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Abstract. Certified programming allows to prove that the program meets its specification. The
check of correctness of a program is performed at compile time, which guarantees that the
program always runs as specified. Hence, there is no need to test certified programs to ensure
they work correctly. There are numerous toolchains designed for certified programming, but
F* is the only language that support both general-purpose programming and semi-automated
proving. The latter means that F* infers proofs when it is possible and a user can specify more
complex proofs if necessary. We work on the application of this technique to a grammarware
research and development project YaccConstructor. We present a work in progress verified
implementation of transformation of Context-free grammar to Chomsky normal form, that is
making progress toward the certification of the entire project. Among other features, F* system
allows to extract code in F# or OCaml languages from a program written in F*.
YaccConstructor project is mostly written in F#, so this feature of F* is of particular importance
because it allows to maintain compatibility between certified modules and those existing in the
project which are not certified yet. We also discuss advantages and disadvantages of such
approach and formulate topics for further research.
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1. Introduction

Certified programming is designed for proving that a program meets its specification.
For this technique, proof assistants or interactive theorem prover are used [1], what
allows to check correctness of the program at compile time and guarantees that the
program always works according to its specification. Classical fields of application
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of certified programming are the formalization of mathematics, security of
cryptographic protocols and the certification of properties of programming languages.
There are two approaches to certified programming [2]. In the classical approach the
program, its specification, and the proof that the program meets its specification are
written separately, as different modules. Such technique costs too much to be applied
in software development. More effective approach is to combine program, its
specification, and the proof in one module by means of dependent types [3], [4]. The
most well-known toolchains for program verification are Coq [5], Agda [6], F* [7]
and Idris [8]. Among them, F* is the only language which supports semi-automated
proving and general-purpose programming [9].
As a proof assistant, F* allows to formulate and prove properties of programs by using
lemmas and enriching types. F* not only infers types of functions, but also the
properties of its computations such as purity, statefulness, divergence. For example,
consider the following function:

val £ : (int -> Tot int) -> int -> Tot int

let £ g x =g x
The keyword va1l indicates that we declare a function £ and its type signature. The
function £ takes a function g and an integer value, as arguments. The effect of
computation Tot t is used for total expression, which always evaluates to a t-typed
result without entering an infinitive loop, throwing exception or other side effects.
Hence, one can prove for some programs not only their properties and restrictions on
the types, but also guarantee their termination and that a result has assigned type.
We apply certified programming using F* to a grammarware research and
development project YaccConstructor (YC) [10], [11]. YC is a tool for parser
construction and grammar processing. Also it is a framework for research and
development of lexer and parser generators and other grammarware for .NET
platform. The verification of its programs covers the topic of parser correctness: how
to obtain formal evidence that a parser is correct with respect to its specification [12].
In this article, we consider only one algorithm implemented in YC, namely the
transformation of context free grammar to Chomsky normal form, that is a small step
towards the certification of entire project. The algorithm of grammar normalization
consists of four transformations. We prove totality of each of them and establish an
order of their application to the input grammar. In addition, we describe the
peculiarities of evaluation F* as a proof assistant and formulate topics for further
research.

2. Overview of F*

We use a functional programming language F* [7] for program verification. It is the
only language that support semi-automated proving and general-purpose
programming [9]. The main goal of this tool is to span the capabilities of interactive
proof assistants like Coq [5] and Agda [6], general-purpose programming languages
like OCaml and Haskell, and SMT-backed semi-automated program verification tools
like Dafny [13] and WhyML [14].
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Type system of F* includes polymorphism, dependent types, monadic effects,
refinement types, and a weakest precondition calculus [15], [16]. These features allow
expressing precise and compact specification for programs [7].

Dependent function type has the following form x;:t; —.. = x,: t,[x.. %_1] =
E t [x;..x,]. Each of a function's formal parameters are named x; and each of these
names in the scope to the right of the first arrow that follows it. The notation
t[x;..x,,] indicates that the variables x;.. x,, may appear free in t.

Refinement type has a form x:t{phi(x)}. It is a sub-type of t restricted to those
expressions of type t that satisfy a predicate phi(e).

In addition to inferring a type, F* also infers side effects of an expression such as
exceptions and state. The following are the most significant monadic effects.

e Tot t —the effect of a computation that guarantees evaluationto a t -
typed result, without entering an infinite loop, throwing an exception,
reading or writing the program's state.

o ML t— the effect of a computation that may have arbitrary effects, but if
some result is computed, then it is always of type t.

e Dv t— the effect of a computation that may diverge.

e ST t— the effect of a computation that may diverge, read, write or
allocate on a heap.

e Exn t —the effect of a computation that may diverge or raise an exception.

The effects {Tot, Dv, ST, Exn, ML} are arranged in a lattice, with Tot at the
bottom, ML at the top, and with sT unrelated to Exn.
There are two main approaches to prove properties: either by enriching the type of a
function (intrinsic style) or by writing a separate lemma about it (extrinsic style). You
can see an example of the first approach below; keyword va1 indicates declaration of
a value and its type signature.

val append: 1ll:list 'a -> 12:1ist 'a

-> Tot (l:1ist 'a{length l=length ll+length 12})

let rec append 11 12 =

match 11 with

[ [] -> 12

| hd :: t1l -> hd :: append tl 12
The following example demonstrates extrinsic style, in which the formula after
keyword requires is the pre-condition of the lemma, while the one after keyword
ensures IS its post-condition.

val append len: 1ll:list 'a -> 1l2:1list 'a

-> Lemma (requires True)
(ensures (length (append 11 12)=
length 11 + length 12)))
let rec append len 11 12 =
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match 11 with

[ 1 -> 0

| hd::tl -> append len tl 12
There is no general rule which style of proving to use, but in some cases it is
impossible to prove a property of a function directly in its types and one has to use a
lemma.
When defining lemmas or expressions that are total, F* automatically proves their
termination. The termination check is based on a well-founded relation. For natural
numbers, F* uses classical decreasing metric, for inductive types — the sub-term
ordering, for recursive function, it requires the tuple of parameters to be in decreasing
lexicographic ordering. The last case can be overridden with using clause decreases
%][x4..x,], which explicitly chooses a lexicographic ordering on arguments.
To conclude, one can use F* to write effectful programs, specify them using
dependent and refinement types, verify them using an SMT solver or providing
interactive proofs. Programs written in F* can be translated to OCaml or F# for
further execution.

3. Verification of transformation of CFG to CNF

In this section we briefly describe some necessary aspects of the theory of formal
languages, sketch a totality proof for one of grammar transformations to Chomsky
normal form in F*, and formulate some advantages and disadvantages of this
approach.

3.1 Context-free grammar and Chomsky normal form

In this section we give basic definitions and formulate a theorem that helps us to
verify the implemented algorithm of a transformation of context-free grammar to
Chomsky normal form.

In formal language theory, a context-free grammar (CFG) is a formal grammar in
which every production rule is of the form A — a, where A is single nonterminal
symbol and « is a string of terminals and/or nonterminals (« can be empty).
Context-free grammar is said to be in Chomsky normal form (CNF) if all of its
production rules are of the form:

e A - BC

e A->a

e S > g
where A, B and C are nonterminal symbols, a is a terminal symbol, S is the start
nonterminal, and & denotes the empty string. Also, neither B nor C may be the start
symbol, and the third production rule can only appear if € is in L(G), namely, the
language produced by the context-free grammar G.

Context-free grammars given in Chomsky normal form are very convenient to use. It
is often assumed that either CFGs are given in CNF from the beginning or there is an
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intermediate step of normalization. Having a certified implementation of
normalization for CFGs enables us to stop thinking in terms of CFG and consider
grammar in CNF without losing guarantees of correctness.

CFG normalization theorem: There is an algorithm which converts any CFG into
an equivalent one in Chomsky normal form.

The full normalization transformation for a CFG is a composition of the following
constituent transformations.

e Replaceallrules A - X,X,..X,, where k = 3 withrulesA - X;A,,
Ay, - X,A,, .., A_; — X,_1 Xy, wWhere A; are "fresh” nonterminals.

e Eliminate all e-rules.
e Eliminate all chain rules.

e For each terminal a, add anew rule A — a, where 4 is a "fresh"
nonterminal and replacing a in the right-hand sides of all rules with length
at least two with A.

3.2 Verification with F*

Our purpose is to verify a core YaccConstructor (YC) using F*. YC is an open source
modular tool for research in lexical and syntax analysis and its main development
language is F# [17]. In this paper we consider only a verification of normalization
grammar algorithm [18] which is defined in a following way:
let toCNF (ruleList: Rule.t< , >list) =
rulelist

|> splitLongRules

|> deleteEpsRules

|> deleteChainRules

|> renameTerm

The function toCNF is a composition of the four transformations mentioned. Notice
that the order of rules execution is important. The first rule must be executed before
the second, otherwise normalization time may increase to O(2™). The third rule
follows the second, because elimination of e-rules may produce new chain rules.
Also, the fourth rule must be executed after the second and the third as they can
generate useless symbols.

F*, as a proof assistant, allows to formulate and prove properties of function of
interest using lemmas or enriching types. For example, in F# function (f (x:int)=
2*x) is inferred to have type (int -> int), while in F* we infer (int -> Tot
int). Thisindicatesthat (£ (x:int) = 2*x) isa pure total function which always
evaluatesto int. Alemma is a ghost total function that always returns the single unit
value (). When we specify a total function, we have to prove totality of every nested
function, because F* supports only high-level annotations. In others words, we cannot
add annotation for a nested function. Therefore, to prove totality of a function
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containing nested functions, we need to lift all nested functions up and explicitly
prove totality of these functions.
We describe each function of interest in an individual module to avoid namespace
collision. We use module architecture similar to YC architecture. Module 11 contains
type constructors for describing productions of a grammar. Module Namer contains
a function to generate new names. Finally, we created individual modules for each
transformation and a separate, main, module which contains the definition
of tocnF transformation.
We implemented all the transformations in F* [19], but in this paper we consider only
one of them, namely splitLongRules, wWhich eliminates long rules. Firstly, we
describe all the helpers we need, prove their totality and other necessary properties,
and then explain why this transformation is correct.
In the first transformation, it is necessary to create new nonterminals, so we need a
function to supply them. The function Namer.newSource defined below is used.
val newSource: n:int -> oldSource:Source -> Tot Source
let newSource n old =
({old with text = old.text”(string of int n)})
Integer n is equal to the size of the list of rules which we have at the moment of
function Namer.newSource call. Obviously, function Namer.newSource IS
injective. In other words, unique rule namesremain unique after application
splitLongRules.

Some necessary helpers are grouped in Transformaux module: for example,
functions createRule and createbDefaul tElem, Which take some arguments and
return Rule and Elem respectively. E1lem is the right part of the rule if the latter is a
sequence. Also, we define follow one simple function which returns the length of the
right part of the rule.
val lengthBodyRule: Rule 'a 'b -> Tot int
let lengthBodyRule rule =
List.length (match rule.body with
|PSeqg(e, a, 1) -> e
[ =>11)
The most interesting function is cutRule. It takes a rule and a list-accumulator as an
input. If the length of the right-hand side of the rule is less or equal to 2, cutRule
only renames a nonterminal to avoid name collision. Otherwise, it is necessary to
create new nonterminal B, _,, cut off last two elements X,_, X,., pack them into a new
rule B,_, = X,_1 Xy, and then add the nonterminal to the end of the long rule. Then
the new rule is added to the accumulator and the function cutrule is recursively
called on the new rule and accumulator. This way, we reduce our rule by one.
Function signature is the following.
val cutRule: rule: (Rule 'a 'b)
-> resRulelist: (list (Rule 'a 'b))
-> Tot (list (Rule 'a 'b))
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(decreases %[lengthBodyRule rule])

There are some peculiarities in our implementation, which are worth mentioning. One
of them is the representation of the right-hand side of the rules by lists. In the
algorithm, we need to cut off two last elements of a rule, so we carry out the following
steps.

let revEls = List.rev elements

let cutOffEls = [List.Tot.hd revEls;

List.Tot.hd (List.Tot.tl revEls)]

Functions List.hd and List.t1 from a standard library are not defined for an
empty list, so they cannot be considered total, which limits their usage in our code. In
F* there is a module List.Tot which provide proper total analogs of the functions
mentioned. We only provide their signature here.

val hd: 1l:1list 'a{is Cons 1} -> Tot 'a

val tl: 1l:1list 'a{is Cons 1} -> Tot (list 'a)
Predicate is Cons takes a list as an input and returns false if it is empty, otherwise
it returns true.
If function List.Tot.hd isapplied to a list, nonemptiness of which is not clear from
the context, F* reports a type mismatch. A pleasant peculiarity of F* is that in some
rare cases it can derive necessary properties. In our implementation of the
transformation, only the rules which have more than two symbols in the right-
hand side are split. In this case F* is able to automatically derive required type, so we
can choose two elements. It can be illustrated with the following example.

// 1lst has type list int and can be empty

assume val lst: list int

// f takes only nonempty lists

assume val f: lst:(list int) {is Cons lst} -> Tot int

assume val g: lst:(list int) -> Tot int

//0k

let testl (lst:list int) =
if List.length 1lst >=1
then £ 1lst
else g 1lst

//Fail: subtyping check failed
let test2 (lst:list int) =
if List.length 1st >= 0
then f 1st
else g 1lst
At the same time, we have to prove and explicitly add even simple lemmas for
functions. For example, if list 1st has type (1ist 'a){is Cons 1lst}, then F*
can only infer that (List.rev 1st) hastype (1ist 'a). This can be easily fixed
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with the instruction sMTPat. In addition, we should formulate the following lemma
which proof can be derived automatically by F*. The following code makes
List.rev preserve information about the length:
val rev_length: 1l:(list 'a)
-> Lemma (requires true)
(ensures (List.length (List.rev 1) = List.length 1))
[SMTPat (List.rev 1)]
We proved totality of all the nested functions. Now we want to prove termination of
the general one. In our case, it is sufficient that the length of the rule strictly decreases
on each recursive call and we are not interested in the length of the accumulator. To
prove this we must explicitly specify that after applying List.Tot.t1 to a list, its
length reduces by 1. So, we must use the same method as we used before.
val tail length : 1:(list 'a) {is_Cons 1}
-> Lemma (requires True)
(ensures (List.length (List.Tot.tl 1)=(List.length 1)-1))
[SMTPat (List.Tot.tl 1)]
With this sufficient information F* has to conclude that cutRule is total.
Function splitLongRules takes a list of rules and applies cutRule to each rule,
then concatenates all the results and returns the combined list.
val splitLongRules: list (Rule 'a 'b)
-> Tot (list (Rule 'a 'b))
let splitLongRules rulelist =
List.Tot.collect
(fun rule -> cutRule rule [ ]) rulelist
Totality is proved automatically by F*.
Previously we proved totality of our transformation, but we had not mentioned
properties of the rules we get after applying splitLongRules. We add restriction
on the type of function, which guarantees the necessary property of the result, instead
of proving the lemma about these properties. The function signature now look like
this.
val cutRule: rule: (Rule 'a 'b)
-> acc: (list (Rule 'a 'b))
{List.Tot.for all (fun x->lengthBodyRule x<=2) acc}
-> Tot (res: (list (Rule 'a 'b))
{List.Tot.for all (fun x->lengthBodyRule x<=2) res})
(decreases %[lengthBodyRule rule])

val splitLongRules:list (Rule 'a 'b)
-> Tot (res:list (Rule 'a 'b)
{List.Tot.for all (fun x->lengthBodyRule x<=2) res})
Now we have almost everything we need to prove such properties. We have to provide
some additional information so that F* could check arguments type when collect
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is recursively called. At the moment of cutting the rule off, we should fix the length
in the type of the cut part. For this purpose we have to define a function to take our
list and return part with that type. Further, we have to prove lemma that states that
concatenation of two lists with short rules is the list with short rules. After that F*
accepts type correctness.

3.3 Advantages and disadvantages of F*

In this section we want to outline some advantages and disadvantages of F*
programming language. In F#, even if there is no doubt that some functions are
correct, an incorrect result may still be obtained by applying them in a wrong
order. F* can prevent such situations, if a programmer specifies the properties
demanded from an input data in a function type. For
instance, deleteChainRules should only be applied after deleting epsilon rules.
This can be ensured by specifying the following signature of deleteChainRules
function (where predicate has no _eps rules checks that there are no epsilon
rules).
val deleteChainRules:
rulelList: (list (Rule 'a 'b))
{has no _eps rules rulelList}
-> Tot (list (Rule 'a 'b))
Unfortunately, there are some disadvantages of F* which we want to emphasize. First
of all, it does not provide any — even primitive — support for object-oriented features.
One can use structures instead of classes, but it complicates development. For
example, we had to explicitly create functions for constructing elements of types. In
other words, rather than create class person with constructors and methods:
let person = new Person ("Nick", 27)
One has to write code in a rather cumbersome manner:
let new Person name age = {name=name; age=age}
There is a special construct in many functional languages which checks whether some
property holds for a wvalue. Such construct is called guardin Haskell
and when in OCaml and F# and is often used in pattern matching to simplify code.
Unfortunately, it is not supported in F* and one can only hope that it will be supported
in the latter language versions.
Lastly, we can notice poor quality of error reporting in F* which sometimes makes it
hard to understand why proofs do not pass correctness tests.

4. Conclusion and future work

We presented a verification of one of transformations of context-free grammar to the
Chomsky normal form. We proved totality of each function implemented, as this
property guarantees that computations always terminate and do not have side effects,
which is useful in practice. Although for a complete proof of the correctness of the
grammar transformation we still need to prove the equivalence of the original and
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the resulting grammar, we have already obtained interesting results. We can specify
an input and an output of functions — using refinement and dependent types — that
allows us to establish application order of the four transformations, by means of which
correctness of the whole transformation is guaranteed.

We use programming language F* to verify the implementation, but to be able to
execute it one needs to extract it to OCaml or F# and then compile it using the OCaml
or F# compiler respectively. At the moment, the mechanism of extraction code from
F* to F# omits casts, erases dependent types, higher rank polymorphism and ghost
computation [9]. These features are very important and lack of them breaks the
consistency and correctness of programs within the target language. F* is currently
under active development, and implementation of the extraction mechanism which
copes with the above shortcoming is actual topic of our further research.
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Annorammsi. CepTuduKalMOHHOE IPOTpaMMHPOBAHNE IIO3BOJISAET JOKa3bIBaTh, 4TO
IporpaMma COOTBETCTBYET CBOeMY (OpPMajJbHOMY ONMCaHUIO0. [IpoBepka KOPPEKTHOCTH
HPOM3BOJMTCS CTATHYECKH, Onarojapsi 4eMy CTAQHOBUTCS BO3MOXKHBIM OTKa3aTbCsl OT
JalbHEHIIero TecTHpOBaHUS NPOBEepHU(UIMPOBaHHBIX mporpamM. Cpeau HHCTPYMEHTOB,
HpeHa3HAYCeHHBIX Ul CePTU(GUKAIMOHHOTO MPOrPaMMHUPOBAHHMS, TOJBKO HHCTpyMEHT F*
MO3BOJISIET PEaM30BBIBATH MPOTPaMMBI Ha sI3bIKE OOIIEro Ha3HA4YEHHS W aBTOMATH3UPYET
JIOKa3aTeNIbCTBO UX KoppekTHocTH. [locneHee 03HavaeT, 4To HHCTPYMEHT F* aBToMaTH4ecKH
BBIBEJIET JIOKA3aTeIbCTBO KOPPEKTHOCTH, TJI€ 9TO BO3MOXKHO, ITPU STOM I0JIb30BATENh MOXKET
crierUIMpPoBaTh OoJiee CIIOXKHBIE J0Ka3aTeNbCTBA, €CIIM 9TO HeoO0XoauMo. Mel paGotaeM
HaJ TMPUMEHEHHEM JaHHOTO ToaxoJa K mpoekty YaccConstructor — miatdopme s
UCCIIEZIOBaHUS M pa3pabOTKK eHepaTopoB JIEKCHUECKUX M CHHTAKCHYECKHX aHaJIU3aTOPOB U
JPYTHX aIrOpUTMOB IJIs paboThl ¢ TpaMMaTHKaMH. B jaHHO#l craThe paccMarpuBaeTcs
BepubUKaLUs pealu3ali OJJHOTO U3 TAKUX aIrOPUTMOB — MPeoOpa30BaHUs IPaMMATHKH B
HOpMasbHYI0 (opMy XOMCKOTO — YTO SIBIISIETCS TIEPBOi 3ajadeil Ha MyTH K BepH(HUKALUK
Bcero mpoekra YaccConstructor. [lnst mporpamMMbl, peanu3yronell 1aHHoe npeoOpa3oBaHue,
JIOKa3aHbl 3aBEPIIAEMOCTh M TOTAIBHOCTb, @ TAKXKE YCTAHOBJICH MOPSAOK MPUMEHEHHS
I/ICl'lOJ'[b?:yeMbIX B HEW OCHOBHBIX HpeOGpaSOBaHI/Iﬁ C HCIIOJIb30BAHUMEM 3aBHCHMBIX H
YTOUHSIOIUX TUNOB. CHenyloUMM BaXXHbIM HANpaBJICHUEM MJaHHOH paboOTHl SBISETCS
JIOKa3aTeNIbCTBO SKBUBAJICHTHOCTH MCXOJHOW M MpeoOpa3oBaHHOW rpaMMatuk. MIHCTpyMeHT
F* mnosBomsier wu3BNeKkarh KoJX, HamMCaHHBI# Ha F* kak mnporpaMmy Ha s3bIKe
nporpammupoBanus F# wim OCaml. Tak kak F# siBisieTcss OCHOBHBIM SI3IKOM Pa3pabOTKu
npoekra YaccConstructor, 3To mo3BONUT COXPaHUTh COBMECTHMOCTb POBEPU(UIIMPOBAHHBIX
HPOrpaMM C CYILIECTBYIOIIMMHU B MpoekTe. B crarthe copMyiImMpoBaHBI NMPEHMYLIECTBA U
HEIOCTaTKU NPUMEHEHUSI HHCTpyMeHTa F*.

KiroueBbie ciioBa: cepTudukalMoHHOE IporpaMmupoBanue; F*; Bepudukanus nporpamm;
KOHTEKCTHO-CBOOOJHAs TIpaMMaTHKa, HopManbHas ¢opma XOMCKOTo; mHpeoOpa3oBaHHUE
rpammaruky; dependent type; refinement type.
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