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Abstract. Certified programming allows to prove that the program meets its specification. The 

check of correctness of a program is performed at compile time, which guarantees that the 

program always runs as specified. Hence, there is no need to test certified programs to ensure 

they work correctly. There are numerous toolchains designed for certified programming, but 

F* is the only language that support both general-purpose programming and semi-automated 

proving. The latter means that F* infers proofs when it is possible and a user can specify more 

complex proofs if necessary. We work on the application of this technique to a grammarware 

research and development project YaccConstructor. We present a work in progress verified 

implementation of transformation of Context-free grammar to Chomsky normal form, that is 

making progress toward the certification of the entire project. Among other features, F* system 

allows to extract code in F# or OCaml languages from a program written in F*. 

YaccConstructor project is mostly written in F#, so this feature of F* is of particular importance 

because it allows to maintain compatibility between certified modules and those existing in the 

project which are not certified yet. We also discuss advantages and disadvantages of such 

approach and formulate topics for further research.  
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1. Introduction 

Certified programming is designed for proving that a program meets its specification. 

For this technique, proof assistants or interactive theorem prover are used [1], what 

allows to check correctness of the program at compile time and guarantees that the 

program always works according to its specification. Classical fields of application 
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of certified programming are the formalization of mathematics, security of 

cryptographic protocols and the certification of properties of programming languages.  

There are two approaches to certified programming [2]. In the classical approach the 

program, its specification, and the proof that the program meets its specification are 

written separately, as different modules. Such technique costs too much to be applied 

in software development. More effective approach is to combine program, its 

specification, and the proof in one module by means of dependent types [3], [4].  The 

most well-known toolchains for program verification are Coq [5], Agda [6], F* [7] 

and Idris [8]. Among them, F* is the only language which supports semi-automated 

proving and general-purpose programming [9]. 

As a proof assistant, F* allows to formulate and prove properties of programs by using 

lemmas and enriching types. F* not only infers types of functions, but also the 

properties of its computations such as purity, statefulness, divergence. For example, 

consider the following function: 

 val f : (int -> Tot int) -> int -> Tot int 

 let f g x = g x 

The keyword val indicates that we declare a function f and its type signature. The 

function f takes a function g and an integer value, as arguments. The effect of 

computation Tot t is used for total expression, which always evaluates to a t-typed 

result without entering an infinitive loop, throwing exception or other side effects. 

Hence, one can prove for some programs not only their properties and restrictions on 

the types, but also guarantee their termination and that a result has assigned type. 

We apply certified programming using F* to a grammarware research and 

development project YaccConstructor (YC) [10], [11]. YC is a tool for parser 

construction and grammar processing. Also it is a framework for research and 

development of lexer and parser generators and other grammarware for .NET 

platform. The verification of its programs covers the topic of parser correctness: how 

to obtain formal evidence that a parser is correct with respect to its specification [12]. 

In this article, we consider only one algorithm implemented in YC, namely the 

transformation of context free grammar to Chomsky normal form, that is a small step 

towards the certification of entire project. The algorithm of grammar normalization 

consists of four transformations. We prove totality of each of them and establish an 

order of their application to the input grammar. In addition, we describe the 

peculiarities of evaluation F* as a proof assistant and formulate topics for further 

research. 

2. Overview of F*  

We use a functional programming language F* [7] for program verification. It is the 

only language that support semi-automated proving and general-purpose 

programming [9]. The main goal of this tool is to span the capabilities of interactive 

proof assistants like Coq [5] and Agda [6], general-purpose programming languages 

like OCaml and Haskell, and SMT-backed semi-automated program verification tools 

like Dafny [13] and WhyML [14].  
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Type system of F* includes polymorphism, dependent types, monadic effects, 

refinement types, and a weakest precondition calculus [15], [16]. These features allow 

expressing precise and compact specification for programs [7].  

Dependent function type has the following form 𝑥1: 𝑡1 →. . → 𝑥𝑛: 𝑡𝑛[𝑥1. . 𝑥𝑛−1] →
𝐸 𝑡 [𝑥1. . 𝑥𝑛]. Each of a function's formal parameters are named 𝑥𝑖 and each of these 

names in the scope to the right of the first arrow that follows it. The notation  

𝑡[𝑥1. . 𝑥𝑚]  indicates that the variables 𝑥1. . 𝑥𝑚 may appear free in 𝑡. 

Refinement type has a form 𝑥: 𝑡{𝑝ℎ𝑖(𝑥)}. It is a sub-type of 𝑡 restricted to those 

expressions of type 𝑡 that satisfy a predicate 𝑝ℎ𝑖(𝑒). 

In addition to inferring a type, F* also infers side effects of an expression such as 

exceptions and state. The following are the most significant monadic effects.  

  Tot t ‒ the effect of a computation that guarantees evaluation to a t -

typed result, without entering an infinite loop, throwing an exception, 

reading or writing the program's state. 

  ML t ‒  the effect of a computation that may have arbitrary effects, but if 

some result is computed, then it is always of type t. 

  Dv t ‒  the effect of a computation that may diverge. 

  ST t ‒  the effect of a computation that may diverge, read, write or 

allocate on a heap. 

  Exn t ‒ the effect of a computation that may diverge or raise an exception. 

The effects {Tot, Dv, ST, Exn, ML} are arranged in a lattice, with Tot at the 

bottom, ML at the top, and with ST unrelated to Exn.  

There are two main approaches to prove properties: either by enriching the type of a 

function (intrinsic style) or by writing a separate lemma about it (extrinsic style).  You 

can see an example of the first approach below; keyword val indicates declaration of 

a value and its type signature.  

 val append: l1:list 'a -> l2:list 'a  

     -> Tot (l:list 'a{length l=length l1+length l2}) 

 let rec append l1 l2 =  

 match l1 with 

 | [] -> l2 

 | hd :: tl -> hd :: append tl l2 

The following example demonstrates extrinsic style, in which the formula after 

keyword requires is the pre-condition of the lemma, while the one after keyword 

ensures is its post-condition. 

 val append_len: l1:list 'a -> l2:list 'a 

       -> Lemma (requires True) 

             (ensures (length (append l1 l2)=  

      length l1 + length l2))) 

 let rec append_len l1 l2 =  
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 match l1 with 

 | [] -> () 

 | hd::tl  -> append_len tl l2 

There is no general rule which style of proving to use, but in some cases it is 

impossible to prove a property of a function directly in its types and one has to use a 

lemma.  

When defining lemmas or expressions that are total, F* automatically proves their 

termination. The termination check is based on a well-founded relation. For natural 

numbers, F* uses classical decreasing metric, for inductive types ‒ the sub-term 

ordering, for recursive function, it requires the tuple of parameters to be in decreasing 

lexicographic ordering. The last case can be overridden with using clause decreases 

%[𝑥1. . 𝑥𝑛], which explicitly chooses a lexicographic ordering on arguments. 

To conclude, one can use F* to write effectful programs, specify them using 

dependent and refinement types, verify them using an SMT solver or providing 

interactive proofs. Programs written in F* can be translated to OCaml or F# for 

further execution.  

3. Verification of transformation of CFG to CNF 

In this section we briefly describe some necessary aspects of the theory of formal 

languages, sketch a totality proof for one of grammar transformations to Chomsky 

normal form in F*, and formulate some advantages and disadvantages of this 

approach.   

3.1 Context-free grammar and Chomsky normal form 

In this section we give basic definitions and formulate a theorem that helps us to 

verify the implemented algorithm of a transformation of context-free grammar to 

Chomsky normal form. 

In formal language theory, a context-free grammar (CFG) is a formal grammar in 

which every production rule is of the form 𝐴 → 𝛼, where 𝐴 is single nonterminal 

symbol and 𝛼 is a string of terminals and/or nonterminals (𝛼 can be empty).  

Context-free grammar is said to be in Chomsky normal form (CNF) if all of its 

production rules are of the form: 

 𝐴 → 𝐵𝐶 

 𝐴 →  𝑎 

 𝑆 →  𝜀, 

where 𝐴, B and 𝐶 are nonterminal symbols, 𝑎 is a terminal symbol, 𝑆 is the start 

nonterminal, and  𝜀 denotes the empty string. Also, neither 𝐵 nor 𝐶 may be the start 

symbol, and the third production rule can only appear if 𝜀 is in 𝐿(𝐺), namely, the 

language produced by the context-free grammar 𝐺. 

Context-free grammars given in Chomsky normal form are very convenient to use. It 

is often assumed that either CFGs are given in CNF from the beginning or there is an 
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intermediate step of normalization. Having a certified implementation of 

normalization for CFGs enables us to stop thinking in terms of CFG and consider 

grammar in CNF without losing guarantees of correctness.  

CFG normalization theorem: There is an algorithm which converts any CFG into 

an equivalent one in Chomsky normal form.  

The full normalization transformation for a CFG is a composition of the following 

constituent transformations. 

 Replace all rules 𝐴 → 𝑋1𝑋2. . 𝑋𝑘, where 𝑘 ≥ 3 with rules 𝐴 → 𝑋1𝐴1, 

𝐴1  → 𝑋2𝐴2, .., 𝐴𝑘−2  → 𝑋𝑘−1𝑋𝑘, where 𝐴𝑖 are ''fresh'' nonterminals. 

 Eliminate all 𝜀-rules.  

 Eliminate all chain rules.  

 For each terminal 𝑎, add a new rule 𝐴 →  𝑎, where 𝐴 is a "fresh'' 

nonterminal and replacing 𝑎 in the right-hand sides of all rules with length 

at least two with 𝐴.  

3.2 Verification with F* 

Our purpose is to verify a core YaccConstructor (YC) using F*. YC is an open source 

modular tool for research in lexical and syntax analysis and its main development 

language is F# [17]. In this paper we consider only a verification of normalization 

grammar algorithm [18] which is defined in a following way: 

 let toCNF (ruleList: Rule.t<_,_>list) =    

     ruleList 

       |> splitLongRules  

       |> deleteEpsRules  

       |> deleteChainRules  

       |> renameTerm 

The function toCNF is a composition of the four transformations mentioned. Notice 

that the order of rules execution is important. The first rule must be executed before 

the second, otherwise normalization time may increase to 𝑂(2𝑛). The third rule 

follows the second, because elimination of 𝜀-rules may produce new chain rules. 

Also, the fourth rule must be executed after the second and the third as they can 

generate useless symbols. 

F*, as a proof assistant, allows to formulate and prove properties of function of 

interest using lemmas or enriching types.  For example, in F# function (f (x:int)= 

2*x) is inferred to have type (int -> int), while in F* we infer (int -> Tot 

int). This indicates that (f (x:int) = 2*x) is a pure total function which always 

evaluates to int.  A lemma is a ghost total function that always returns the single unit 

value (). When we specify a total function, we have to prove totality of every nested 

function, because F* supports only high-level annotations. In others words, we cannot 

add annotation for a nested function. Therefore, to prove totality of a function 
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containing nested functions, we need to lift all nested functions up and explicitly 

prove totality of these functions. 

We describe each function of interest in an individual module to avoid namespace 

collision. We use module architecture similar to YC architecture. Module IL  contains 

type constructors for describing productions of a grammar.  Module Namer contains 

a function to generate new names. Finally, we created individual modules for each 

transformation and a separate, main, module which contains the definition 

of toCNF transformation. 

We implemented all the transformations in F* [19], but in this paper we consider only 

one of them, namely SplitLongRules, which eliminates long rules. Firstly, we 

describe all the helpers we need, prove their totality and other necessary properties, 

and then explain why this transformation is correct. 

In the first transformation, it is necessary to create new nonterminals, so we need a 

function to supply them. The function Namer.newSource defined below is used.  

 val newSource: n:int -> oldSource:Source -> Tot Source  

 let newSource n old =  

  ({old with text = old.text^(string_of_int n)})  

Integer n is equal to the size of the list of rules which we have at the moment of 

function Namer.newSource call. Obviously, function Namer.newSource is 

injective. In other words, unique rule names remain unique after application 

splitLongRules.     

Some necessary helpers are grouped in TransformAux module: for example, 

functions createRule and createDefaultElem, which take some arguments and 

return Rule and Elem respectively. Elem is the right part of the rule if the latter is a 

sequence.  Also, we define follow one simple function which returns the length of the 

right part of the rule. 

 val lengthBodyRule: Rule 'a 'b -> Tot int 

 let lengthBodyRule rule =  

     List.length (match rule.body with  

                          |PSeq(e, a, l) -> e  

                          | _ -> [ ]) 

The most interesting function is cutRule. It takes a rule and a list-accumulator as an 

input. If the length of  the right-hand side of the rule is less or equal to 2, cutRule 

only renames a nonterminal to avoid name collision. Otherwise,  it is necessary to 

create new nonterminal 𝐵𝑘−2, cut off last two elements 𝑋𝑘−1𝑋𝑘, pack them into a new 

rule 𝐵𝑘−2 → 𝑋𝑘−1𝑋𝑘, and then add the nonterminal to the end of the long rule. Then 

the new rule is added to the accumulator and the function cutRule is recursively 

called on the new rule and accumulator. This way, we reduce our rule by one. 

Function signature is the following. 

 val cutRule: rule:(Rule 'a 'b) 

     -> resRuleList:(list (Rule 'a 'b))  

     -> Tot (list (Rule 'a 'b))  
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    (decreases %[lengthBodyRule rule]) 

There are some peculiarities in our implementation, which are worth mentioning. One 

of them is the representation of  the right-hand side of the rules by lists.  In the 

algorithm, we need to cut off two last elements of a rule, so we carry out the following 

steps. 

 let revEls = List.rev elements  

 let cutOffEls = [List.Tot.hd revEls;  

      List.Tot.hd (List.Tot.tl revEls)] 

Functions List.hd and List.tl from a standard library are not defined for an 

empty list, so they cannot be considered total, which limits their usage in our code. In 

F* there is a module List.Tot which provide proper total analogs of the functions 

mentioned. We only provide their signature here.  

 val hd: l:list 'a{is_Cons l} -> Tot 'a 

 val tl: l:list 'a{is_Cons l} -> Tot (list 'a) 

Predicate is_Cons takes a list as an input and returns false if it is empty, otherwise 

it returns true. 

If function List.Tot.hd is applied to a list, nonemptiness of which is not clear from 

the context, F* reports a type mismatch. A pleasant peculiarity of  F* is that in some 

rare cases it can derive necessary properties. In our implementation of the 

transformation, only the rules which have more than two symbols in the right-

hand side are split. In this case F* is able to automatically derive required type, so we 

can choose two elements. It can be illustrated with the following example.  
 // lst has type list int and can be empty 

 assume val lst: list int  

 // f takes only nonempty lists  

 assume val f: lst:(list int){is_Cons lst} -> Tot int 

 assume val g: lst:(list int) -> Tot int 

 

 //Ok  

 let test1 (lst:list int) = 

     if List.length lst >= 1          

     then f lst  

     else g lst 

 

 //Fail: subtyping check failed 

 let test2 (lst:list int) =  

     if List.length lst >= 0         

     then f lst  

     else g lst 

At the same time, we have to prove and explicitly add even simple lemmas for 

functions. For example, if list lst has type (list 'a){is_Cons lst}, then F* 

can only infer that (List.rev lst) has type (list 'a). This can be easily fixed 
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with the instruction SMTPat. In addition, we should formulate the following lemma 

which proof can be derived automatically by F*. The following code makes 

List.rev preserve information about the length: 

 val rev_length: l:(list 'a) 

     -> Lemma (requires true)  

     (ensures (List.length (List.rev l) = List.length l))  

     [SMTPat (List.rev l)] 

We proved totality of all the nested functions. Now we want to prove termination of 

the general one. In our case, it is sufficient that the length of the rule strictly decreases 

on each recursive call and we are not interested in the length of the accumulator. To 

prove this we must explicitly specify that after applying List.Tot.tl to a list, its 

length reduces by 1. So, we must use the same method as we used before. 

 val tail_length : l:(list 'a){is_Cons l}   

 -> Lemma (requires True)   

  (ensures(List.length (List.Tot.tl l)=(List.length l)-1))  

 [SMTPat (List.Tot.tl l)] 

With this sufficient information F* has to conclude that cutRule is total.  

Function splitLongRules takes a list of rules and applies cutRule to each rule, 

then concatenates all the results and returns the combined list. 

 val splitLongRules: list (Rule 'a 'b)  

           -> Tot (list (Rule 'a 'b)) 

 let splitLongRules ruleList =  

     List.Tot.collect  

  (fun rule -> cutRule rule [ ]) ruleList 

Totality is proved automatically by F*. 

Previously we proved totality of our transformation, but we had not mentioned 

properties of the rules we get after applying splitLongRules. We add restriction 

on the type of function, which guarantees the necessary property of the result, instead 

of proving the lemma about these properties. The function signature now look like 

this. 

 val cutRule: rule:(Rule 'a 'b) 

     -> acc:(list (Rule 'a  'b)) 

          {List.Tot.for_all (fun x->lengthBodyRule x<=2) acc}  

           -> Tot (res:(list (Rule 'a 'b)) 

          {List.Tot.for_all (fun x->lengthBodyRule x<=2) res})  

    (decreases %[lengthBodyRule rule]) 

 

 val splitLongRules:list (Rule 'a 'b)  

     -> Tot (res:list (Rule 'a 'b) 

          {List.Tot.for_all (fun x->lengthBodyRule x<=2) res}) 

Now we have almost everything we need to prove such properties. We have to provide 

some additional information so that F* could check arguments type when collect 



Полубелова М.И., Божко С.Н., Григорьев С.В. Верификация преобразования грамматики в нормальную форму 

Хомского в F*. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 127-138. 

135 

is recursively called. At the moment of cutting the rule off, we should fix the length 

in the type of the cut part. For this purpose we have to define a function to take our 

list and return part with that type. Further, we have to prove lemma that states that 

concatenation of two lists with short rules is the list with short rules. After that F* 

accepts type correctness. 

3.3 Advantages and disadvantages of F* 

In this section we want to outline some advantages and disadvantages of F* 

programming language. In F#, even if there is no doubt that some functions are 

correct, an incorrect result may still be obtained by applying them in a wrong 

order.  F* can prevent such situations, if a programmer specifies the properties 

demanded from an input data in a function type. For 

instance, deleteChainRules should only be applied after deleting epsilon rules. 

This can be ensured by specifying the following signature of deleteChainRules 

function (where predicate has_no_eps_rules checks that there are no epsilon 

rules).   

 val deleteChainRules:   

     ruleList:(list (Rule 'a 'b))  

     {has_no_eps_rules ruleList}    

           -> Tot (list (Rule 'a 'b))  

Unfortunately, there are some disadvantages of F* which we want to emphasize. First 

of all, it does not provide any ‒ even primitive ‒ support for object-oriented features. 

One can use structures instead of classes, but it complicates development. For 

example, we had to explicitly create functions for constructing elements of types. In 

other words, rather than create class Person with constructors and methods:  

 let person = new Person("Nick", 27) 

One has to write code in a rather cumbersome manner: 

   let new_Person name age = {name=name; age=age}  

There is a special construct in many functional languages which checks whether some 

property holds for a value. Such construct is called  guard in Haskell 

and when in OCaml and F# and is often used in pattern matching to simplify code. 

Unfortunately, it is not supported in F* and one can only hope that it will be supported 

in the latter language versions.  

Lastly, we can notice poor quality of error reporting in F* which sometimes makes it 

hard to understand why proofs do not pass correctness tests.    

4. Conclusion and future work 

We presented a verification of one of transformations of context-free grammar to the 

Chomsky normal form. We proved totality of each function implemented, as this 

property guarantees that computations always terminate and do not have side effects, 

which is useful in practice. Although for a complete proof of the correctness of the 

grammar  transformation we still need to prove the equivalence of the original and  
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the resulting grammar, we have already obtained interesting results. We can specify 

an input and an output of functions ‒  using refinement and dependent types ‒ that 

allows us to establish application order of the four transformations, by means of which 

correctness of the whole transformation is guaranteed.   

We use programming language F* to verify the implementation, but to be able to 

execute it one needs to extract it to OCaml or F# and then compile it using the OCaml 

or F# compiler respectively. At the moment, the mechanism of extraction code from 

F* to F# omits casts, erases dependent types, higher rank polymorphism and ghost 

computation [9]. These features are very important and lack of them breaks the 

consistency and correctness of programs within the target language. F* is currently 

under active development, and implementation of the extraction mechanism which 

copes with the above shortcoming is actual topic of our further research. 
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Верификация преобразования грамматики в 
нормальную форму Хомского в F* 
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С.Н. Божко <gkerfimf@gmail.com> 

С.В. Григорьев <Semen.Grigorev@jetbrains.com> 

Санкт-Петербургский государственный университет, 

199034, Россия, Санкт-Петербург, Университетская наб., д.7/9 

Аннотация. Сертификационное программирование позволяет доказывать, что 

программа соответствует своему формальному описанию. Проверка корректности 

производится статически, благодаря чему становится возможным отказаться от 

дальнейшего тестирования проверифицированных программ. Среди инструментов, 

предназначенных для сертификационного программирования, только инструмент F* 

позволяет реализовывать программы на языке общего назначения и автоматизирует 

доказательство их корректности. Последнее означает, что инструмент F* автоматически 

выведет доказательство корректности, где это возможно, при этом пользователь может 

специфицировать более сложные доказательства, если это необходимо. Мы работаем 

над применением данного подхода к проекту YaccConstructor ‒ платформе для 

исследования и разработки генераторов лексических и синтаксических анализаторов и 

других алгоритмов для работы с грамматиками. В данной статье рассматривается 

верификация реализации одного из таких алгоритмов ‒ преобразования грамматики в 

нормальную форму Хомского ‒ что является первой задачей на пути к верификации 

всего проекта YaccConstructor. Для программы, реализующей данное преобразование, 

доказаны завершаемость и тотальность, а также установлен порядок применения 

используемых в ней основных преобразований с использованием зависимых и 

уточняющих типов. Следующим важным направлением данной работы является 

доказательство эквивалентности исходной и преобразованной грамматик. Инструмент 

F* позволяет извлекать код, написанный на F*, как программу на языке 

программирования F# или OCaml. Так как F# является основным языком разработки 

проекта YaccConstructor, это позволит сохранить совместимость проверифицированных 

программ с существующими в проекте. В статье сформулированы преимущества и 

недостатки применения инструмента F*. 

Ключевые слова: сертификационное программирование; F*; верификация программ; 

контекстно-свободная грамматика; нормальная форма Хомского; преобразование 

грамматики; dependent type; refinement type.  
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