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Abstract. Requirements and code, in conventional software engineering wisdom, belong to 

entirely different worlds. The usual view in software engineering considers requirements 

documents and source code as different artifacts, under the responsibility of different people. 

This approach, however, introduces communication overhead, and raises the question of how 

to keep the various artifacts consistent when either of them needs to change. A change 

introduced to any of the mentioned artifacts needs to be synchronized with the others. At 

some point the control is inevitably lost: for example, a critical bug is found during the 

software operation, and the software developers dig into the fixing process directly, because 

there is no time to wait until the requirements analysts and system architects update their 

documents to let the developers actually fix the problem. Is it possible to unify the two 

worlds? A unified framework could help make software easier to change and reuse. To 

explore the feasibility of such an approach, the case study reported here takes a classic 

example from the requirements engineering literature and describes it using a programming 

language framework to express both domain and machine properties. The paper describes the 

solution, discusses its benefits and limitations, and assesses its scalability. 
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1. Introduction 

Nowadays the dominating view on the software engineering discipline includes an 

implicit assumption that engineering the requirements, designing the architecture 

and implementing the code are all separate activities. “Separate” means that an 

engineer performs only one of them at the same time and produces different artifacts 

as the output. This implicit assumption is cultivated by the top software engineering 

schools who promote the idea explicitly enough to push it to the students’ 

subconscious level. 
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1.2 Problems with the Current Approach 

The usual view in software engineering considers requirements documents 

and source code as different artifacts, under the responsibility of different people. 

This approach, however, introduces communication overhead, and raises the 

question of how to keep the various artifacts consistent when either of them needs to 

change. A change introduced to any of the mentioned artifacts needs to be 

synchronized with the others. At some point the control is inevitably lost: for 

example, a critical bug is found during the software operation, and the software 

developers dig into the fixing process directly, because there is no time to wait until 

the requirements analysts and system architects update their documents to let the 

developers actually fix the problem. The problem is partially solved with 

complicated configuration management, which is expensive and difficult to 

maintain, and may serve as a source of evil as well: there are so called ”technical 

commits”. Only senior developers are allowed to make them, and the basic idea is 

that such commits do not have to be linked to some task, bug or user story (if the 

team practices Agile). Quite often the technical commits contain basically whole 

new features or big chunks of code not linked to any document. 

Why should we try to minimize gaps between requirements and code? At the very 

least because successful software evolves. The customers want more features, they 

want to improve existing features, and they want to know how much money it will 

cost and how much time it will take. If it is possible to relate the ideas to the 

artifacts, then by comparing complexity of some new idea with an existing one, 

already implemented, it will be possible to estimate the resources required for 

implementing the new idea. 

The list of the problems discussed above does not pretend to be exhaustive of 

course, but it should be sufficient to start thinking about changing the overall 

approach. 

1.2 Existing Solutions 

Typically the problems from Section 1.1 are resolved by carefully choosing 

appropriate notations for every development life cycle phase. The selection criteria 

include possibility of establishing traceability links between different notations. 

Each phase requires the output of the previous phase on its input and on its output 

produces the input for the next phase. In [2], authors give an example of applying 

this approach. This work also contains an overview of the most popular notations 

used in formal software development. For instance, the software development case 

described in work [2] uses natural language for requirements document, RSML [7] 

for specification document, Event-B [1] for developing software formal model, 

formalizing the requirements and formally verifying the model against the 

requirements. Finally, EventB2Java [8] generates executable Java source code 

equipped with JML specs from a model expressed in Event-B. For moving from the 

requirements document to the specification document the Problem Frames 
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Approach [5] is applied. The latter method produces a problem frames model on the 

output. 

Needless to say, such approach requires people with very rich set of skills: for 

example, to produce a specification document expressed in RSML, the responsible 

person also has to understand the Problem Frames Approach. In a similar fashion 

the person responsible for modeling in Event-B also has to be proficient with 

RSML, and so on. 

As a software engineer we should not forget why there is a huge gap between 

requirements and code at all. The fundamental reason is in limited expressive power 

of programming languages compared to expressive power of any natural language. 

That is why there are many ”intermediate” notations serving for smooth transition 

from natural language requirements to source code; that is why the coding phase 

and the requirements engineering phase typically have tiny overlaps in time, and 

there are other software development life cycle phases between them. If it was 

possible to express any executable requirement using a subset of some programming 

language, then the problem would disappear. 

1.3 Unified View on Software: The Hypothesis 

It is possible to design such a software development process that: 

1. By specifying the requirements the analyst at the same time will 

also design the solution 

2. The resulting document may be linked in an intuitive way to an 

algorithmic implementation 

3. The resulting implementation will be formally provable against 

the requirements specification 

4. Small change in the requirements specification will cause 

proportionally small change in the design and the 

implementation 

Parts 1, 2 and 3 promote consistency between the requirements, 

design and implementation; part 4 promotes predictability of resources 

estimations. 

1.4 How to Test the Hypothesis 

The following process seems to be feasible for testing adequacy of the 

stated hypothesis: 

1. Propose a candidate process 

2. Select some real projects which are presumably prone to the 

problems stated in section 1.1 

3. Apply the proposed process to the selected projects and see how 

it goes 
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In [11] Meyer sketched such a process based on using object 

orientation for representing the relationships between the conceptual 

objects mentioned in the requirements document. The basic idea was 

to have an object-oriented code along with the natural language 

description of a requirements item. Each code fragment in its turn may 

be represented graphically as a BON diagram [15]. 

The main problem with [11] was the example used for the 

demonstration purposes: it was self-referential. That is, it contains 

“requirements for the requirements”. 

Nevertheless, it demonstrates that object orientation contributes to 

understanding the relationships between the objects. However, 

requirements (in their general form) are beyond this: to specify 

requirements, as described by Jackson and Zave in [6], is also to specify 

all allowed sequences of events associated with a given problem area. 

The present work provides an example of how one could combine 

approaches from [11] and [6] by adding fully-fledged contracts, both in 

their classical and model-based semantics, to the requirements 

specification notation. More precisely, it contains every requirements 

item from the Zoo Turnstile example discussed in [6] represented using the 

model-based [13] contracts-equipped [10] object-oriented [9] notation 

(Eiffel). 

2. Theoretical and Technical Background 

2.1 Design By Contract 

A comprehensive description of Design By Contract is given in [10]. 

Design By Contract integrates Hoare-style assertions [3] within object-

oriented programs [9]. This concept assumes that each class feature 

(member), is equipped with its pre- and postcondition, which are 

predicates on the class. The postcondition has to hold whenever the 

precondition held and the feature finished its computation before the next 

feature is invoked. The class itself is equipped with an invariant 

expression which holds in all states of the corresponding instantiated 

objects. 

2.2 Model-Based Contracts 

If classical contracts are for constraining the data actually held by run-

time objects, model-based contracts are ”meta” contracts for constraining 

the objects as mathematical entities (sets, sequences, bags, relations etc.), 

and the corresponding mathematical representations are not actually 

instantiated at run-time as parts of the objects. Model-Based Contracts 

are needed when it is not possible to capture all the nuances by means 
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of classical contracts. Some examples of such situations and a 

comprehensive description of the concept is given in the PhD thesis [13]. 

2.3 AutoProof 

Object-oriented classes constrained with contracts (both classical and 

model-based) may be formally verified using an automation called 

AutoProof [14]. AutoProof traverses over the class features and proves 

formally that the precondition conjuncted with the class invariant 

ensures the postcondition together with the class invariant after the 

feature application. If all the class features are verified, then the class is 

considered verified. 

3. Unifying the Two Worlds: an Example 

This section shows the approach at work. It takes the example 

introduced by Jackson and Zave in [6] in 1995 and specifies the example 

using Eiffel programming language [16] as a formal notation. Originally 

this example was used to demonstrate the process of deriving specifications 

from requirements, and the unified approach captures all the nuances of 

this process. 

3.1 Example Overview 

The authors of [6] start with giving the overall context: ”...Our small 

example concerns the control of a turnstile at the entry to a zoo. The turnstile 

consists of a rotating barrier and a coin slot, and is fitted with an electrical 

interface...” This small paragraph describes mostly relationships between the 

conceptual objects and thus may be expressed in the style of work [11]: 

d e f e r r e d  c l a s s ZOO 

featu re 

t u r n s t i l e : TURNSTILE 

end 
 

d e f e r r e d  c l a s s TURNSTILE 

featu re 

c o i n s l o t : COINSLOT 

b a r r i e r : BARRIER 

i nva ri ant 

c o i n s l o t . t u r n s t i l e = Current 

b a r r i e r . t u r n s t i l e = Current 

end 
 

d e f e r r e d  c l a s s COINSLOT 

featu re 
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t u r n s t i l e : TURNSTILE 

i nva ri ant 

t u r n s t i l e . c o i n s l o t = Current 

end 
 

d e f e r r e d  c l a s s BARRIER 

featu re 

t u r n s t i l e : TURNSTILE 

i nva ri ant 

t u r n s t i l e . b a r r i e r = Current 

end 

Fig. 1: Expressing the context formally 

 

Translating this code (fig. 1) back to English using the object-oriented 

semantics results in almost the same initial description: ”A ZOO has a 

TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a 

BARRIER barrier so that coinslot has Current TURNSTILE as turnstile 

and barrier has Current TURNSTILE as turnstile...” COINSLOT and 

BARRIER hold references to the TURNSTILE instances in order to 

capture the ”electrical interface” phenomena: the word ”interface” means 

something over which the parties are able to communicate with each 

other; communicating means sending messages to each other, and to 

send message to someone in the object-oriented world is to take the 

corresponding instance and perform a qualified call. So at the very least 

the parties should hold references to each other to be able to 

communicate in two directions. 

3.2 The Designation Set 

After stating the problem context the authors of [6] describe a designation 

set. Each designation basically corresponds to a separate type of events 

observed in the problem area. The designations are provided in form of 

the predicates: 

 Push(e): In event e a visitor pushes the barrier to its intermediate 

position 

 Enter(e): In event e a visitor pushes the barrier fully home and so 

gains entry to the zoo 

 Coin(e): In event e a valid coin is inserted into the coin slot 

 Lock(e): In event e the turnstile receives a locking signal 

 Unlock(e): In event e the turnstile receives an unlocking signal 
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The representation of this designation set provided below (fig. 2) uses 

Eiffel features names as labels for the events types (entities introduced 

earlier are not repeated afterwards). The aforementioned natural 

language descriptions provide heuristics on which feature should be 

added to which class (the association is highlighted with bold). Not only 

different types of events, but also the history of the corresponding 

events, are designed using Eiffel features. For example, enters : 

MML_SEQUENCE [INTEGER_64] is a sequence of moments in time 

expressed in milliseconds when events of type enter took place. model 

annotation says that enters feature will be used for expressing the model-

based part of the contract (model-based contracts were introduced in 

section 2.2). MML_SEQUENCE is a class from the MML (Mathematical 

Modeling Library) and denotes mathematical sequence. MML was 

designed specially to express model-based contracts. Although it is 

possible to instantiate some simple objects from these classes (like a 

sequence containing one element), one cannot modify the instances. 

 

note 

model : e n t e r s deferred c l a s s ZOO  

feature 
e n t e r deferred ensure 

e n t e r s . b u t_l a s t ˜ old e n t e r s 
e n t e r s . l a s t > old e n t e r s . l a s t 

end 
e n t e r s : MML_SEQUENCE [ INTEGER_64 ] 

end 
note 

model : l o c k s, un l o c k s deferred c l a s s  

TURNSTILE feature 
l o c k deferred ensure 

l o c k s . b u t_l a s t ˜ old l o c k s 
l o c k s . l a s t > old l o c k s . l a s t 

end 
unl ock 
deferred 
ensure 

un l o c k s . b u t l a s t   ˜   old   un l o c k s 
un l o c k s . l a s t  >  old   un l o c k s . l a s t 

end 

l o c k s :  MML_SEQUENCE[ INTEGER_64 ]  

un l o c k s :  MML_SEQUENCE[ INTEGER_64 ] 
end 
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note 
model :   c o i n s 

deferred   c l a s s   COINSLOT 
feature    c o in deferred ensure 

c o i n s . b u t l a s t   ˜   old   c o i n s 
c o i n s . l a s t  >  old   c o i n s . l a s t 

end 
c o i n s :  MML_SEQUENCE[ INTEGER_64 ] 

end 
note 

model :   pushes deferred   c l a s s   BARRIER  

feature 
push deferred ensure 

pushes . b u t l a s t   ˜   old   pushes pushes . l a s t  >   
old   pushes . l a s t 

end 
pushes :  MML_SEQUENCE[ INTEGER_64 ] 

end 
Fig. 2: Specifying the designation set formally 

The deferred keyword is used to highlight that the events are only 

specified formally, without specifying the corresponding operational 

reactions of the software to the events. The ensure clause is used to specify 

what conditions should be satisfied after reacting on an event. These 

specifications are intuitively plausible: the events history should be 

complemented with the new event occurrence, and the time of the new 

event should be strictly bigger than the time of the previous event. 

3.3 Shared Phenomena 

The authors of [6] introduce the notion of shared phenomena that is, the 

phenomena visible to both the world and the machine (the notions of the 

world and the machine were introduced by Jackson in [4]). In the 

present approach this notion is covered by using the “has a” relationships 

between the ZOO and the TURNSTILE classes, accompanied with the 

model-based contracts. Namely, since a ZOO has a turnstile as its feature, 

it can see any phenomena hosted by the turnstile: locks, unlocks, coins, 

pushes. And since a TURNSTILE does not hold any references to a ZOO, it 

can not observe nor control the enter events modeled by ZOO . 

3.4 Specifying the System 

All the properties of the problem derived in [6] be they optative or  

indicative descriptions can be conceptually divided into the three main 

categories. 
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Properties which hold at any moment in time An example of such properties is 

the OPT1 requirement saying that entries should never exceed payments 

(the authors of [6] use OPT∗ for labeling properties expressed in an 

optative mood). Within the present approach this requirement can be 

expressed in the following way (fig. 3): 

deferred c l a s s ZOO 
feature 

e n t e r s : MML_SEQUENCE [ INTEGER_64 ] 

t u r n s t i l e : TURNSTILE 
invariant 

e n t e r s . count <= t u r n s t i l e . c o i n s l o t . c o i n s . count 

end 

Fig. 3: Entries should never exceed payments 

The ”something always holds” semantics fits perfectly into the semantics of 

Eiffel invariant: ”something holds in all states of the object”. 

Properties which hold depending on the type of the next event to occur The 

indicative property IND 2 saying that it is impossible to push the barrier 

if the turnstile is locked will serve as an example. Below ( f i g .  4 )  is 

the corresponding specification: 

deferred c l a s s BARRIER 
feature push require 

not t u r n s t i l e . un l o c k s . i s_e mpty 
not t u r n s t i l e . l o c k s . i s_e mpty implies 

t u r n s t i l e . un l o c k s . l a s t > t u r n s t i l e . l o c k s . l a s t 
deferred end 
pushes : MML_SEQUENCE [ INTEGER_64 ] 

end 

Fig. 4: It is impossible to use locked turnstile 

The initial description is divided into the two different claims: first, the 

turnstile should be unlocked at least once, and second, if the turnstile has 

ever been locked, the last unlock should have occurred later than the last 

lock. 

Real Time Properties The authors of [6] derive several timing constraints on 

the events. For example, the OPT 7 requirement says that the amount of 

time between the moment when the number of the barrier pushes 

becomes equal to the number of coins inserted and the moment when the 

turnstile is locked should be less than 760 milliseconds. It is possible to 

make this property finer grained.  First (fig. 5), if after the next push event 

the number of pushes becomes equal to the number of coins, then after 
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reacting on the push event the turnstile should be locked at some point 

before the next push event occurs. 

d e f e r r e d  c l a s s BARRIER 
feature 

t u r n s t i l e : TURNSTILE push 
deferred ensure 

( old t u r n s t i l e . un l o c k s . l a s t > old t u r n s t i l e . l o c k s . l a s t 
and 
pushes . count = t u r n s t i l e . c o i n s l o t . c o i n s . count ) 

implies t u r n s t i l e . l o c k s . l a s t > pushes . l a s t 
end 
pushes : MML_SEQUENCE [ INTEGER_64 ] 

end 

Fig. 5: The machine locks the turnstile timely 

 

Second (fig. 5), if the last lock event occurred later than the last push 

event, then the time distance between them is smaller than 760. 

d e f e r r e d  c l a s s TURNSTILE 
feature 

b a r r i e r : BARRIER 

l o c k s : MML_SEQUENCE [ INTEGER_64 ] un l o c k s : MML_SEQUENCE [ 
INTEGER_64 ] 

invariant 
l o c k s . l a s t > b a r r i e r . pushes . l a s t implies 

( l o c k s . l a s t − b a r r i e r . pushes . l a s t ) < 760 
end 

Fig. 5: The machine locks the turnstile timely 

 

3.5 Specifying the “Unspecifiable” 

One of the requirements mentioned in [6] was OPT 2 saying that the visitors 

who pay are not prevented from entering the Zoo. The authors give 

only informal statement of this requirement: 

∀ v , m, n • ((Enter #(v , m) ∧ Coin#(v , n) ∧ (m < n)) ⇒! The machine will 

not prevent another Enter event!
 

The antecedent of this implication should be read like ”number of entries is 

less than the number of coins inserted”. In the present specification system 

this requirement can be formalized easily (fig. 6). 
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deferred c l a s s ZOO 
feature 

e n t e r 
require 

e n t e r s . count < t u r n s t i l e . c o i n s l o t . c o i n s . count 

deferred end 
e n t e r s : MML_SEQUENCE [ INTEGER_64 ] 

end 

Fig. 6: The turnstile let people who pay enter 

It works because semantically the require clause specified above is the 

strongest precondition of the enter feature. That is, if some class inherits 

from ZOO and redefines the enter feature, it will be allowed to redefine 

the precondition by using only the require else clause that weakens the 

precondition by ”or”-ing it with the original one. And so, if the enters.count < 

turnstile.coinslot.coins.count condition is satisfied, the precondition of the 

enter feature will always be satisfied, thus allowing an enter event to occur. 

Not only this specification formalizes OPT 2 it also ensures satisfaction of 

OPT 1 (together with the ensure clause for the enter feature introduced 

earlier): indeed, if the number of enters is always strictly smaller than the 

number of coins inserted before any enter event occurrence, then after the 

event occurrence the number of entries will not exceed the number of coins 

inserted. 

In the process of research the author of the present work identified that  

the aforementioned reasoning about formalizing OPT 2 requirement is 

farfetched and is not scalable. For example, if Zoo management decides to 

install one more appliance for controlling Zoo entrance, and the 

corresponding requirements will enrich the precondition of the enter 

feature, the whole reasoning will be invalidated. The author found more 

scalable and intuitively plausible way to formalize this requirement in 

Eiffel. The corresponding formalism will be available in work [12]. 

4. Conclusion 

The specification method discussed in this work is suitable not only 

for formalizing statements which were also formalized in [6], but also for 

formalizing statements which cannot be formalized with the classical 

tools used in [6]. Not only the requirements specification items were 

expressed, but also the object-oriented blueprint was built ready to equip 

it with code actually doing something useful. Such implementation 

exists and is available here: https://github.com/anaumche/Zoo-

Turnstile-Multirequirements. 
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4.1 Pros & Cons 

It is necessary to evaluate the method against the characteristics of the 

hypothesis introduced in section 1.3: 

1. Simultaneity of specifying the requirements and building the 

design: indeed, all the code fragments corresponding to different 

specification items merged together will bring a complete design 

solution available at https://github.com/anaumche/Zoo-

Turnstile-Multirequirements (the classes ending with “  abstract”). 

2. Traceability between the specification and the implementation: 

the classes ending with “  concrete” located at the resource given in 

1 contain the implementation and are inherited from the 

specification classes 

3. Provability of the classes: this is the subject to further 

investigation 

4. Continuity of the solution: since Eiffel artifacts used in the 

formalizations of the requirements items correspond to their 

natural language counterparts directly, it is visible right away how 

a change in one representation will affect the second one 

4.2 Scalability 

A formal representation of a requirements item specified with Eiffel is as 

big as the scope of the item and its natural language description are, so 

the overall complexity of the final document should not depend on the 

size of the project. Anyway, this is something to test by applying the 

method to a bigger project. 

4.3 Future Work 

The next steps include: 

1. To formally prove that the specification is consistent. In particular 

to ensure that the features specifications preserve what is stated 

in the invariants; to ensure that the expressions stated in the 

invariants are consistent between each other: for example it should 

not be possible for P(x) and ¬P (x ) to hold at the same time 

2. To formally prove that the implementation actually satisfies the 

features specifications 

3. To extend BON notation [15] so that it would be capable of 

expressing model-based contracts 

4. To design machinery for translating model-based contract-

oriented requirements to their natural language counterpart so 

that the result would be recognizable by a human being. 
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5. To apply the method to a bigger project 

The AutoProof technology [14] may be utilized for automating the 

aforementioned proofs. AutoProof is already capable of proving that a 

feature implementation preserves its specification (the postcondition 

holds after the feature invocation assuming the precondition), and it 

should be empowered with the capabilities for working solely on the 

specifications level so that completing the goal 1 will be possible. 

As a result of implementing the aforementioned plans a powerful 

framework for expressing all possible views on the software under 

construction should emerge. 
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Бесшовная разработка программного 
обеспечения: применимость на примере 
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Университет Иннополис, 

 г. Иннополис, Российская Федерация 

Аннотация. В рамках традиционной программной инженерии требования и код 

развиваются в двух параллельных мирах. Обычная точка зрения на программную 

инженерию рассматривает требования и исходный код как разные артефакты, за 

которые несут ответственность разные люди. Этот подход, однако, влечет накладные 

расходы на коммуникацию и порождает проблему поддержания консистентности 

различных артефактов в случае необходимости внесения изменений в один из них. 

Изменение, внесенное в один из упомянутых артефактов, необходимо 

синхронизировать с остальными артефактами. В определенный момент ситуация 

неизбежно выходит из-под контроля: например, в случае обнаружения критического 

дефекта во время эксплуатации разработчики без промедления приступают к 

исправлению дефекта, поскольку в такой ситуации нет времени ждать, пока системные 

аналитики и архитекторы обновят свои документы, позволив разработчикам внести 

нужные изменения в код. Проблема частично решается сложными системами 

управления версиями, которые дороги в обслуживании и требуют соответствующей 

квалификации обслуживающего технического персонала. Возможно ли объединить 

миры требований и кода? Такое объединение упростило бы изменение и повторное 

использование программного обеспечения. Целесообразность применения нового 

подхода нуждается в изучении. В представленном исследовании рассмотрен 

классический пример из литературы в области проектирования требований. Для 

спецификации предметной области, равно как и конечного программного решения, 

использована одна и та же нотация – язык программирования. Данная работа содержит 

описание подхода, а также оценку его преимуществ, возможных ограничений и 

масштабируемости. 
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