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Abstract. The paper describes a method for constructing test oracles for memory subsystems
of multicore microprocessors. The method is based on using nondeterministic reference
models of systems under test. The key idea of the approach is on-the-fly determinization of
the model behavior by using reactions from the system. Every time a nondeterministic choice
appears in the reference model, additional model instances are created and launched (each
simulating a possible variant of the memory subsystem behavior). When the testbench
receives a reaction from the subsystem under test, it terminates all model instances whose
behavior is inconsistent with that reaction. An error is detected if there is no active instance of
the reference model. A reference model and the test oracle are divided into three levels: (1)
the operation level, (2) the cache line level, and (3) the memory subsystem level. An
operation oracle checks whether processing of a single request of the corresponding type is
correct. A cache line oracle is comprised of the operation oracles and responsible for
checking requests to the given cache line. The memory subsystem oracle combines cache line
oracles and performs overall evaluation of the device behavior. To be implemented
efficiently, the method implies the following two restrictions on the memory subsystem under
test: (1) requests to different cache lines are executed independently; (2) requests to the same
cache line are serialized (at most one request to a cache line is executed at each moment of
time). The suggested method with slight modifications was used for verifying the L3 cache of
the Elbrus-8C microprocessor; as a result, three bugs were found.
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1. Introduction

A key feature of modern microprocessor architectures is multicoreness, which is
implementation of several processing units, so-called cores, on a single chip. To
reduce time to access data from the main memory, each core has a local cache, often
with two levels, L1 and L2; in addition, all cores can share the L3 cache. Presence
of several data storages makes it possible to have multiple copies of the same data
within the system and requires special mechanisms to ensure the storages to be in a
coherent state. At the heart of such mechanisms is a coherence protocol, a set of
rules that governs interactions between storage devices and guarantees memory
consistency for all possible data access scenarios [1].

State-of-the-art coherence protocols are complicated; their implementations in
hardware is difficult and error-prone. Accordingly, thorough verification of memory
subsystems is required [2]. A widely accepted approach to ensure correctness of
complex hardware designs is simulation-based verification, or testing. A test system,
also known as a testbench, solves two main tasks: first, it generates a stream of
stimuli; second, it checks whether the design behavior satisfies the requirements [3].
This paper addresses the second problem, i.e. checking reactions of a memory
subsystem in response to an arbitrary series of stimuli; it introduces a method for
constructing test oracles (reaction checkers) based on high-level reference models
of memory subsystems.

The rest of the paper is organized as follows. Section 2 reviews the existing
techniques for designing test oracles. Section 3 suggests an approach to the
problem. Section 4 describes a case study on using the suggested approach in an
industrial setting. Section 5 concludes the paper.

2. Related Work

A memory subsystem as an object of testing has a number of distinctive features that
should be taken into consideration when designing a test oracle. First, it consists of
many devices that work in parallel and can receive requests (stimuli) and send
responses (reactions) through several input and output channels (interfaces with the
microprocessor cores). Second, its behavior essentially depends on the order of
requests to separate data blocks (cache lines); which, in turn, depends on the time of
the requests initiation as well as on the subsystem’s microarchitecture. Third,
requests to a single cache line are processed mostly one at a time (in other words,
requests are serialized).

It is also to be considered how reference models of memory subsystems are
developed. Many implementation details, like request execution timing, are
typically ignored: operations are described as atomic actions, while interactions
between blocks are modeled by “zero-time” function calls. Such kind of models are
often called functional models. The simplified nature of reference models makes
them more tolerant to changes in the subsystem implementation, but at the same
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time makes building test oracles more difficult task. Models of that kind cannot
predict the exact order of request execution basing solely on the request timestamps.
In this sense, functional models are surely nondeterministic. The problem of
building test oracles from nondeterministic models is well known; there are several
approaches to solve it.

In [4], a reference model (specification) and a system under test (implementation)
are represented as Partial Order Input/Output Automata. In such an automaton, each
transition is labeled not by a “stimulus-reaction” pair, but by a partially ordered
multiset (multiple stimuli and reactions are allowed). An implementation is said to
conform to its specification if for each specification trace there is an implementation
trace of the same length, in which the order of events corresponds to the order given
in the specification trace. The similar approach is presented in [5], where a model of
Asynchronous Finite State Machine is used. In both methods, checking is carried out
some time after the last stimulus (the time should be long enough to allow all
reactions to occur and the implementation to enter in a stationary state). The scheme
is applied under the assumption that a stimulus generator is “idle” every now and
then during testing.

In [6], a similar concept of correspondence is used, but the approach focuses on
“continuous” event flows (with no stops in stationary states). A test oracle is based
on a so-called trace matcher, which acts as follows: it receives reactions from the
specification and the implementation and adds them into the corresponding partially
ordered multisets (Y is for the specification, and Z is for the implementation); before
adding reactions, the minimal (in a sense of the precedence relation) events
(min(Y) N min(Z)) are removed from both multisets; if the amount of time a reaction
stays in a multiset exceeds some predefined limit, an error is indicated. As compared
with [4] and [5], the method requires more deterministic reference models: order of
implementation reactions may not be the same as of specification ones, but sets of
specification and implementation reactions should coincide (this requirement can be
weakened by marking some reactions as being optional). To apply the approach to a
complex system, a testbench needs to use “hints” from the implementation that help
to decide, what functionality of the reference model is to be executed [7].

Our work tries to combine [4] and [6]: it allows using nondeterministic models
without restrictions on test sequences and without using “hints” from
implementations. A general approach is as follows. As soon as there are several
possible ways to continue execution of the reference model (such a situation is
referred to as a nondeterministic choice), additional instances of the model are
created and launched (the base instance goes on with one of the branches). When
the testbench receives a reaction from the device under test, the reaction itself and
its characteristics (such as a response type, message data, etc.) are used to determine
what behavior is infeasible and what instances to terminate. If there is no active
instance of the reference model, an error is reported. Obviously, in the general case
the number of states (and variants of behavior) grows exponentially with the
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number of decision points. However, for memory subsystems the suggested scheme
can be effectively implemented: first, requests to different cache lines are almost
independent (existing dependencies can be neglected); second, requests to a single
cache line are serialized.

3. Suggested Approach

Let us clarify what kind of reference models are used by test oracles for checking
behavior of memory subsystems. Stimuli are divided into two groups: primary
stimuli, which are requests from clients (cores, controllers, etc.) to perform certain
operations with the memory, and secondary stimuli, which are responses of the test
environment to some reactions of the memory subsystem (every reaction and every
secondary stimulus is caused by some primary stimulus). A memory subsystem
model is decomposed into a number of operation models, one for each type of
primary stimulus. An operation model has the following interface (the detailed
structure is not of importance):

o p <« start(x) — the model creates a process p that handles the primary
stimulus x;

e p.receive(x) — the process p receives the secondary stimulus x from the
environment;

e p.send(y) — the process p sends the reaction y to the environment (a
callback function);

o p.finished() — the model checks whether the process p has completed.

From the structural point of view, a memory subsystem model consists of cache line
models and a switch. Given a stimulus, the switch determines what cache line is
addressed and sends the stimulus to corresponding model. A cache line model
works as follows. To preserve the order of requests from the same client, it has a set
of request queues, Qq, ..., Qn, where N is a number of clients (only requests from the
heads of the queues can be processed). Additionally, it contains a state model,
which represents data stored in the cache line and auxiliary information that affects
behavior of the operation models. A cache line model is nondeterministic and can
be described by the following pseudo-code:
while true do

wait vi-an (Qi = D)

Q « {(head(Qi), ) |i € {1, ... N} A (Qi = D)}

(x, 1) « select(Q)

dequeue(Qi)

pi < start(x)

wait pi.finished()

end

If there are requests from clients (vi-1n (Qi = &)), a set of candidates for processing
(Q) is built. After that, one of the requests is nondeterministically selected ((x, i) <
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select(Q)). The chosen request is removed from the corresponding queue
(dequeue(Qy)), and its processing is initiated (pi < start(x)). When the process is
completed (pi.finished()), the procedure described above is repeated.

A cache line model has the following interface methods:

o receive(x, i) = enqueue(Qi, x) — the model receives the primary stimulus x
from the client i;

e receive(x) = p.receive(x) — the model receives the secondary stimulus x
from the environment.

Cache Line Oracle

receive(stimulus, i)

Request Queue Request Queue
of Client 1 of Client N

start(stimulus) start(stimulus)

cancel()

Stimulus Operation Oracle Operation Oracle Subsystem
Generator (environment) (environment) under Test
Primary
Operation State Operation Reactions
Stimul — <
— Model N Model >l Model
Secondary
Stimuli receive(stimulus) get(state) receive(stimulus)
send(reaction) sel(state) send(reaction)
finished() finished()
check(stimulus) check(stimulus)
check(reaction) " check(reaction)
enabled() enabled()
check(stimulus) i check(reaction)
matcher

Verdict

Figure 1. Structure of a cache line oracle

The test oracle structure follows from the reference model structure: one can
distinguish a memory subsystem oracle, a cache line oracle and an operation oracle.
An oracle of each type is built upon a model of the corresponding type. Thus, a
memory subsystem oracle consists of cache line oracles and a switch; a cache line
oracle includes request queues, operation oracles, a state model and a message
matcher (functions of this component will be described later on); an operation
oracle contains an operation model. It should be noted that there is a distinction
between oracle and model switches: an oracle switch routes not only stimuli but also
reactions. Design of a cache line oracle based on operation oracles is of the most
interest (see Fig. 1).

An operation oracle checks the correctness of reactions (and possibly validity of
secondary stimuli) for the individual operation (provided that this operation is
processed by the memory subsystem). A cache line oracle does not impose any
restrictions on how operation oracles are implemented. If a set of reactions caused
by the operation depends solely on the cache line state, the approach presented in
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[6] can be applied. In the simplest case, checking is carried out as follows. Every
time the operation model invokes send(y), the reaction y is added to the multiset Y.
When receiving a reaction z from the implementation, the check(z) method of the
operation oracle is called. It checks whether z belongs to Y: in case of the positive
answer, z is removed from Y; otherwise, the error is indicated. Also, the operation
oracle overrides the finished() method of the operation model: in addition to
checking the operation completion, it tests whether the set Y is empty.

The model does not provide enough information to determine the exact order, in
which requests from different clients are handled. A cache line oracle launches the
operation oracles for all possible request choices in parallel (only one request is to
be processed by the memory subsystem, but for now, one cannot decide which one).
The cache line oracle is described by the following pseudo-code (pi refers to an
operation oracle for the client i):

while true do
wait vi-1y enabled(Qj)
Q « {(head(Qi), i) | i € {4, ..., N} A enabled(Qi)}
for (x,1) e Q do
dequeue(Qj)
pi < start(x)
end
end

enabled(Q;) = (Qi # &) A ((pi = null) v p;.finished())

The message matcher analyzes implementation reactions (and possibly secondary
stimuli) and identifies the request being executed by the memory subsystem. Having
received a reaction z from the implementation, the check(z) method of the message
matcher is invoked, which, in turn, calls check(z) in all active ((pi = null) A
~pi.finished()) operation oracles.

count < 0
forie {1,...,N}do
if (pi = null) A ~pi.finished() then
if pi.check(z) then
count < count + 1
else
pi.cancel()
pi < null
push(Qi, )
end
end
end
assert (count # 0)
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If an operation oracle (pi) returns the negative verdict (pi.check(z) = false), the
oracle process is forcibly stopped (pi.cancel()), and the primary stimulus having
initiated the process is returned to the head of the corresponding queue (push(Qj, x)).
If there are no active processes (count = 0), then the cache line oracle returns the
negative verdict. Secondary stimuli are handled in a similar way; a difference is that
if an operation oracle’s verdict is positive (pi.check(x) = true), the stimulus is
transmitted to the operation model (pi.receive(x)).

To construct a test oracle in the suggested way, a system under test is expected to
meet the following conditions (in addition to request serialization): first, behavior of
each operation is unambiguously defined by the system state at the operation start
time; second, each operation changes the global state of the system just before its
completion; third, a client being served can be unambiguously identified by
matching primary requests with reactions.

4. Case Study

The presented method for designing test oracles was used to develop a test system
for the L3 cache of the Elbrus-8C octal-core microprocessor (total volume — 16 MB;
size of a cache line — 64 B; number of banks — 8; bank associativity — 16) [8]. The
L3 cache is a point of serialization for the read and write requests from the
microprocessor cores and the snoop requests (auxiliary requests for maintaining
cache coherence) from the system interface controller. For each message it is
possible to identify the affected cache line; for this purpose, the oracle switch stores
a relation between primary request addresses and resource identifiers used in
reactions and secondary stimuli. In general, the cache line oracle follows from the
suggested scheme, but has some particular features described below.

First of all, operations on cache lines of the same set (cache lines located at the same
index) are surely dependent: inclusion of a cache line might trigger eviction of
another one. It should be emphasized that a victim line cannot be determined
without using a cycle-accurate reference model and without getting “hints” from the
implementation. To solve this problem and to make all cache lines to be served
independently, we assume that any cache line (whose state is not Invalid) can be
evicted at any moment. This assumption is implemented by adding a virtual client
Eviction to all cache line oracles (such a trick is legal, because eviction requests are
serialized like any other stimuli).

In most of the cases, a requesting client can be identified based on reactions, but
there are two exceptions. First, writing data with eviction from L2 (Write-Back) — if
the data are not in the L2 cache, the request is canceled (it completes without
sending any reaction and without changing the state). Second, prefetching data into
L3 (Prefetch) — if the data are in the L3 cache, the request is canceled. The first
situation is solved by forcibly stopping a model of the Write-Back operation as soon
as it is known that the core (the L2 cache of the core) has no data (such a solution is
correct, because requests from cores cannot load data into other cores; requests from
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the requesting core cannot be chosen until the Write-Back operation is completed).
The second problem is solved by “detaching” the prefetch requests from the cores
and moving them to additional clients (completion of a prefetch request is detected
indirectly by identifying completion of one of the following requests from the same
core).

If a cache line (stored in the L3 cache) is in the Shared state and no core has its copy
in the L2 cache, the line can be evicted (become Invalid) without sending messages
to the environment. Therefore, if a cache line model is in the Shared state, it means
that the corresponding cache line of the implementation is either Shared or Invalid.
Being executed in the Shared state (without copies of the data in the cores), an
operation oracle spawns two operation models: one operates in the assumption that
the line is Shared; the other operates in the assumption that the line in Invalid.

It should be noted that L3 under test has no strict requirements on serialization of
so-called special operations (noncoherent reads and uncacheable writes). It is
allowed to concurrently process any number of such operations over the same cache
line. This exception does not complicate the test oracle structure: first, special
requests are permitted only in the Invalid state (otherwise, an eviction starts);
second, special operations do not change the state of the cache and do not affect
other operations.

The use of the suggested approach allowed to discover three errors in the L3 design.
The first one concerns the operation of reading data with storing them in L3 (R32L3
and R64L3) — the internal directory erroneously marks the line as having been stored
in the L2 cache of the requesting core. The second one consists in an unnecessary
delay in data eviction caused by a special operation. Finally, the third one relates to
the reading of invalid data from the write-back buffer.

4. Conclusion

Memory subsystems of multicore microprocessors are extremely complex devices;
their implementation should be thoroughly tested. Test oracles play key role in
testbench automation; the main part of an oracle is a reference model, i.e. a
simplified software implementation of the device under test. Models of memory
subsystems are usually nondeterministic in a sense that given a set of stimuli, one
cannot accurately determine a set of reactions. In this article, we have proposed the
method for designing test oracles for memory subsystems based on reaction-driven
refinement of the set of behavior variants. An error is reported if the refinement
process leads to the empty set of variants. The suggested approach has been applied
to the verification of the L3 cache of the Elbrus-8C microprocessor and allowed to
find three errors.
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AnHoTanusi. B paGoTe npezcraBieH METO IOCTPOCHHSI TECTOBBIX OPAKyJIOB I MOACHCTEM
NaMATH  MHOTOSJEPHBIX ~ MHUKpOIIPOLECCOPOB. MeToJ OCHOBaH Ha  HCIOJIB30BAaHUU
HEJIeTepMUHIPOBAHHON STaJIOHHOH MOJIENN TECTHPYeMOH cHCTeMEL. Vmest moaxoma COCTOHUT
B JAMHAMHMYECKOM YTOUHEHHM IOBEJCHHUS MOJETM HAa OCHOBE PEAKIUM, MOTYYEHHBIX OT
cuctembl. IIpn BO3HUMKHOBEHHM HEAETEPMHHUPOBAHHOTO BHIOOpAa B ITAJOHHOH Mopenu
CO3/IAlOTCS U 3aIyCKAIOTCSl JOMOJHUTENbHbIE SK3EMIUIIPbl MOJETH, KaKAbIH U3 KOTOPBIX
MOZENUPYET BO3MOXHBII BapHaHT MOBEJCHUS MOACHUCTEMBI MamATH. llpu momydeHun
pEaKIMu OT TECTUPYEMOH MOJCHUCTEMBI 3aBEPIIAIOTCSA 3K3EMILISIPHI MOJETH, JUISI KOTOPBIX
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JaHHAsl PpeaKIus SBISETCS HEKOPPeKTHOH. IIpu3HakoM OMMOKH SBISETCS OTCYTCTBHE
AKTUBHBIX SK3eMIUDIPOB ATAJIOHHOW MOJENH. ODTaJOHHAs MOZAENb M IIOCTPOEHHBI Ha ee
OCHOBE TECTOBBII OpaKys pasJielieHsl Ha Tpu ypoBHs: (1) ypoBeHB omeparmud, (2) ypoBEeHb
KOII-CTPOKK H (3) ypoBeHB IMoAcHcTeMBl mamsaTH. Opakya ypoBHS OIEpaIuy IIpOBepseT
KOPPEKTHOCTh 0OpaOOTKH OTHAENBHOTO 3alpoca COOTBETCTBYIOIIEro Tuma. Opakya ypOBHSA
K3II-CTPOKH COCTOHMT M3 OPaKyJOB ONepalMii W MpeqHa3HadeH IS MPOBEPKU 3alpocoB K
3a7laHHON K3mI-cTpoke. Opakysl ypoBHSI MOACHCTEMBI MaMSTH OOBEIUHSIET OPAKYIbI KdIII-
CTPOK U TMPOU3BOAUT OOLIyI0 OIEHKY MOBeaeHust ycrpoitctBa. s 3¢ dekTuBHON
peanu3anuy MeToxa HeoOX0quMO, YTOOBI TECTHpyeMas ITOJCUCTEMA NaMSITH YAOBJIIETBOpsIa
CIIEIYIOINM JBYM OrpaHmdeHuHsM: (1) 3ampocsl K pasHBIM KAII-CTPOKaM HCIIOJHSIOTCS
HE3aBUCHMO JIPYT OT Apyra; (2) 3ampockl B OIHY KIMI-CTPOKY CEpHANIU3YIOTCS (B KaKIbIH
MOMEHT BPEMEHH WCIIONHSCTCS He Oojee OJHOTO 3ampoca K OJHOM KOII-CTPOKE).
IpennoxeHHBIH MeTOX C HEOONBIIMMH W3MEHEHHSMH HCIOJB30BAICS IS BepH(UKAILNH
KOII-IAMATH TPETBETO YPOBHS MHKporporeccopa «ap0pyc-8C»; B pesynpTare OBLIO
HaliIeHO TP OIIHMOKH.
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