
Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

183

On the Implementation of a Formal Method
for Verification of Scalable Cache Coherent

Systems

Vladimir Burenkov <burenkov_v@mcst.ru>,

Bauman Moscow State Technical University,

105005, Moscow, Russian Federation, 2nd Baumanskaya st., 5

MCST, 119334, Moscow, Russian Federation, Vavilov st, 24

Abstract. This article analyzes existing methods of verification of cache coherence protocols

of scalable systems. Analyzed methods include model checking, deductive verification,

methods that extend these two methods: compositional verification methods and abstraction-

based methods. Based on the research literature, the paper describes a method of formal

parameterized verification of safety properties of cache coherence protocols. The method is

based on syntactical transformations of Promela models. First, a mathematical model

(transition system) of cache coherence protocols is described. Second, the corresponding

abstract model is presented according with the concrete model transformations. These

transformations lead to abstract model that is independent of the number of processors in the

system under verification. The paper proposes a design of a verification system for cache

coherence protocols. The main part of the design is a Promela translator and abstract

transformations subsystem that obtains an internal representation of a Promela model and

modifies it according to the transformations. The article analyzes the method in terms of

development and examination of the corresponding Promela model of the German cache

coherence protocol. Examples of the syntactic transformations are shown. In order to

demonstrate the method’s ability to find bugs, verification results of two buggy versions of

the German protocol obtained from the literature are presented and analyzed. Drawbacks of

the method are presented. In particular, the usage of a limited Promela subset leads to

unnecessary complications and unnatural models. The paper discusses extension and

automation of the method needed to adapt it to verification challenges of the Elbrus
microprocessors.

Keywords: formal verification; model checking; deductive verification; cache coherence

protocol; Elbrus

DOI: 10.15514/ISPRAS-2015-27(3)-13

For citation: Burenkov Vladimir. On the Implementation of a Formal Method for

Verification of Scalable Cache Coherent Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 27,

issue 3, 2015, pp. 183-196. DOI: 10.15514/ISPRAS-2015-27(3)-13.

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

184

1. Introduction

Modern microprocessor systems are scalable – the number of cores per chip

increases and chips are combined into clusters. Each processor of the system has

access to the shared address space. However, memory is physically distributed

among the processors in order to increase the bandwidth and reduce the latency to

local memory. Thus, access to the local memory is faster than access to the remote

memory. To decrease the memory bandwidth demands of a processor, processors

are equipped with multilevel caches. Caching of shared data introduces the problem

of cache coherence.

To solve the problem, computer architects often use hardware mechanisms that

implement cache coherence protocols. Concurrent work of many hardware devices

(for example, cache and main memory controllers), which exchange information in

accordance with a cache coherence protocol, results in a colossal size of the

protocol’s state space. This, in turn, makes verification of cache coherence protocols

an extremely hard task.

To work out the problem, scientists have been conducting research in the direction

of formal methods for the past few decades and achieved a level of success.

However, scalable verification is still an issue.

Scalability leads to the need for formal verification methods that are capable of

adapting to it. As the size of systems increases, the fully automated method of

model checking reaches its limits and can no longer be used due to the state space

explosion problem.

As a rule, existing formal approaches to verification are either inapplicable to

industrial-strength microprocessor systems or require an enormous amount of

manual work.

2. Primary Verification Methods

Formal methods provide a mathematical proof of the correspondence between a

model of the object under verification and the object’s specification, that is, a set of

properties it is supposed to satisfy. A mathematical model of reactive systems – and

cache coherence protocols are examples of reactive systems – that allows to

systematically represent systems components, their coordination and interaction, is a

transition system [1].

The main approaches to formal verification are model checking and deductive

verification.

The method of model checking [2] systematically explores the finite state space of

the protocol under verification by means of specific algorithms. The advantages of

model checking are full automation and generation of counterexamples that help us

find the sources of bugs. The main disadvantage is the state space explosion

problem. Modern cache coherence protocols have too many states for an effective

state space inspection to be feasible.

Let us consider verification of safety properties, which are described by linear

temporal logic (LTL) formula Gp, where p is an assertion – a formula constructed

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

185

by applying logical connectives to variables of the model. If the assertion is true in

each state of the model, then p is an invariant of the model. According to the

method of deductive verification, in order to prove Gp, it is necessary to develop an

auxiliary assertion  , which is an over-approximation of the state space, and then

show that  implies p (i.e., that  is stronger than p). The method is based on the

following inference rule [1]:

p

p

G

.3I

preservestransitionAll.2I

modeltheofstatesinitialtheintrueis .1I







An assertion  is called inductive if it satisfies the premises I1 and I2. An inductive

assertion is always an over-approximation of the set of reachable states. If p is an

invariant of the system under verification, then there always exists an inductive

assertion  stronger than p [1]. The initial assertion p is rarely inductive. As a rule,

the verification engineer must develop an auxiliary assertion and check the validity

of the premises I1-I3.

Deductive verification allows us to work with systems with infinite number of

states. Theorem provers assist in using formal logic for reasoning about

mathematical objects. Popular tools are ACL2, PVS, Isabelle. The underlying logics

of theorem provers vary substantially. However, all theorem provers support rich

and expressive logics. In general, expressiveness of a logic leads to its

undecidability. That means that there is no automatic procedure that, given a

formula, can always determine if there exists a derivation of the formula in the

logic. The use of theorem proving presumes interaction with an expert user and is a

complicated creative process. When the theorem prover cannot find the derivation

of a formula given a proof outline, it is very hard to find the actual bug in the system

under verification.

Reference [3] describes the experience of using the PVS theorem prover for

parameterized verification of the FLASH cache coherence protocol. During the

proof construction, authors manually looked for candidates for inductive assertions

many times. When they failed to prove their inductiveness, they analyzed the

reasons for that and devised additional conditions that transformed the assertion into

an inductive one. This process is extremely laborious, which is why methods that

are solely based on theorem proving can only find a limited usage in verification of

cache coherence protocols.

3. Verification Methods for Scalable Systems

Development of verification methods for scalable systems may be carried on in

several directions: 1) improvement of methods based on model checking; 2)

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

186

improvement of methods based on deductive verification; 3) combination of the

methods from the first and the second groups.

Methods of verification of cache coherence protocols deployed in industrial-strength

microprocessor systems must satisfy a number of requirements: 1) possibility of

conducting verification in a reasonable amount of time; 2) high level of automation;

3) ability to provide information about sources of bugs.

Model checking or deductive verification on their own do not meet these needs.

Consequently, building a general infrastructure that would combine and further

develop methods of model checking and deductive verification seems to be the most

promising approach to verification of scalable systems.

4. Abstraction and Compositional Model Checking

The main approaches allowing the application of model checking to verification of

scalable systems are abstract model checking and compositional verification [2].

Abstraction methods diminish the number of states of the model under verification

and preserve the properties of interest at the same time.

Equivalence relations, which guarantee that the models will have the same

behaviors, usually do not decrease the number of states sufficiently. Instead,

simulation relations, which relate models to their abstractions, are used. The

simulation guarantees that every behavior of a model is a behavior of its abstraction.

However, the abstraction might have behaviors that are not possible in the original

system.

Abstract state spaces may be obtained by means of under-approximation methods,

which remove behaviors, or over-approximation methods, which add new

behaviors. Thus, in case of under-approximation, a bug in the abstract model

implies a bug in the concrete model, and in case of over-approximation, correctness

of the abstract model implies correctness of the concrete model. Further in this

article we only consider over-approximations, also known as conservative

abstractions.

Developing abstract models involves finding a compromise between two conflicting

goals: 1) generation of small abstract models that can be model checked; 2)

generation of precise abstract models.

Usually, the smaller the model, the more behaviors it allows. This may lead to

spurious counterexamples that are not present in the concrete model. There are at

least two ways out: 1) construction of precise abstract models; 2) analysis of

counterexamples and modification of the abstract model according to the acquired

information (counterexample-guided abstraction refinement).

Methods that create precise abstract models (for example, based on counter

abstraction or environment abstraction [4]) lead to models of big size in case of

complicated protocols.

The idea of compositional verification [5] is to exploit the natural decomposition of

a distributed system into processes. Processes are verified individually (with a

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

187

generalized environment), then the results are combined, and a verdict about

correctness of the initial model is made. A compositional approach must provably

lead to simplified models satisfying the properties of the initial model.

5. A Method of Compositional Model Checking

5.1 General Idea

The method described in this paper adapts the method [6] to work with a subset of

Promela. The method is based on a combination of model checking and theorem

proving. The choice of Spin is motivated by the fact that Spin is a modern and

constantly evolving tool that supports many optimizations and verification modes.

The Promela language is convenient for description of distributed systems,

including cache coherence protocols. Moreover, Spin may be used as the basis for

generators of test programs the purpose of which is verification of implementations

of cache coherence protocols [7].

The method shows how to build an abstract model that simulates a given concrete

model of a cache coherence protocol. The construction is performed by means of

syntactic transformations of the concrete Promela model.

5.2 A Mathematical Model of Cache Coherence Protocols

Cache coherence protocols may be seen as asynchronous systems of communicating

processes in which a process is a finite automaton. Then a mathematical model of a

cache coherence protocol is a system of communicating finite automata.

A Promela model specifies the behavior of a set of asynchronously executing

processes in a distributed system. Each Promela process defines an extended finite

automaton. Thus, Promela is suitable for describing models of cache coherence

protocols.

By simulating the execution of a Promela model we can build a digraph of all

reachable states of the model. Each node in the graph represents a state of the

model, and each edge represents a single possible execution step by one of the

processes. This graph is always finite [8].

Safety properties can be interpreted as statements about the presence or absence of

specific types of nodes in the reachability graph.

Let us consider the transition system corresponding to the reachability graph. The

following discussion considers a subset of Promela.

A transition system is a triple),,(0 ESSTS  , where S is a finite non-empty set of

states, SS 0 is a non-empty set of initial states, SSE  is a transition relation

on S such that

EssSsSs )',(:)'()(

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

188

In order to be able to formally define syntactic transformations of a Promela model,

we will represent models by means of a triple),,(RVP  , where

 V is a set of variables of the model, each variable is of its own type;

  is the initialization predicate;

 R is the set of transition rules represented as guarded commands

consisting of a condition and a set of assignments:

}:;;:{ 11 kk tvtvcond   ,

where cond is the condition (predicate), Vvi  are model variables, each it is a

term of the same type as iv ; := denotes assignment.

An interpretation of a set of typed variables V is a mapping that assigns to each

variable Vvi  a value in the domain of iv .

A triple),,(RVP  determines a transition system),,(0 ESSTS P  in the

following way. Each state Ss is an interpretation of the set V . For every term t

we write)(ts for the value of t in the state s . For a predicate  , we denote |s

if and only if trues )( . A predicate  is an invariant of a model P, denoted by

|P , if  |: sSs . 0S is the set of states Ss such that |s .

There exists a transition 'ss  , which means Ess )',(, if there exists a transition

rule

}:;;:{ 11 kk tvtvcond   ,

such that conds | and 's is a state in which

))()('(}),,1{(ii tsvski  

and

))()('(}),,{\(1 jjkj vsvsvvVv   .

5.3 The Abstract Model

Let },,{ 1 nppN  be a parameter set, where npp ,,1  are constants of the type

used to represent processes in the model and n is a natural number defined by the

number of cache agents in the system.

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

189

Let),,(RVP  be a symmetric model [9] and },,{ 1 mppM  be a subset of

the set },,{ 1 nppN  , nm  . Let abs be the element that is an abstraction of

elements nm pp ,,1  and }{absMMabs  . We define the abstract model

),,(absabsabs RVP  with the parameter set absM as follows.

Let S be the set of states of the model P and absS be the set of states of the model

absP .

The predicate abs is obtained by the syntactic transformations PTrans .

The transition rules absR are obtained by syntactic transformations RTrans that

include transformations of conditions PTrans and transformations ATrans of the

assignments that appear in the rules:

)}:(;);:({)(

}):;;:{(

11

11

kkAAP

kkR

tvTranstvTranscondTrans

tvtvcondTrans









The transformations of terms TTrans are defined in the following way.

VvvvTransT  eachfor)(,










miabs

mip
pTrans

i
iT

for

,for
)(,

cccTransT constantsotherallfor)( .

This definition is extended inductively to work with composite term expressions.

Suppose),,(1 ktt  is a predicate, i.e., a logical combination of ktt ,,1  . Then

)),,((1 kT ttTrans  is the same logical combination of)(,),(1 kTT tTranstTrans 

. Define)(PTrans to be the same logical combination of ktt ',,'1  , where

















.innegativelyoccursand)(if,

,inpositivelyoccursand)(if,

,)(if,

'





iiiT

iiiT

iiTi

i

tttTransfalse

tttTranstrue

ttTranst

t

Now let us define the transformations of assignments ATrans . Denote by  the

absence of assignment and let



 


otherwise,ofdomaintheinvalueany

,)(if,
'

t

ttTranst
t

T
.

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

190

Table 1 lists the allowed types of assignments and their corresponding

transformations. Define Array to be a Promela array and absMNf :2 to be a

mapping that maps mpp ,,1  to themselves and maps nm pp ,,1  to abs.

The abstract set of transitions is defined as follows:

}|)({ RrrTransR Rabs  .

Table 1. Syntactic Transformations of Assignments

Type of assignment Assignment

transformation
tv : ': tv 

tpArray i :][

mitpArray

mi

i 



if,':][

if,

iptArray :][)(:][2 ipftArray 

5.4 Justification of the Abstraction Rules

It can be shown [9] that the abstraction map absSS : preserves transitions, that

is

))'()(()'(: ssssSs  

Then, safety properties are preserved: If a state is reachable in the concrete model, it

is reachable in the abstract model. In other words, the abstraction map is a

simulation relation.

5.5 The Method

The verification method is based on two observations. The first one is the fact that

the abstraction map is a simulation relation. The second one is the guard

strengthening principle [9] that makes the following strategy correct.

Given a model P and a predicate  , in order to prove that |P : 1) add  to the

conditions of transition rules of P by means of conjunction; 2) prove that  is an

invariant of the newly acquired model.

The method consists of the following steps. Input objects are a symmetric model P

with parameter set },,{ 1 nppN  and a safety property  .

1. Construct absP , using the syntactic transformations from section 5.3. Let

absPQ  .

2. If |Q , the verification is finished: we conclude that |P .

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

191

Otherwise, examine a counterexample provided by Spin, devise an invariant  and

modify Q as described in [9]. Set   . Go to step 2.

6. Design of a Cache Coherence Protocols Verification System

The syntactic transformations described in section 5.3 can be fully automated.

Performing them by hand is tedious and impractical, especially in an industrial

setting. Therefore, in order to alleviate this problem, a tool may be developed,

which would build an internal representation of the concrete Promela model, modify

it according to the transformations, and produce the abstract model. An abstract

syntax tree may be the internal representation.

The transformations of Promela models are shown in Fig. 1.

The question of automating the refinement transformations is significantly harder.

Further research is needed in this direction.

Internal

representation
Concrete

Promela model

Modified internal

representation
Abstract

Promela model

Promela translator and abstract

transformations subsystem

Figure 1. The transformations of Promela models

7. Verification of the German Cache Coherence Protocol

I developed a Promela model of the German protocol. The model is written in the

style of [10]. The model implements the algorithm of memory access requests

processing shown in Fig. 2.

Processor core Home processor

Cache with a
shared copy

Cache with a
shared copy

1. Initial request

2. Coherent request -
invalidate

2. Coherent request -
invalidate

3. Coherent answer –
invalidate_ack

3. Coherent answer –
invalidate_ack

4. Access grant -
grant

.

.

.

Figure 2. Processing of the read/write requests of the German cache coherence protocols

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

192

A processor core and the corresponding cache controller are represented by the

Promela process core and the home-processor is represented by the process home.

Thus, the model consists of one process home and N processes core where N is a

natural number. Interaction between the processes is accomplished by means of the

three Promela arrays channel1, channel2, and channel3 (see Fig. 3).

The array channel1 is for the initial requests req_* sent by a processor to the

home processor. The array channel2 is for the snoop requests invalidate sent

by the home processor to cache controllers and for grants grant_*. The array

channel3 is used for coherence answers sent by cache controllers to the home

processor (invalidate_ack).

The German protocol uses three main states of a cache line: Invalid, Exclusive, and

Shared.

According to the transformations described in section 5.3, I developed the initial

version of the abstract model. The abstract model contains one process home, two

processes core, and one abstract process home_abs. One of the most complicated

parts of creating the abstract model – the transformation of assignments – is

depicted in Table 2. Table 2 shows examples of the corresponding transformations

of the German cache coherence protocol Promela model.

Process core Process home

channel1

channel2

channel3

Figure 3. Communication channels between processes in the Promela model of the German

cache coherence protocol

Table 2. Examples of the syntactic transformations of the Promela model of the German

protocol

Assignment Assignment

transformation
curr_command

= req_shared

curr_command

= req_shared

sharer_list[i]

= true
mi

mi





if, true= t[i]sharer_lis

if,

curr_client = i curr_client = i

in a concrete process

curr_client = abs

in the abstract process

The verified property stated that it is impossible for a cache line to be in state

Exclusive in one cache and in state Shared in some other cache. For example:

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

193

never { do :: assert((!(cache[0] == exclusive && cache[1]

== shared))) od }

This property did not hold on the initial abstract model. According to section 5.5, I

performed the refinement process. Two additional invariants were developed and

the verification process was finished due to the absence of counterexamples. The

refinement process was similar to that described in [6].

For the experimental check of the method’s ability to find bugs, I verified two

buggy versions of German described in [4]. In the first buggy version, after the

home processor grants exclusive access to a cache, it fails to set the

exclusive_granted variable to true. Thus, when another cache requests shared

access, it gets the access even though the first cache holds it in exclusive state. In

this case Spin issues a counterexample because the assertion

assert((!(cache[0] == exclusive && cache[1] == shared)))

is violated.

In the second buggy version, the home processor grants a shared request even if

exclusive_granted variable is true. In this case Spin issued a counterexample

because of the violation of one of the invariants found during the abstraction

process.

8. Conclusion and Directions for Future Work

Formal methods for verification of cache coherence protocols fall into two groups:

methods based on model checking and methods based on deductive verification.

Model checking is fully automated but suffers from the state space explosion

problem. Deductive verification is scalable but requires a lot of expert’s hand work.

Combination of the two approaches seems promising because of its potential ability

to lead to a scalable method that requires an acceptable amount of hand work.

On the basis of existing literature, a method that is such a combination is described.

Although the method can be used for parameterized verification, it has some

drawbacks. It supports a very limited subset of Promela constructs and poses

unnecessary limitations on the way verification engineers should write their

Promela models. The style of the Promela model used in this paper is less intuitive

than the style of the model described in [7]. The model from [7] was obtained by a

natural decomposition of the Elbrus system-on-chip under verification and

organizing process communication through Promela channels. The model was

successfully used in verification of several Elbrus systems.

Future work directions include provable extension of the Promela subset that can be

dealt with by the verification method, the examination of the impacts of different

styles of descriptions of cache coherence protocols, and development of tools that

would automate parts of the verification process. The verification process will be

applied to Elbrus microprocessors.

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

194

References
[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:

specification,” Springer-Verlag, 427 pp., 1992.

[2]. E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of

distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel

algorithms and architectures, pp. 288–296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,

2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the

fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache

coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382–

398, 2004.

[7]. V. Burenkov, “Generator testov dlya verifikatsii protocola cogerentnosti kesh pamyati

[A test generator for cache coherence protocol verification],” Voprosi radioelektroniki,

seria EVT, 3, pp. 56–63, 2014.

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-

Wesley Professional, 608 pp., 2003.

[9]. S. Krstic, “Parameterized system verification with guard strengthening and parameter

abstraction,” Automated verification of infinite state systems, 2005.

[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible

invariants,” Tools and algorithms for the construction and analysis of systems, vol.

2031, pp. 82–97, 2001.

О реализации формального метода
верификации масштабируемых систем с

когерентной памятью

Владимир Буренков <burenkov_v@mcst.ru>,

Московский государственный университет имени Н.Э. Баумана, 105005,

Москва, Российская федерация, 2-я Бауманская улица, 5

МЦСТ, 119334, Москва, Российская Федерация, ул. Вавилова, 24

Аннотация. В работе приведен анализ существующих методов верификации

протоколов когерентности кэш-памяти масштабируемых систем. Рассмотрены методы

проверки моделей и дедуктивной верификации, методы композиционной верификации

и методы, основанные на абстракциях. На основании литературы изложен формальный

метод параметризованной проверки свойств безопасности протоколов когерентности.

Предложенный метод основан на синтаксических преобразованиях Promela-моделей.

Рассмотрена математическая модель протоколов когерентности кэш-памяти в виде

Владимир Буренков. О реализации формального метода верификации масштабируемых систем с когерентной

памятью. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 183-196

195

системы переходов. Представлена абстрактная модель протоколов наряду с

трансформациями исходной модели, которые позволяют ее получить. Размер

абстрактной модели не зависит от количества процессорных узлов верифицируемой

системы. Предложена архитектура системы верификации протоколов когерентности.

Данная система имеет целью объединить различные этапы процесса верификации

воедино и автоматизировать выполнение трудоемких задач, решение которых легко

получить алгоритмически, а попытки сделать это вручную чреваты внесением в модель

ошибок. Основной частью архитектуры является транслятор языка Promela во

внутреннее представление и подсистема анализа и модификации внутреннего

представления. Описано применение метода к верификации протокола German,

построение и анализ соответствующей Promela-модели. Приведены примеры

абстрактных преобразований. Проанализированы результаты проверки двух

ошибочных версий протокола German, представленных в литературе. Указаны

недостатки рассмотренного метода. Например, использование ограниченного

подмножества языка Promela создает разработчикам моделей дополнительные

трудности и приводит к неестественным моделям. Сформулированы направления по

улучшению, в частности, расширению набора поддерживаемых конструкций языка

Promela, и автоматизации метода, необходимые для проведения верификации
многоядерных

Keywords: formal verification; model checking; deductive verification; cache coherence
protocol; Elbrus

DOI: 10.15514/ISPRAS-2015-27(3)-13

Для цитирования: Буренков Владимир. О реализации формального метода

верификации масштабируемых систем с когерентной памятью. Труды ИСП РАН, том

27, вып. 3, 2015 г., стр. 183-196 (на английском языке). DOI: 10.15514/ISPRAS-2015-

27(3)-13.

Список литературы
[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:

specification,” Springer-Verlag, 427 pp., 1992.

[2]. E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of

distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel

algorithms and architectures, pp. 288–296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,

2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the

fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache

coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382–

398, 2004.

[7]. В.С. Буренков. Генератор тестов для верификации протокола когерентности кэш-

памяти // Вопросы радиоэлектроники, серия ЭВТ, 2014, выпуск 3, с. 56-63.

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.

Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

196

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-

Wesley Professional, 608 pp., 2003.

[9]. S. Krstic, “Parameterized system verification with guard strengthening and parameter

abstraction,” Automated verification of infinite state systems, 2005.

[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible

invariants,” Tools and algorithms for the construction and analysis of systems, vol.

2031, pp. 82–97, 2001.

