building the
design: indeed, all the code fragments corresponding to different
specification items merged together will bring a complete design
solution  available  at https://github.com/anaumche/Zoo-
Turnstile-Multirequirements (the classes ending with “ abstract™).

Traceability between the specification and the implementation:
the classesending with “ concrete” located at the resource given in
1 contain the implementation and are inherited from the
specification classes

Provability of the classes: this is the subject to further
investigation

Continuity of the solution: since Eiffel artifacts used in the
formalizations of the requirements items correspond to their
natural language counterparts directly, it is visible right away how
achange in one representation will affect the second one

4.2 Scalability

A formal representation of a requirements item specified with Eiffel is as
big as the scope of the item and its natural language description are, so
the overall complexity of the final document should not depend on the
size of the project. Anyway, this is something to test by applying the
method to a bigger project.

4.3 Future Work

The next steps include:

1.

68

To formally prove that the specification is consistent. In particular
to ensure that the features specifications preserve what is stated
in the invariants; to ensure that the expressions stated in the
invariants are consistent between each other: for example it should
not be possible for P(x) and —P(x) to hold at the same time

To formally prove that the implementation actually satisfies the
features specifications

To extend BON notation [15] so that it would be capable of
expressing model-based contracts

To design machinery for translating model-based contract-
oriented requirements to their natural language counterpart so
that the result would be recognizable by a human being.



Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

5. Toapply the method to a bigger project

The AutoProof technology [14] may be utilized for automating the
aforementioned proofs. AutoProof is already capable of proving that a
feature implementation preserves its specification (the postcondition
holds after the feature invocation assuming the precondition), and it
should be empowered with the capabilities for working solely on the
specifications level so that completing the goal 1 will be possible.

As a result of implementing the aforementioned plans a powerful
framework for expressing all possible views on the software under
construction should emerge.

5 Acknowledgment

The author would like to thank his colleagues at the Innopolis University
Software Engineering Laboratory for their invaluable feedback and
guidance: Dr. Bertrand Meyer, Dr. Victor Rivera, Alexander Chichigin,
Dr. Manuel Mazzara.

References

[1]. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[2]. R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara.
Towards a formalism-based toolkit for automotive applications. 2012.

[3]. Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576-580,1969.

[4]. Michael Jackson. The world and the machine. In Software Engineering, 1995.
ICSE 1995. 17th International Conference on, pages 283—-283. IEEE, 1995.

[5]. Michael Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley, 2001.

[6]. Michael Jackson and Pamela Zave. Deriving specifications from
requirements: an example. In Proceedings of the 17th international conference on
Software engineering, pages 15-24. ACM, 1995.

[7]. Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specification for process-control systems. Software
Engineering, IEEE Transactions on, 20(9):684-707, 1994.

[8]. Victor Rivera and N. Catan'o. Translating Event-B to JML-Specified Java
programs. In 29th ACM Symposium on Applied Computing, Software Verification and
Testing track (SAC-SVT), Gyeongju, Korea, March 24-28 2014.

[9]. Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall
New York, 1988.

[10]. Bertrand Meyer. Touch of Class: learning to program well with objects and
contracts. Springer, 2009.

[11]. Bertrand Meyer. Multirequirements. Modelling and Quality in
Requirements Engineering (Martin Glinz Festscrhift), 2013.

[12]. Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying
requirements and code: an example. The work is not published.

69



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

[13]. Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,
Eidgenossische Technische Hochschule ETH Zu'rich, Nr. 21939, 2014, 2014.

[14]. Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova.
Autoproof: Auto-active functional verification of object-oriented programs.
arXiv preprint arXiv:1501.03063, 2015.

[15]. Kim Wald’enand Jean Marc Nerson. Seamless object-oriented software architecture.
Prentice-Hall, 1995.

[16]. Bertrand Meyer. Eiffel: A language and environment for software
engineering. Journal of Systems and Software, 8(3):199-246, 1988.

BecwoBHas pa3paboTka nporpaMmMHOro
obecneyeHUs: NPUMEHUMOCTb Ha NpumMepe

Anexcandp Haymues <a.naumchev@innopolis.ru>,
Yuusepcumem Hunononuc,
2. Unnononuc, Poccuiickas @edepayus

AHHOTamMsi. B paMkax TpaaWIMOHHON NpPOrpaMMHOM HWHXXEHEpHH TpeOOBaHUS U KOJX
pa3BUBAIOTCS B JIBYX HapauIeldbHBIX MHpax. OObMHAs TOYKa 3pEeHHsS Ha IPOrPaMMHYIO
HWHKCHEPHIO paccMaTpUBaeT TPeOOBaHMS M HCXOAHBIM KOA Kak pasHble apTedakTsl, 3a
KOTOpBIE HECYT OTBETCTBEHHOCTh Pa3HbIE JIIOAU. DTOT MOAXOM, OAHAKO, BIEUET HaKIIaJHbIC
pacxofsl Ha KOMMYHHKAIMIO W IOPOXKIAET MPOOIeMy MOJJEepKaHUs KOHCHCTEHTHOCTH
pa3IUYHBIX apTe()akTOB B CIlydae HEOOXOMMMOCTH BHECCHHUS M3MEHEHHH B OJWH W3 HHX.
V3meHeHne, BHECEHHOE B OJWH W3  YINOMSHYTHIX  apTe(akToB, HEOOXOAMMO
CHHXPOHM3UPOBATh C OCTAJbHBIMH apTedakTamMH. B onpeneneHHbI MOMEHT CHTyalus
HEen30€)XHO BBIXOIUT M3-TIOJ KOHTPOJSI: HalpHMep, B Cliydae OOHapY)XEHHs KPHUTHYECKOTO
nedexTa BO BpeMsl OKCIUTyaTalMH pa3paboTYMKU Oe3 NpPOMEJICHUs NPHUCTYIAT K
HCTIPABIICHUIO Ie(eKTa, TOCKOJIbKY B TAKOH CUTYAI[MH HET BPEMEHH JKAATh, TIOKA CHCTEMHBIE
AQHAIUTUKA U APXUTEKTOPHI OOHOBAT CBOM IOKYMEHTHI, TO3BOJIMB pa3pabOTIMKaM BHECTH
HYXHBIC W3MEHEHHS B Koi. [IpoOmemMa YacTWYHO pemraeTrcsi CIOXHBIMH CHCTEMAMH
YIIPaBJIEHHS! BEPCUSIMH, KOTOPBIE JOPOTH B OOCITYXKMBAaHHH MU TPeOYIOT COOTBETCTBYIOUIEH
KBTM(UKaINK OOCITY)KHBAIOIIET0 TEXHHYECKOTO IepcoHana. BO3MOXKHO 1M 00BEIMHHUTH
MupbI TpeboBanuit U kona? Takoe oObeAMHEHHE YNPOCTHIO OBl M3MEHEHHE W MOBTOPHOE
HCIOJIb30BaHHWE MpPOTpaMMHOro obecneuenus. LlenecooOpa3sHOCTh IMPUMEHEHHsS HOBOTO
IOAXOAa HYXKAaeTcs B H3YYeHHH. B IpeAcTaBICHHOM HCCIEIOBAHUM PACCMOTPEH
KIIACCHYECKHH NpHMep M3 JIHMTepaTypbl B OOJACTH HPOEKTHpOBaHWs TpeGoBaHmil. s
crerpUKAINN MPeIMEeTHOH 00JIacTH, PaBHO KaK M KOHEYHOTO MPOTPAMMHOTO DEIICHUS,
HCTIONb30BaHa OJIHA U Ta JK€ HOTAIUs — SI3BIK IIPOTrpaMMHpOBaHus. JJaHHas paboTa COmep KUT
ONHCaHHe MOAXOMA, a TaKKe ONEHKY €ro MHpPeHMYIIECTB, BO3MOXHBIX OTPaHHUYCHUH U
MacmTabHpyeMOCTH.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel
DOI: 10.15514/ISPRAS-2015-27(3)-4

70


mailto:a.naumchev@innopolis.ru

Anekcanzp Haymues. BecrioBHast pa3paGoTka mporpaMMHOro 00ecedeH s : IPUMEHUMOCTh Ha ripumepe. Tpyast UCIT
PAH, tom 27, Boim. 3, 2015 1., ¢. 57-72

Jns nutupoBanusa: HaymueB Amekcanzap. bBecmoBHas pa3paboTka IporpaMMHOTO
obecrniedeHns1: npuMeHnMocTs Ha npumepe. Tpyast UCIT PAH, tom 27, Bem. 3, 2015 r., cTp.
57-72 (ua anrmuiickoM sizeike). DOI: 10.15514/ISPRAS-2015-27(3)-4.

Cnucok nutepatypbl

[1].
[2].
[3].
[4].
[5].
[6].

[7].

[8].

[9].
[10].
[11].
[12].
[13].

[14].

[15].

[16].

Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara. Towards a
formalism-based toolkit for automotive applications. 2012.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, 1969.

Michael Jackson. The world and the machine. In Software Engineering, 1995. ICSE
1995. 17th International Conference on, pages 283-283. IEEE, 1995.

Michael Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley, 2001.

Michael Jackson and Pamela Zave. Deriving specifications from requirements: an
example. In Proceedings of the 17th international conference on Software engineering,
pages 15-24. ACM, 1995.

Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese.
Requirements specification for process-control systems. Software Engineering, IEEE
Transactions on, 20(9):684-707, 1994.

V’ictor Rivera and N. Catan”o. Translating Event-B to JML-Specified Java programs. In
29th ACM Symposium on Applied Computing, Software Verification and Testing track
(SAC-SVT), Gyeongju, Korea, March 24-28 2014.

Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall New
York, 1988.

Bertrand Meyer. Touch of Class: learning to program well with objects and contracts.
Springer, 2009.

Bertrand Meyer. Multirequirements. Modelling and Quality in Requirements
Engineering (Martin Glinz Festscrhift), 2013.

Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying requirements and
code: an example. The work is not published.

Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,
Eidgeno“ssische Technische Hochschule ETH Zu'rich, Nr. 21939, 2014, 2014.

Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova. Autoproof:
Auto-active functional verification of object-oriented programs. arXiv preprint
arXiv:1501.03063, 2015.

Kim Wald’en and Jean Marc Nerson. Seamless object-oriented software architecture.
Prentice-Hall, 1995.

Bertrand Meyer. Eiffel: A language and environment for software engineering. Journal
of Systems and Software, 8(3):199-246, 1988.

71



Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 57-72

72



