Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Unified Model for Testing Object-Oriented
Application Development Tools

Pavel P. Oleynik <xsl@list.ru=>,
Shakhty Institute (branch) of Platov South Russian State Polytechnic University
(NPI), Rostov-on-Don, Russia

Abstract. The paper presents a unified model for testing tools for object-oriented application
development. Based the available papers were identified shortcomings of existing work and
identified the following optimal criteria, which shall comply the resulting model:

. To deep inheritance hierarchies

. To presents of multiple inheritance hierarchies

. To presents of abstract classes in the hierarchy

. To presents of multiple (n-ary) associations

. To presents of associations with attributes

. To presents of a composition between classes

. To presents of recursive associations

. To presents of associations between classes belonging to the same inheritance hierarchy

. To presents of association classes

10. To presents between the association class and other classes

11 To presents enumerations in model

With a unified graphical language UML class diagram unified model testing. The paper we
verified compliance with the resulting implementation of the selected criteria was presented.
Currentlythe implementation of applications using object-oriented programming languages
and relational databases. To overcome the object-relational mismatch it is necessary to
implement object-related mapping patterns presents. The paper presents three methods used
to represent the class hierarchy highlighted the advantages and disadvantages of each method.
For test the feasibility a unified model chosen development environment SharpArchitect
RAD Studio which is designed object applications in C# and are implementing a relational
database. The paper presents the developed object model in the form a class diagram showing
the interfaces and inheritance relations diagram containing all the tables and columns the
resulting database.

In the conclusion recommendations on the areas for further development work and identified
the need of implement a unified model with other approaches proposed by the authors was
used.

O©CoOo~~NOUIThWNE

Keywords: UML, Object modeling, Design of Information Systems, Databases, Object-
oriented design, Object-Relational Mapping Patterns, Impedance Mismatch

DOI: 10.15514/ISPRAS-2015-27(3)-7

101

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

For citation: Oleynik Pavel P. Unified Model for Testing Object-Oriented Application
Development Tools. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 101-114.
DOI: 10.15514/ISPRAS-2015-27(3)-7.

1. Introduction

At the moment there are many tools provide object approach to application
development. Despite the existence of their own advantages and disadvantages the
main goal is provide the advantages of the developer of object-oriented paradigm.
The paper are describes in detail the unified model test tools development of object-
oriented applications for demonstration, graphical Unified Modeling Language
which used. The practical implementation of the model is demonstrated by the use
of classical methods (patterns) object-relational mapping (ORM) in the tool,
developed the author. The object model is put into a relational database
environment. This approach is most justified from the point of view the author,
because the RDBMS is the most popular type of database management systems
now.

2. Design of the unified testing model

When designing a unified testing model used the same approach as in the
description of the design patterns in [1]. This approach is involves the description of
reusable solutions widespread problems in software development without reference
to particular domain. The main task of this section — is a description of the model
and the structural elements (classes and associations), and not the correctness of the
model and the accuracy of its fitness for a particular domain area.

Standard graphical language modeling various aspects of object systems is the
language UML. This language is namely structural class diagrams will be discussed
in this paper. As a result under the unified model test tools development of object-
oriented applications we mean a class diagram, consisting of classes and attributes
and containing common practice relationship classes.

The idea of the article is not new and there are works of similar subjects. In [2] has
attempted to construct a unified model testing. However, there were no multiple (n-
ary) associations and association with attributes that are an integral part of any
complex information system.

In [3] presented test model to study the design of object-oriented databases. But the
model is relatively simple, which is justified by its purpose. This article used dignity
previously existing works and corrected drawbacks of them.

Before designing a unified model testing were nominated optimality criteria (OC) is
representing the requirement of a certain structural elements in the class diagram,
and which must comply with the finished implementation. Have been put forward
the following requirements for the unified model test tools development of object-
oriented applications:

102

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

1. Must have deep inheritance hierarchies. In realworld applications, very often
there are deep hierarchy, is the relational of inheritance and combining
transitive least three classes.

. To presents of multiple inheritance hierarchies. This will show a variety of
options and modes available in the development tool.

. To presents of abstract classes in the hierarchy. Abstract classes cannot have
instances in the system and described as a container for attributes and
methods used in the inherited (instantiated) classes.

. To presents of multiple (n-ary) associations. In applications that automate
realworld domains, often an association involving three or more classes.
Such a relationship is called multiple or n-ary associations.

. To presents of associations with attributes. Many domains contain attributes
that do not belong to certain entities (classes), and their values appear only
in the organization of associations between instances of classes. The
designing unified model should have associations with attributes.

. To presents of a composition between classes. Composition - an association
between the classes which are Part and Whole. The peculiarity is that the
class represents a Part can belong to only one instance of the class that
represents the Whole. In this class represents the Whole manages the life
cycle is a class represents a Part. When removing the Whole all Parts also
deleted. This peculiarity of behavior is very important for many application
domains.

. To presents of recursive associations. Recursive call the association, the
ends of which bind the same class. These relationships allow you to
implement a hierarchy of subordination.

. To presents of associations between classes belonging to the same
inheritance hierarchy. In terms of implementation is necessary to provide
the implementation of the association, the edges of which are associated
classes belonging to the same inheritance hierarchy, are represents the base
class and the child together.

. To presents of association classes. Association class - an association which
at the same time a class. Especially the use of that class association
represents a unique association, i.e. combination of instances of classes in
this association is unique.

10. To associationed between the association class and other classes. From a

theoretical point of view, the association class is a class, so it can
participate in other associations. From the point of view of the
implementation of the class association presents a class that contains the
attributes (fields or properties of the programming language) that refer to
other classes. In turn, for the organization of the association with the class
association necessary depending class to create an attribute whose type
supports class association.

103

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

11. To presents enumerations in model. From a theoretical point of view,
enumeration is a set of predefined constants, and the user can not extend
this set by adding new values.

In accordance with the selected criteria was implemented hierarchy shown in Fig. 1.

Post | |L'IEF:.‘|"'!|'|'|I?'|'|I. |Cc\'.*.'rage.'r! — Telephone Address
Naman = |N:|'n|'- |N:|'1||'- 1.4 Numbar Country
) o i - P ') City
|,,]- = Sireaq
A h e ["!-'I--d_l‘l e Bailding
{E‘u&-ll.:‘_!b - Worker Company [g.+ |Tebephonekind Ctfich
o 1t J
) ™~ I | DateCiBirth | ;"-""-' |
ExperencePos]] [T |1 1 :'\ll"::'h"""'
MinExparMonth Rt | Employee|o.* - | CompanyAddrass
11 [ED 7 .
; 0. e S
Salary T . o Employeafddress

ScientificPost i 'Manager —
— a1

IsRegatened

AcademicRank Value

Fig. 1. Unified model for testing object-oriented applications development tools

Consider the appointment of the main classes of diagrams are presented. As
mentioned earlier this class diagram is a fictional and is not intended to describe a
particular domain therefore contains some illogical (fictional) classes and
associations.

For representation of employees and organizations assigned to the base abstract
class Contragent. Inherited Company class is present organizations and the class
Worker is the base for the employee of organization. Inherited Employee class is an
employee and an attribute EID, representing the employee unique number. Class
Manager is the staff who are heads of other workers.

Post an abstract class is a position that can be occupied by staff. Inherited class
ExperiencePost is a position that requires a minimum amount of experience of the
applicant, expressed as number of months (attribute MinExperMonth). The second
class is implemented ScientificRank describes the position of the applicant, which
requires the presence of a scientific degree, whose name is value in the attribute
AcademicRank.

For presentation departments of organizations and entering into an n-ary association
a class of Department was introduced. Salary class is paid wages, accrued to
employees occupying positions represented by a complex association which called
Position.

Class Telephone allows saving the number of phone of company. Phone type (like
Home, Personal, Work) represented by enumeration TelephoneKind. For
presentation address used by the base abstract class Address. Two derived class
CompanyAddress and EmployeeAddress used to represent the address of the
organization and address of the employee, respectively.

104

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Check the conformity of the model presented previously selected criteria of
optimality. The need for a deep class hierarchy, represented by at least three
transitive inherited classes, described OC; and implement a class Contragent,
Worker, Employee, Manager. In addition to this, there are two hierarchies: 1) Post,
ExperiencePost (ScientificPost); 2) Address, CompanyAddress (EmployeeAddress).
l.e. the model contains multiple inheritance hierarchies, therefore, the condition
OCo,. The presence of abstract classes in the hierarchy due OC3 and holds classes
Post, Contragent and Address.

OC. requirements are also performed as there are n-ary association Position,
combining classes Post, Department, Worker, Company. Described association has
an attribute Rate, which implemented class association and binary association
between Employee and EmployeeAddress classes also contains an attribute
(IsRegistered) it can be argued that the requirement OCs fulfilled.

Each contractor represented derived from Contragent classes, a list of telephone
numbers represented instances of Telephone, and both classes related with
composition, OCs requirement is satisfied. Unified model allows you to store
information about a group of companies, organize the tree structure using a
recursive association connects Company class with a same. The presence of
recursive association dictated OCy.

In OC;g written requirement for associations between classes belonging to the same
inheritance hierarchy. Figure 1 between classes Employee and Manager provides
this association satisfying OCg. As previously noted, the models have a association
class Position, which corresponds OCs. Described association class is linked with
addition association with Salary class. This is a consequence of the implementation
OCio. The presence of the models listed due to the implementation of OC;1. Of the
present disclosure can be seen that the unified model is fully consistent with all
previously selected criteria of optimality. Therefore we can move on to the
implementation of the unified model.

3. The classical object-relational mapping patterns

To implement of this model development environment software systems based on
the organization of the metamodel object system presented in [4-5] was used. This
development environment is called SharpArchitect RAD Studio and as storage of
information uses a relational DBMS. Because information system is designed in
terms of object-oriented paradigm, and implemented in a relational database
environment, there is a so-called "object-relational impedance mismatch” to
overcome the consequences of which object-relational mapping patterns are used.
The most commonly used patterns for represent the class hierarchy.

In SharpArchitect RAD Studio implemented three classic patterns for implementing
object-oriented inheritance relationships of classes in a relational structure
(relational tables), presented in Fig. 2 [2, 4].

105

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

Consider the basic patterns is presented in more detail. Single Table Inheritance
pattern physically represents an inheritance hierarchy of classes in a single relational
database table whose columns correspond to the attributes of all classes within the
hierarchy and allows you to display the structure of inheritance and to minimize the
number of joins that must be performed to extract information. In this pattern each
instance of the class represented by one row of the table. When you create the object
values are entered only in the columns of the table that match the attributes of the
class, and all the rest are empty (have a null-value).

The pattern has advantages:

 In the structure of the database contains only one table are representing all
classes of whole hierarchy.

» To selection of instances of classes hierarchy do not need to make the joins
of tables.

* Move fields from a base class to a derived (as well from the derivative in
the base) does not require changes to the structure of the tables.

The pattern has disadvantages:

« In the study of the structure of the database tables can cause problems,
because not all the columns in the table are intended to describe each
domain class. This complicates the process of refining the system in the
future.

» If you have a deep inheritance hierarchy with a large number of attributes,
many columns can have empty values (null-values). This leads to
inefficient use of the available space in the database. However, modern
DBMS can compress strings containing a large number of null-values.

« Table may be too large and contain a huge number of columns. The main
way to optimize the query (to reduce the execution time) is created a
covering index. However, the index set and a large number of queries to a
single table can lead to frequent blockages that will have a negative
impact on the performance of software applications.

An alternative pattern is called Class Table Inheritance, representing a hierarchy of
classes for one table for each class (as an abstract and concrete). Class attributes are
mapped directly on the columns of the corresponding table. With this method, the
key is the task of joins the respective rows of several database tables that represent a
single object of domain.

The pattern has the following advantages:
« Each table contains a field, the corresponding attribute of a certain class.

The therefore tables are easy to understand and take up little space on your
hard drive.

» The relationship between the object model and relational database schema
is simple and clear.

106

Oneitnuk IaBen IerpoBuy. YHuduUIMpoBaHHas MOEIb TECTHPOBAHHSI HHCTPYMEHTOB Pa3paboTKH 0OBEKTHO -

opueHTHpoBaHHBIX npunoxennit. Tpyasr UCIT PAH, Tom 27, Beim. 3, 2015 1., €. 101-114

BaseClass
{abstract class)
Adtribatert (Aocmemmeees : TableClass
Ji'; f e eaeaaan . (table)

[' vt .- BaseField
ChildClass1 + |ChildClass2| - - %] ChidiFie2
[concrete clasds) : [eoncrls class) : = = 3 SuBChild21Fiskdd
Attribata? faf------ Attribute -t .

SubChildClass21| .
(concrete class) :
Attributed -
Single Table Inheritance pattern
BaseClass TableBase
(absiract class) (tabda)
Atribute 1 f==msmmsnaanan] Fiald1
1‘ Frresmrssesecaseen TablaChild
. ' [tabia)
1 . L :
ChildClass1 + | ChildClass2 e
tooncreln class) " [comorpbe class |
: TableChild2
Atribute? - - - Attributed faf- - - - itable)
-? .] Freid3
SubChildClass21 TableSubChild2 1
{concrete class) {table)
Atributed - - - | Fialdd
Class Table Inheritance
BazeClass TablaChild1
{abstract class) {tabla)
Attribute 1 L e R R w-p Flald
¢ b 4l FildZ
; ? | : TableChild2
ChildCl 1 : ChildClass2 : (s
ildClass : ildClass .
{concrotn class) o | zoncrese class) * 3 Figld1
H # e | Fialdl
Altribute? - ---- Adiribuded e - - -r
f'['l ++ [TableSubChild21
SubChildClass21] :)
1] I a5 W E
{concrete class) o+ Fisld]
t - e Figldd
Atributesd ol - - - | Fieldd

Fig. 2. Classical object-relational mapping patterns which used to represent the class

Concrete Table Inheritance

inheritance in the form of a relational structure (relational tables)

107

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

However, there are disadvantages:

When you are create an instance of a particular class you want to upload
data from several tables, which requires either their natural joins or a
plurality of database calls followed by join results in memory.

Move the fields in the derived class or base class requires changes in the
structure of several relational tables.

Base class table can become weaknesses in performance, since access to
such tables will be carried out too often, leading to a variety of locks.

High degree of normalization can be an obstacle to the implementation of
unplanned advance queries.

The Concrete Table Inheritance pattern present is an inheritance hierarchy of classes
using one table for each concrete (non-abstract) class of the hierarchy. From a
practical perspective, this pattern assumes that each instance of the class (object),
which is in memory, will be shown on a separate row in the table. In addition, each
table in our case contains columns corresponding to attributes as a particular class,
so all of his ancestors.

The advantages are that:

Each table not contains extra fields, so that it is convenient to use in other
applications that do not use object-relational mapping tools.

When creating objects of a certain class in the application memory and
retrieve data from a relational database sample is made of a single table,
i.e. is not required to perform relational joins.

Access to the table is carried out only in the case of access to a particular
class, thus reducing the number of locks imposed on the table and spread
the load on the system.

There are disadvantages:

108

Primary keys can be inconvenient by handling.

There is no ability to model relationships (association) between abstract
classes.

If the class attributes are moved between base classes and derived classes
needed to change the structure of several tables. These changes are not as
often as in the case of Class Table Inheritance pattern, but they cannot be
ignored (as opposed Single Table Inheritance pattern in which these
changes are absent).

If in base class to change the definition of at least one attribute (for
example, change the data type), it will require to change the structure of
each table representing a derived class because a superclass fields are
duplicated in all tables of its derived classes.

In implementing the method of searching for data in the abstract class is
required to view all the tables represents an instance of the derived
classes. This requires a large number of database calls.

Oueiinuk IMasen IletpoBiy. YHU(DHIMPOBaHHAS MOJEIb TECTHPOBAHUS HHCTPYMEHTOB Pa3paboTKU 00BEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Selection of an required ORM-pattern depends on the initial logical model, i.e. from
the class hierarchy of the domain. At the same time can be used two or more ORM-
patterns, which is associated with the need to optimize the structure of a relational
database and reduce the number of tables used, which will increase the speed of data
retrieval queries.

After describing SharpArchitect RAD Studio object-relational mapping patterns
which are available to the developer we can start implementing the unified model
for testing tools.

4. Implementation of the unified testing model

In order to simplify the implementation of the three existing class hierarchies in Fig.
1 will separate in available ORM-patterns. The result is shown in Fig. 3.

Paost Departmant Confragen' fe = Telephone Addrass
Mame 12 Mame Mame 1 Pumibar Country
! o L — = 1 City
i Strapl
Ny ey Building
\-.r"-"F"*-‘_"_.'- Wlorker Company (g, - |Telephonakind _I'_.‘_.‘_!‘,:g._l.- B

-) - K
kil DateDiBinn Home
.] | |-| T Persoral

ExperiencePost] 3 Wiork —_—
B | . 1 . .
H .HI'IE 2 pent M | Hate Empiloyes|o, - - 1.I‘:.r|:lmﬂal'l:r’-‘!'ﬂﬂl'e55l

1 .J . EID h | L)
Sa-'ar','] - T o EI'ILI|IJ'|"1.=".!-"'II.'|I.'|".;$::]
SoenlilicPos! 1 Manager
| = =1 Cates — 1 li
Walue lsRegistered |
H Singhe Tablo Inhenlanoe Class Tabla Inharilancs Concrets Tabke inhertance

Fig. 3. The using of the classical ORM-patterns for the implementation of the unified model
for testing object-oriented applications development tools

The Single Table Inheritance for the class hierarchy Post, ExperiencePost
(ScientificPost) was used. As a result, it is assumed that in the RDB will create one
single table (relational table), which will be retained instances of all listed non-
abstract classes. For the class hierarchy with classes Contragent, Worker
(Company), Employee, Manager uses the Class Table Inheritance pattern. I.e. for all
classes regardless of whether he or abstract concrete will create a separate table in
RDB. Address class is abstract and has no association with other classes in model,
so it will not create a separate table in the RDB. And for child classes will be
created two tables (one for each heir). l.e. in hierarchy Address, CompanyAddress
(EmployeeAddress) was used Concrete Table Inheritance. For other classes outside
the hierarchy described, will be created on a separate relation table.

One of the main features of SharpArchitect RAD Studio support multiple
inheritance is implemented by means of interfaces C# language construction, as
described in detail in [4]. Used C# language does not support this syntax as an
association. To represent the binary associations, regardless of the multiplicity was

109

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

used properties (property construction), containing a single value or collection of
values.

Multiple n-ary association are represents a separate class, the attributes of these
associations (as well as the attributes of binary associations) are converted into
property of classes. To simplify information searching and extraction of all the
associations are bidirectional both ends of the relevant classes there are properties
whose type corresponds to the opposite end of the class association. All of the above
arguments are presented graphically in Fig. 4.

In implementing the interfaces used language C#, so it is impossible italics abstract
classes. Bidirectional associations are shown corresponding arrows connecting
classes. In implementing the association used the following approach. From the
"one" was declared property, which is a type of list (C# type IList<>), containing
the elements, which is a type of class, located on the side "to-many”. From the "to-
many" is declared in the class property whose type is a class, located on the side
"one". Association of the "many-to-many" (without attributes) can be represented by
two lists is declared in class antagonisms. In a SharpArchitect RAD Studio
development environment has a number of base classes that implement the most
common functionality. For example, the class IBaseRunTimeDomainClass is the
root of all domain classes. To implement the tree structure will enough inherited
from IBaseRunTimeTreeNodeDomainClass. At the time code generation will
automatically generate additional attributes Nodes and Owner, allow you to save a
reference to the parent and subnodes, respectively. It is implemented in such a way
recursive association. For submission to the transfers and sets used syntax
construction "enum®.

Applying the classical ORM-patterns was obtained relational database schema of
the unified model now. Fig. 5 is depicts the result.

.
]
¢
wewww7 Ff

Fig. 4. Then unified model for testing object-oriented application development tools,
implemented in SharpArchitect RAD Studio in C#

110

Oneitnnk ITagen IerpoBny. YHndHUIMpOBaHHAS MOJEIh TECTHPOBAHHS HHCTPYMEHTOB Pa3paboTKU 0OBEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

Popat 'Iw Contragee F o |
T g
(Imitin . [.
i Weorkar . i-'l-‘wrw
I i | Pl A e Rt
Erewbeee
) " . Urpdrprridiree.
i ol

Fig. 5. Then unified model for testing object-oriented application development tools,
implemented in SharpArchitect RAD Studio in C#

Figure requires is explanation. For all posts submitted by three classes of Post,
ExperiencePost and ScientificPost, created one single table Post, which has all the
attributes of classes. Additionally, there is a column in the table OID, representing
an object identifier (primary key in a relational model). ObjectType column
contains the identifier of the class whose objects are stored in the form of table
rows. This value by the application to create a class of object-oriented programming
language and to load the attribute values is used.

In implementing Class Table Inheritance pattern have been created for the table
Contragent for abstract class and table Worker, Company, Employee, Manager for
the concrete classes. Instances of classes are physically stored in multiple database
tables. A copy of the Manager class is stored in all tables.

In implementing the Concrete Table Inheritance pattern is applicable for classes
Address, CompanyAddress and EmployeeAddress, was created two tables:
CompanyAddress and EmployeeAddress, because CompanyAddress class is
abstract. All abstract class attributes stored in tables physically specific classes.

For an n-ary association Position create a separate table as well as for the binary
association linking the Employee class and EmployeeAddress, for that created the
table EmployeeEmployeeAddress, containing foreign keys.

Note that for the enumeration Telephone-Kind separate table is not created. An
approach representations enumeration values as a bit mask and store it in the form
of an integer value, where appropriate attributes are used. So the table has a column
Telephone TelephoneKind, SQL-type is Integer.

After analyzing of the above it can be argued that shown in Fig. 5 implementation,
created in a development environment SharpArchitect RAD Studio, fully consistent
with the unified model for testing object-oriented application development tools,
presented in Fig. 1.

111

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

5. Conclusion
Further development of the unified model is to test the feasibility of a variety of
application development environments. In this alternative implementation is

planned and using the approach presented by other authors dealing with similar
scientific problems.

References

[1]. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, USA, 1994, 395 pp.

[2]. Oleynik P.P. A unified model for testing object-relational mapping tools // Object
Systems — 2011: Proceedings of the Third International Theoretical and Practical
Conference. Rostov-on-Don, Russia, 10-12 May, 2011. Edited by Pavel P. Oleynik. -
65-69 pp. (In Russian),
http://objectsystems.ru/files/Object_Systems_2011 Proceedings.pdf

[3]. Oleynik P.P. Test model for training in design of object-oriented databases // Object
Systems — 2014: Proceedings of the Eighth International Theoretical and Practical
Conference (Rostov-on-Don, 10-12 May, 2014) / Edited by Pavel P. Oleynik. — Russia,
Rostov-on-Don: Sl (b) SRSPU (NPI), 2014. — pp 86-89. (In Russian),
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf

[4]. Oleynik P.P. The Elements of Development Environment for Information Systems
Based on Metamodel of Object System // Business Informatics. 2013. Ne4(26). — pp. 69-
76. (In Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/1B1%204(26)%202013.pdf

[5]. Oleynik P.P., Computer program "The Unified Environment of Rapid Development of
Corporate Information Systems SharpArchitect RAD Studio®, the certificate on the state
registration Ne 2013618212/ 04 september 2013 (In Russian).

YHudmumpoBaHHaa mogenb TeCTUPOBaHUA
MHCTPYMEHTOB pa3paboTKu 00 bEeKTHO-
OPUEHTUPOBAHHbIX NPUITOXKEHUN

Oneiinux Ilasen [emposuu <xsl@list.ru>,
Hlaxmunckuii uncmumym (guauan) FOaxcno-Poccutickozo eocyoapcmeennozo
noaumexuuyecko2o ynueepcumema um. M 1. [lnamosa, Poccusa, Pocmog-na-/ony

AHHoOTanusi. B jmaHHON cTaThe mpencTaBieHa YHU(UIMPOBaHHAS MOJETb TECTUPOBAHMS
HHCTPYMEHTOB Pa3pabOTKH OOBEKTHO-OPUEHTHPOBAHHBIX TNpuiokeHnil. Ha ocHose
HMMEIOIIUXCS JINTEPATyPHBIX HCTOYHUKOB OBUTH BBIJENICHBI HEJJOCTATKH UMEIOIIUXCS padoT
OIIPE/ENICHBI CIEAYIONINe KPUTEPHH ONTHUMAIBHOCTH, KOTOPBHIM JOJDKHA COOTBETCTBOBATH
TIOTy4eHHAsT MOJIETIb:

1. Heo6xoaumMo Hanmuuue riy0OKuX uepapXxuil Hacsie10BaHus

112

http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202013.pdf

Oueiinuk IMasen IletpoBiy. YHU(DHIMPOBaHHAS MOJEIb TECTHPOBAHUS HHCTPYMEHTOB Pa3paboTKU 00BEKTHO-
opueHTHpoBaHHBIX npunoxenuid. Tpyast UCII PAH, Tom 27, Beim. 3, 2015 1., . 101-114

. I[IpucyTcTBHE HECKONBKUX HepapXUil HACIICIOBAHUS

. Hanmmane abCTpakTHEIX KIIaCCOB B MEPapXUU

. I[IpucyTcTBHE MHOXECTBEHHBIX N-apHBIX aCCOLMAINI

Hammame acconmanuii ¢ arpubyramu

IIpucyTcTBHE KOMIO3UIMK MEXIY KIaccaMu

Hanuuue pexypcuBHBIX accouanui

Hanuuune acconuanuii Mexxay KilaccaMu, BXOIAIIMME B OJHY HEPAPXHIO HacIeJOBAHHS

. [IpucyrcTBUE KIacca-accouanum

10. Hanmmuue acconumanuii Mexy KjlacCOM-accollanuet 1 IpyruM Kiaccom

11. IlpucyrcTBUE B MOJICIIH NEPEUNCIICHUI

C mnomompio rpaduueckoro yHuduimpoBanHoro s3sika UML Opnra mpexpcraBieHa
JuarpaMMa KJIacCoB YHH(UIMPOBAaHHOW MOJENIHM TecTHpoBaHUS. B pabore mnpoepeHO
COOTBETCTBHUE IOJIyIEHHON pean3aliil BbIICICHHBIM KPHTEPHSIM.

B Hacrosmee BpeMs AN peaNM3aldM [OPWIOKEHHH UCIONB3YIOT OOBEKTHO-
OpUEHTHPOBAHHBIE S3BIKA IPOTPAMMHUPOBAHUS M PpEIUUOHHBIC 0a3pl NaHHBIX. Jlis
MPEOIOICHUS 0OBEKTHO-PEIISIIHOHHOTO HECOOTBETCTBUS HEOOXOAUMO PEan30BaTh METOMBI
(marTepHpl) OTOOpakeHHWs. B cTarbe oOmmMCaHbl TpU METOJA, HCHOIB3YEMBIX JUIA
HpEJICTAaBICHHUS HePapXHUHU KJIACCOB, BBIIEIEHbBI JOCTONHCTBA M HEJOCTATKH KaXKIOT0 METO/Ia.
Jnst mpoBepKH peanu3yeMOCTH YHHU(HIMPOBAHHON MoJenH BEIOpaHa cpela pa3paboTKu
SharpArchitect RAD Studio, B K0TOpo#i CIIPOEKTUPOBAHO OOBEKTHOE TPHUIIOKEHUE HA A3bIKE
C# u peanu3oBaHa CTpyKTypa pensinuonHoit BJ[. B craThe mpesicrarieHa pa3paboTaHHas
00BEeKTHAs MOJENh B BHIE OMAarpaMMBI KJIACCOB, Ha KOTOpPOW IIOKa3aHO HAaclelOBaHHE
nHTEpdENcoB U AHarpaMMa OTHOIICHHH, COAeprKamas Bce TaOIHUIBI M CTOJIOIBI OITYIeHHOM
BJ.

B 3axmovennn JaHbl peKOMEHIANNH 110 HAINIPaBIEHUSAM JalbHEHIIEro pa3BUTHA PaOOTHI, 1
olpesieNieHa He0OXOAUMOCTh Peann30BaTh YHH(HIMPOBAHHYIO MOJENb C IIOMOIIBIO JIPYTHX
MOAXO/IOB, NPEAJI0KESHHBIX aBTOPAMH.

O P R R

KaroueBbie cJIoBAa: UML, O0BeKTHOE MO/JICITUPOBAHHE, [IpoekTupoBanue
HUHGPOPMAIIMOHHBIX CHCTeMBI, ba3bl 1aHHBIX, OGBEKTHO-OPUEHTUPOBAHHOE MTPOSKTHPOBAHHE,
Mertoapl (maTTepHBl, MAONOHEI) OOBEKTHO-PEIANMOHHOTO oToOpaxkeHus, OOBEKTHO-
PENSLMOHHOE HECOOTBETCTBHE

DOI: 10.15514/ISPRAS-2015-27(3)-7

Jns uurupoanusi: Oneitank [Masen [erpoBry. YHNQUIPOBaHHAsS MOIENb TECTHPOBAHHS
MHCTPYMEHTOB Pa3pabOTKu 00BEKTHO-OPUEHTHPOBaHHBIX mpuioxenuil. Tpynsr MCIT PAH,
toMm 27, Beim. 3, 2015 1., ctp. 101-114 (na anrmmiickom si3sike). DOI: 10.15514/ISPRAS-
2015-27(3)-7.

Cnucok nutepatypbl

[1]. Tamma D. u ap. [Ipuémbl 0GBEKTHO-OPHEHTHPOBAHHOTO MPOCKTHPOBaHHUs. [1aTTEPHBI
npoektupoBanus, CII6: ITurep, 2001. — 368 c.. wmn (Cepus «bubmmorexa
HPOTPaAMMHUCTa»)

[2]. Oneitnux TLII. VHuduuupoBaHHas MOJETAb I TECTHPOBAHUS HHCTPYMCHTOB
00BEKTHO-PEIIIMOHHOTO 0TOOpaxeHus / O0bekTHBIE cucTeMsbl - 2011: matepuasr 111
MexayHapoaHoi Hay4HO-TIpakTHueckoi kKoHpepenuuu (Pocto-na-Zlony, 10-12 mas
2011 r.) / Hox obm. pen. ILIL. Omeiinuka. - Pocro-na-lony, 2011. - C. 65-69.,
http://objectsystems.ru/files/Object_Systems_2011 Proceedings.pdf

113

http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf

Pavel P. Oleynik. Unified Model for Testing Object-Oriented Application Development Tools. Trudy ISP RAN /Proc.
ISP RAS, vol. 27, issue 3, 2015, pp. 101-114

(31

[4].

[5].

114

Oneitauk TLIT. TectoBas Monens Uit OOyYeHHs NMPOCKTHPOBAHHIO OOBEKTHO-
OpPUCHTUPOBAHHBIX 0a3 HaHHEBIX // O0bekTHBIC crucTeMbl — 2014: Matepuanst VI
MexryHapoaHOH HayqHO-IIpaKTHIecKoi koHpeperntmu (Pocros-na-/lony, 10-12 mas
2014 r.) / Hox o6m. pex. ILII. Oneiinuxka. — Pocros-na-dony: 1111 (¢) FOPTIIY (HIIN)
uMm. M.U. TInarosa, 2014. - C. 86-89.,
http://objectsystems.ru/files/2014/Object_Systems_2014 Proceedings.pdf

Onmneitauk I1.II. DnemeHTH cpenpl pa3pabOTKU MPOrpaMMHBIX KOMIUIEKCOB Ha OCHOBE
OpraHu3aldy MeTamonenn OoObeKkTHOW cuctembl // busHec-undpopmaruka. 2013.
Ne4(26). — C. 69-76.

Oneitnuk [1I1., mporpamma aus OBM "VYHudummposanHas cpezna ObICTpoi pa3padoTku
KOPIIOpaTUBHBIX ~ MHGpOpMarmoHHBIX cucreM SharpArchitect RAD Studio”,
CBHIETENBCTBO O TocyAapcTBeHHOH peructpanuu Ne 2013618212 ot 04 cents6ps 2013
T.

http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.pdf

