
Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

57

Seamless Development Applicability:
an Experiment

Alexandr Naumchev <a.naumchev@innopolis.ru>,

Innopolis University, Innopolis, Russian Federation

Abstract. Requirements and code, in conventional software engineering wisdom, belong to

entirely different worlds. The usual view in software engineering considers requirements

documents and source code as different artifacts, under the responsibility of different people.

This approach, however, introduces communication overhead, and raises the question of how

to keep the various artifacts consistent when either of them needs to change. A change

introduced to any of the mentioned artifacts needs to be synchronized with the others. At

some point the control is inevitably lost: for example, a critical bug is found during the

software operation, and the software developers dig into the fixing process directly, because

there is no time to wait until the requirements analysts and system architects update their

documents to let the developers actually fix the problem. Is it possible to unify the two

worlds? A unified framework could help make software easier to change and reuse. To

explore the feasibility of such an approach, the case study reported here takes a classic

example from the requirements engineering literature and describes it using a programming

language framework to express both domain and machine properties. The paper describes the

solution, discusses its benefits and limitations, and assesses its scalability.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel

DOI: 10.15514/ISPRAS-2015-27(3)-4

For citation: Naumchev Alexandr. Seamless Development Applicability: an Experiment.

Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 57-72. DOI: 10.15514/ISPRAS-
2015-27(3)-4.

1. Introduction

Nowadays the dominating view on the software engineering discipline includes an

implicit assumption that engineering the requirements, designing the architecture

and implementing the code are all separate activities. “Separate” means that an

engineer performs only one of them at the same time and produces different artifacts

as the output. This implicit assumption is cultivated by the top software engineering

schools who promote the idea explicitly enough to push it to the students’

subconscious level.

mailto:a.naumchev@innopolis.ru

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

58

1.2 Problems with the Current Approach

The usual view in software engineering considers requirements documents

and source code as different artifacts, under the responsibility of different people.

This approach, however, introduces communication overhead, and raises the

question of how to keep the various artifacts consistent when either of them needs to

change. A change introduced to any of the mentioned artifacts needs to be

synchronized with the others. At some point the control is inevitably lost: for

example, a critical bug is found during the software operation, and the software

developers dig into the fixing process directly, because there is no time to wait until

the requirements analysts and system architects update their documents to let the

developers actually fix the problem. The problem is partially solved with

complicated configuration management, which is expensive and difficult to

maintain, and may serve as a source of evil as well: there are so called ”technical

commits”. Only senior developers are allowed to make them, and the basic idea is

that such commits do not have to be linked to some task, bug or user story (if the

team practices Agile). Quite often the technical commits contain basically whole

new features or big chunks of code not linked to any document.

Why should we try to minimize gaps between requirements and code? At the very

least because successful software evolves. The customers want more features, they

want to improve existing features, and they want to know how much money it will

cost and how much time it will take. If it is possible to relate the ideas to the

artifacts, then by comparing complexity of some new idea with an existing one,

already implemented, it will be possible to estimate the resources required for

implementing the new idea.

The list of the problems discussed above does not pretend to be exhaustive of

course, but it should be sufficient to start thinking about changing the overall

approach.

1.2 Existing Solutions

Typically the problems from Section 1.1 are resolved by carefully choosing

appropriate notations for every development life cycle phase. The selection criteria

include possibility of establishing traceability links between different notations.

Each phase requires the output of the previous phase on its input and on its output

produces the input for the next phase. In [2], authors give an example of applying

this approach. This work also contains an overview of the most popular notations

used in formal software development. For instance, the software development case

described in work [2] uses natural language for requirements document, RSML [7]

for specification document, Event-B [1] for developing software formal model,

formalizing the requirements and formally verifying the model against the

requirements. Finally, EventB2Java [8] generates executable Java source code

equipped with JML specs from a model expressed in Event-B. For moving from the

requirements document to the specification document the Problem Frames

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

59

Approach [5] is applied. The latter method produces a problem frames model on the

output.

Needless to say, such approach requires people with very rich set of skills: for

example, to produce a specification document expressed in RSML, the responsible

person also has to understand the Problem Frames Approach. In a similar fashion

the person responsible for modeling in Event-B also has to be proficient with

RSML, and so on.

As a software engineer we should not forget why there is a huge gap between

requirements and code at all. The fundamental reason is in limited expressive power

of programming languages compared to expressive power of any natural language.

That is why there are many ”intermediate” notations serving for smooth transition

from natural language requirements to source code; that is why the coding phase

and the requirements engineering phase typically have tiny overlaps in time, and

there are other software development life cycle phases between them. If it was

possible to express any executable requirement using a subset of some programming

language, then the problem would disappear.

1.3 Unified View on Software: The Hypothesis

It is possible to design such a software development process that:

1. By specifying the requirements the analyst at the same time will

also design the solution

2. The resulting document may be linked in an intuitive way to an

algorithmic implementation

3. The resulting implementation will be formally provable against

the requirements specification

4. Small change in the requirements specification will cause

proportionally small change in the design and the

implementation

Parts 1, 2 and 3 promote consistency between the requirements,

design and implementation; part 4 promotes predictability of resources

estimations.

1.4 How to Test the Hypothesis

The following process seems to be feasible for testing adequacy of the

stated hypothesis:

1. Propose a candidate process

2. Select some real projects which are presumably prone to the

problems stated in section 1.1

3. Apply the proposed process to the selected projects and see how

it goes

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

60

In [11] Meyer sketched such a process based on using object

orientation for representing the relationships between the conceptual

objects mentioned in the requirements document. The basic idea was

to have an object-oriented code along with the natural language

description of a requirements item. Each code fragment in its turn may

be represented graphically as a BON diagram [15].

The main problem with [11] was the example used for the

demonstration purposes: it was self-referential. That is, it contains

“requirements for the requirements”.

Nevertheless, it demonstrates that object orientation contributes to

understanding the relationships between the objects. However,

requirements (in their general form) are beyond this: to specify

requirements, as described by Jackson and Zave in [6], is also to specify

all allowed sequences of events associated with a given problem area.

The present work provides an example of how one could combine

approaches from [11] and [6] by adding fully-fledged contracts, both in

their classical and model-based semantics, to the requirements

specification notation. More precisely, it contains every requirements

item from the Zoo Turnstile example discussed in [6] represented using the

model-based [13] contracts-equipped [10] object-oriented [9] notation

(Eiffel).

2. Theoretical and Technical Background

2.1 Design By Contract

A comprehensive description of Design By Contract is given in [10].

Design By Contract integrates Hoare-style assertions [3] within object-

oriented programs [9]. This concept assumes that each class feature

(member), is equipped with its pre- and postcondition, which are

predicates on the class. The postcondition has to hold whenever the

precondition held and the feature finished its computation before the next

feature is invoked. The class itself is equipped with an invariant

expression which holds in all states of the corresponding instantiated

objects.

2.2 Model-Based Contracts

If classical contracts are for constraining the data actually held by run-

time objects, model-based contracts are ”meta” contracts for constraining

the objects as mathematical entities (sets, sequences, bags, relations etc.),

and the corresponding mathematical representations are not actually

instantiated at run-time as parts of the objects. Model-Based Contracts

are needed when it is not possible to capture all the nuances by means

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

61

of classical contracts. Some examples of such situations and a

comprehensive description of the concept is given in the PhD thesis [13].

2.3 AutoProof

Object-oriented classes constrained with contracts (both classical and

model-based) may be formally verified using an automation called

AutoProof [14]. AutoProof traverses over the class features and proves

formally that the precondition conjuncted with the class invariant

ensures the postcondition together with the class invariant after the

feature application. If all the class features are verified, then the class is

considered verified.

3. Unifying the Two Worlds: an Example

This section shows the approach at work. It takes the example

introduced by Jackson and Zave in [6] in 1995 and specifies the example

using Eiffel programming language [16] as a formal notation. Originally

this example was used to demonstrate the process of deriving specifications

from requirements, and the unified approach captures all the nuances of

this process.

3.1 Example Overview

The authors of [6] start with giving the overall context: ”...Our small

example concerns the control of a turnstile at the entry to a zoo. The turnstile

consists of a rotating barrier and a coin slot, and is fitted with an electrical

interface...” This small paragraph describes mostly relationships between the

conceptual objects and thus may be expressed in the style of work [11]:

d e f e r r e d c l a s s ZOO

featu re

t u r n s t i l e : TURNSTILE

end

d e f e r r e d c l a s s TURNSTILE

featu re

c o i n s l o t : COINSLOT

b a r r i e r : BARRIER

i nva ri ant

c o i n s l o t . t u r n s t i l e = Current

b a r r i e r . t u r n s t i l e = Current

end

d e f e r r e d c l a s s COINSLOT

featu re

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

62

t u r n s t i l e : TURNSTILE

i nva ri ant

t u r n s t i l e . c o i n s l o t = Current

end

d e f e r r e d c l a s s BARRIER

featu re

t u r n s t i l e : TURNSTILE

i nva ri ant

t u r n s t i l e . b a r r i e r = Current

end

Fig. 1: Expressing the context formally

Translating this code (fig. 1) back to English using the object-oriented

semantics results in almost the same initial description: ”A ZOO has a

TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a

BARRIER barrier so that coinslot has Current TURNSTILE as turnstile

and barrier has Current TURNSTILE as turnstile...” COINSLOT and

BARRIER hold references to the TURNSTILE instances in order to

capture the ”electrical interface” phenomena: the word ”interface” means

something over which the parties are able to communicate with each

other; communicating means sending messages to each other, and to

send message to someone in the object-oriented world is to take the

corresponding instance and perform a qualified call. So at the very least

the parties should hold references to each other to be able to

communicate in two directions.

3.2 The Designation Set

After stating the problem context the authors of [6] describe a designation

set. Each designation basically corresponds to a separate type of events

observed in the problem area. The designations are provided in form of

the predicates:

 Push(e): In event e a visitor pushes the barrier to its intermediate

position

 Enter(e): In event e a visitor pushes the barrier fully home and so

gains entry to the zoo

 Coin(e): In event e a valid coin is inserted into the coin slot

 Lock(e): In event e the turnstile receives a locking signal

 Unlock(e): In event e the turnstile receives an unlocking signal

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

63

The representation of this designation set provided below (fig. 2) uses

Eiffel features names as labels for the events types (entities introduced

earlier are not repeated afterwards). The aforementioned natural

language descriptions provide heuristics on which feature should be

added to which class (the association is highlighted with bold). Not only

different types of events, but also the history of the corresponding

events, are designed using Eiffel features. For example, enters :

MML_SEQUENCE [INTEGER_64] is a sequence of moments in time

expressed in milliseconds when events of type enter took place. model

annotation says that enters feature will be used for expressing the model-

based part of the contract (model-based contracts were introduced in

section 2.2). MML_SEQUENCE is a class from the MML (Mathematical

Modeling Library) and denotes mathematical sequence. MML was

designed specially to express model-based contracts. Although it is

possible to instantiate some simple objects from these classes (like a

sequence containing one element), one cannot modify the instances.

note

model : e n t e r s deferred c l a s s ZOO

feature
e n t e r deferred ensure

e n t e r s . b u t_l a s t ˜ old e n t e r s
e n t e r s . l a s t > old e n t e r s . l a s t

end
e n t e r s : MML_SEQUENCE [INTEGER_64]

end
note

model : l o c k s, un l o c k s deferred c l a s s

TURNSTILE feature
l o c k deferred ensure

l o c k s . b u t_l a s t ˜ old l o c k s
l o c k s . l a s t > old l o c k s . l a s t

end
unl ock
deferred
ensure

un l o c k s . b u t l a s t ˜ old un l o c k s
un l o c k s . l a s t > old un l o c k s . l a s t

end

l o c k s : MML_SEQUENCE[INTEGER_64]

un l o c k s : MML_SEQUENCE[INTEGER_64]
end

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

64

note
model : c o i n s

deferred c l a s s COINSLOT
feature c o in deferred ensure

c o i n s . b u t l a s t ˜ old c o i n s
c o i n s . l a s t > old c o i n s . l a s t

end
c o i n s : MML_SEQUENCE[INTEGER_64]

end
note

model : pushes deferred c l a s s BARRIER

feature
push deferred ensure

pushes . b u t l a s t ˜ old pushes pushes . l a s t >
old pushes . l a s t

end
pushes : MML_SEQUENCE[INTEGER_64]

end
Fig. 2: Specifying the designation set formally

The deferred keyword is used to highlight that the events are only

specified formally, without specifying the corresponding operational

reactions of the software to the events. The ensure clause is used to specify

what conditions should be satisfied after reacting on an event. These

specifications are intuitively plausible: the events history should be

complemented with the new event occurrence, and the time of the new

event should be strictly bigger than the time of the previous event.

3.3 Shared Phenomena

The authors of [6] introduce the notion of shared phenomena that is, the

phenomena visible to both the world and the machine (the notions of the

world and the machine were introduced by Jackson in [4]). In the

present approach this notion is covered by using the “has a” relationships

between the ZOO and the TURNSTILE classes, accompanied with the

model-based contracts. Namely, since a ZOO has a turnstile as its feature,

it can see any phenomena hosted by the turnstile: locks, unlocks, coins,

pushes. And since a TURNSTILE does not hold any references to a ZOO, it

can not observe nor control the enter events modeled by ZOO .

3.4 Specifying the System

All the properties of the problem derived in [6] be they optative or

indicative descriptions can be conceptually divided into the three main

categories.

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

65

Properties which hold at any moment in time An example of such properties is

the OPT1 requirement saying that entries should never exceed payments

(the authors of [6] use OPT∗ for labeling properties expressed in an

optative mood). Within the present approach this requirement can be

expressed in the following way (fig. 3):

deferred c l a s s ZOO
feature

e n t e r s : MML_SEQUENCE [INTEGER_64]

t u r n s t i l e : TURNSTILE
invariant

e n t e r s . count <= t u r n s t i l e . c o i n s l o t . c o i n s . count

end

Fig. 3: Entries should never exceed payments

The ”something always holds” semantics fits perfectly into the semantics of

Eiffel invariant: ”something holds in all states of the object”.

Properties which hold depending on the type of the next event to occur The

indicative property IND 2 saying that it is impossible to push the barrier

if the turnstile is locked will serve as an example. Below (f i g . 4) is

the corresponding specification:

deferred c l a s s BARRIER
feature push require

not t u r n s t i l e . un l o c k s . i s_e mpty
not t u r n s t i l e . l o c k s . i s_e mpty implies

t u r n s t i l e . un l o c k s . l a s t > t u r n s t i l e . l o c k s . l a s t
deferred end
pushes : MML_SEQUENCE [INTEGER_64]

end

Fig. 4: It is impossible to use locked turnstile

The initial description is divided into the two different claims: first, the

turnstile should be unlocked at least once, and second, if the turnstile has

ever been locked, the last unlock should have occurred later than the last

lock.

Real Time Properties The authors of [6] derive several timing constraints on

the events. For example, the OPT 7 requirement says that the amount of

time between the moment when the number of the barrier pushes

becomes equal to the number of coins inserted and the moment when the

turnstile is locked should be less than 760 milliseconds. It is possible to

make this property finer grained. First (fig. 5), if after the next push event

the number of pushes becomes equal to the number of coins, then after

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

66

reacting on the push event the turnstile should be locked at some point

before the next push event occurs.

d e f e r r e d c l a s s BARRIER
feature

t u r n s t i l e : TURNSTILE push
deferred ensure

(old t u r n s t i l e . un l o c k s . l a s t > old t u r n s t i l e . l o c k s . l a s t
and
pushes . count = t u r n s t i l e . c o i n s l o t . c o i n s . count)

implies t u r n s t i l e . l o c k s . l a s t > pushes . l a s t
end
pushes : MML_SEQUENCE [INTEGER_64]

end

Fig. 5: The machine locks the turnstile timely

Second (fig. 5), if the last lock event occurred later than the last push

event, then the time distance between them is smaller than 760.

d e f e r r e d c l a s s TURNSTILE
feature

b a r r i e r : BARRIER

l o c k s : MML_SEQUENCE [INTEGER_64] un l o c k s : MML_SEQUENCE [
INTEGER_64]

invariant
l o c k s . l a s t > b a r r i e r . pushes . l a s t implies

(l o c k s . l a s t − b a r r i e r . pushes . l a s t) < 760
end

Fig. 5: The machine locks the turnstile timely

3.5 Specifying the “Unspecifiable”

One of the requirements mentioned in [6] was OPT 2 saying that the visitors

who pay are not prevented from entering the Zoo. The authors give

only informal statement of this requirement:

∀ v , m, n • ((Enter #(v , m) ∧ Coin#(v , n) ∧ (m < n)) ⇒! The machine will

not prevent another Enter event!

The antecedent of this implication should be read like ”number of entries is

less than the number of coins inserted”. In the present specification system

this requirement can be formalized easily (fig. 6).

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

67

deferred c l a s s ZOO
feature

e n t e r
require

e n t e r s . count < t u r n s t i l e . c o i n s l o t . c o i n s . count

deferred end
e n t e r s : MML_SEQUENCE [INTEGER_64]

end

Fig. 6: The turnstile let people who pay enter

It works because semantically the require clause specified above is the

strongest precondition of the enter feature. That is, if some class inherits

from ZOO and redefines the enter feature, it will be allowed to redefine

the precondition by using only the require else clause that weakens the

precondition by ”or”-ing it with the original one. And so, if the enters.count <

turnstile.coinslot.coins.count condition is satisfied, the precondition of the

enter feature will always be satisfied, thus allowing an enter event to occur.

Not only this specification formalizes OPT 2 it also ensures satisfaction of

OPT 1 (together with the ensure clause for the enter feature introduced

earlier): indeed, if the number of enters is always strictly smaller than the

number of coins inserted before any enter event occurrence, then after the

event occurrence the number of entries will not exceed the number of coins

inserted.

In the process of research the author of the present work identified that

the aforementioned reasoning about formalizing OPT 2 requirement is

farfetched and is not scalable. For example, if Zoo management decides to

install one more appliance for controlling Zoo entrance, and the

corresponding requirements will enrich the precondition of the enter

feature, the whole reasoning will be invalidated. The author found more

scalable and intuitively plausible way to formalize this requirement in

Eiffel. The corresponding formalism will be available in work [12].

4. Conclusion

The specification method discussed in this work is suitable not only

for formalizing statements which were also formalized in [6], but also for

formalizing statements which cannot be formalized with the classical

tools used in [6]. Not only the requirements specification items were

expressed, but also the object-oriented blueprint was built ready to equip

it with code actually doing something useful. Such implementation

exists and is available here: https://github.com/anaumche/Zoo-

Turnstile-Multirequirements.

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

68

4.1 Pros & Cons

It is necessary to evaluate the method against the characteristics of the

hypothesis introduced in section 1.3:

1. Simultaneity of specifying the requirements and building the

design: indeed, all the code fragments corresponding to different

specification items merged together will bring a complete design

solution available at https://github.com/anaumche/Zoo-

Turnstile-Multirequirements (the classes ending with “ abstract”).

2. Traceability between the specification and the implementation:

the classes ending with “ concrete” located at the resource given in

1 contain the implementation and are inherited from the

specification classes

3. Provability of the classes: this is the subject to further

investigation

4. Continuity of the solution: since Eiffel artifacts used in the

formalizations of the requirements items correspond to their

natural language counterparts directly, it is visible right away how

a change in one representation will affect the second one

4.2 Scalability

A formal representation of a requirements item specified with Eiffel is as

big as the scope of the item and its natural language description are, so

the overall complexity of the final document should not depend on the

size of the project. Anyway, this is something to test by applying the

method to a bigger project.

4.3 Future Work

The next steps include:

1. To formally prove that the specification is consistent. In particular

to ensure that the features specifications preserve what is stated

in the invariants; to ensure that the expressions stated in the

invariants are consistent between each other: for example it should

not be possible for P(x) and ¬P (x) to hold at the same time

2. To formally prove that the implementation actually satisfies the

features specifications

3. To extend BON notation [15] so that it would be capable of

expressing model-based contracts

4. To design machinery for translating model-based contract-

oriented requirements to their natural language counterpart so

that the result would be recognizable by a human being.

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

69

5. To apply the method to a bigger project

The AutoProof technology [14] may be utilized for automating the

aforementioned proofs. AutoProof is already capable of proving that a

feature implementation preserves its specification (the postcondition

holds after the feature invocation assuming the precondition), and it

should be empowered with the capabilities for working solely on the

specifications level so that completing the goal 1 will be possible.

As a result of implementing the aforementioned plans a powerful

framework for expressing all possible views on the software under

construction should emerge.

5 Acknowledgment

The author would like to thank his colleagues at the Innopolis University

Software Engineering Laboratory for their invaluable feedback and

guidance: Dr. Bertrand Meyer, Dr. Victor Rivera, Alexander Chichigin,

Dr. Manuel Mazzara.

References

[1]. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.

Cambridge University Press, 2010.

[2]. R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara.

Towards a formalism-based toolkit for automotive applications. 2012.

[3]. Charles Antony Richard Hoare. An axiomatic basis for computer

programming. Communications of the ACM, 12(10):576–580, 1969.

[4]. Michael Jackson. The world and the machine. In Software Engineering, 1995.

ICSE 1995. 17th International Conference on, pages 283–283. IEEE, 1995.

[5]. Michael Jackson. Problem frames: analysing and structuring software development

problems. Addison-Wesley, 2001.

[6]. Michael Jackson and Pamela Zave. Deriving specifications from

requirements: an example. In Proceedings of the 17th international conference on

Software engineering, pages 15–24. ACM, 1995.

[7]. Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon

Reese. Requirements specification for process-control systems. Software

Engineering, IEEE Transactions on, 20(9):684–707, 1994.

[8]. V ı́ctor Rivera and N. Catan˜o. Translating Event-B to JML-Specified Java

programs. In 29th ACM Symposium on Applied Computing, Software Verification and

Testing track (SAC-SVT), Gyeongju, Korea, March 24-28 2014.

[9]. Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall

New York, 1988.

[10]. Bertrand Meyer. Touch of Class: learning to program well with objects and

contracts. Springer, 2009.

[11]. Bertrand Meyer. Multirequirements. Modelling and Quality in

Requirements Engineering (Martin Glinz Festscrhift), 2013.

[12]. Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying

requirements and code: an example. The work is not published.

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

70

[13]. Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,

Eidgeno¨ssische Technische Hochschule ETH Zu r̈ich, Nr. 21939, 2014, 2014.

[14]. Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova.

Autoproof: Auto-active functional verification of object-oriented programs.

arXiv preprint arXiv:1501.03063, 2015.

[15]. Kim Wald´en and Jean Marc Nerson. Seamless object-oriented software architecture.

Prentice-Hall, 1995.

[16]. Bertrand Meyer. Eiffel: A language and environment for software

engineering. Journal of Systems and Software, 8(3):199–246, 1988.

Бесшовная разработка программного
обеспечения: применимость на примере

Александр Наумчев <a.naumchev@innopolis.ru>,

Университет Иннополис,

 г. Иннополис, Российская Федерация

Аннотация. В рамках традиционной программной инженерии требования и код

развиваются в двух параллельных мирах. Обычная точка зрения на программную

инженерию рассматривает требования и исходный код как разные артефакты, за

которые несут ответственность разные люди. Этот подход, однако, влечет накладные

расходы на коммуникацию и порождает проблему поддержания консистентности

различных артефактов в случае необходимости внесения изменений в один из них.

Изменение, внесенное в один из упомянутых артефактов, необходимо

синхронизировать с остальными артефактами. В определенный момент ситуация

неизбежно выходит из-под контроля: например, в случае обнаружения критического

дефекта во время эксплуатации разработчики без промедления приступают к

исправлению дефекта, поскольку в такой ситуации нет времени ждать, пока системные

аналитики и архитекторы обновят свои документы, позволив разработчикам внести

нужные изменения в код. Проблема частично решается сложными системами

управления версиями, которые дороги в обслуживании и требуют соответствующей

квалификации обслуживающего технического персонала. Возможно ли объединить

миры требований и кода? Такое объединение упростило бы изменение и повторное

использование программного обеспечения. Целесообразность применения нового

подхода нуждается в изучении. В представленном исследовании рассмотрен

классический пример из литературы в области проектирования требований. Для

спецификации предметной области, равно как и конечного программного решения,

использована одна и та же нотация – язык программирования. Данная работа содержит

описание подхода, а также оценку его преимуществ, возможных ограничений и

масштабируемости.

Keywords: software engineering; requirements specifications; multirequirements; Eiffel

DOI: 10.15514/ISPRAS-2015-27(3)-4

mailto:a.naumchev@innopolis.ru

Александр Наумчев. Бесшовная разработка программного обеспечения: применимость на примере. Труды ИСП

РАН, том 27, вып. 3, 2015 г., с. 57-72

71

Для цитирования: Наумчев Александр. Бесшовная разработка программного

обеспечения: применимость на примере. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр.

57-72 (на английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-4.

Список литературы

[1]. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.

Cambridge University Press, 2010.

[2]. R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara. Towards a

formalism-based toolkit for automotive applications. 2012.

[3]. Charles Antony Richard Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12(10):576–580, 1969.

[4]. Michael Jackson. The world and the machine. In Software Engineering, 1995. ICSE

1995. 17th International Conference on, pages 283–283. IEEE, 1995.

[5]. Michael Jackson. Problem frames: analysing and structuring software development

problems. Addison-Wesley, 2001.

[6]. Michael Jackson and Pamela Zave. Deriving specifications from requirements: an

example. In Proceedings of the 17th international conference on Software engineering,

pages 15–24. ACM, 1995.

[7]. Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese.

Requirements specification for process-control systems. Software Engineering, IEEE

Transactions on, 20(9):684–707, 1994.

[8]. V´ıctor Rivera and N. Catan˜o. Translating Event-B to JML-Specified Java programs. In

29th ACM Symposium on Applied Computing, Software Verification and Testing track

(SAC-SVT), Gyeongju, Korea, March 24-28 2014.

[9]. Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall New

York, 1988.

[10]. Bertrand Meyer. Touch of Class: learning to program well with objects and contracts.

Springer, 2009.

[11]. Bertrand Meyer. Multirequirements. Modelling and Quality in Requirements

Engineering (Martin Glinz Festscrhift), 2013.

[12]. Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying requirements and

code: an example. The work is not published.

[13]. Nadia Polikarpova. Specified and verified reusable components. PhD thesis, Diss.,

Eidgeno¨ssische Technische Hochschule ETH Zu¨rich, Nr. 21939, 2014, 2014.

[14]. Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikarpova. Autoproof:

Auto-active functional verification of object-oriented programs. arXiv preprint

arXiv:1501.03063, 2015.

[15]. Kim Wald´en and Jean Marc Nerson. Seamless object-oriented software architecture.

Prentice-Hall, 1995.

[16]. Bertrand Meyer. Eiffel: A language and environment for software engineering. Journal

of Systems and Software, 8(3):199–246, 1988.

Alexandr Naumchev. Seamless Development Applicability: an Experiment. Trudy ISP RAN /Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 57-72

72

