H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Carassius: A Simple Process Model Editor

N. Nikitina <nmnikitina@edu.hse.ru>,
A. Mitsyuk <amitsyuk@hse.ru=>,
PAIS laboratory, National Research University Higher School of Economics,
125319, Kochnovsky, 3, Moscow, Russia

Abstract. Process models of different types and graphs are commonly used for modeling and
visualization of processes in information systems. They may represent sets of objects, tasks or
events involved in process linked with each other in some way. Wide use of process models
in various notations engenders necessity of software tools for creating, editing, and analysing
them.

This paper describes the process model editor which allows for dealing with classical graphs,
Petri nets, finite-state machines and systems of communicating automata. Additionally, the
tool is armed with the following list of useful features: process simulation based on a Petri net
token-based replay, import and export of process models in different persistent formats,
various model layouts and other process visualization abilities. Moreover, Carassius is a
modular tool which can be extended with additional process model notations, processing,
import and export possibilities.

In the paper one can find a detailed description of a couple of layout algorithms already
implemented in the tool. These algorithms for visualization of Petri nets and graphs can be
used as a base point for further development of more refined process visualization
approaches. Carassius might be useful for educational and research purposes because of its
simplicity, range of features and variety of supported notations.

Keywords: graph; Petri net; finite-state machine; process model; process model
visualization; process model editor

DOI: 10.15514/ISPRAS-2015-27(3)-15

For citation: Nikitina N., Mitsyuk A. Carassius: A Simple Process Model Editor. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 219-236. DOI: 10.15514/ISPRAS-2015-
27(3)-15.

1. Introduction

The modern world is full of information systems working in different business
domains. One of the most developed concepts is process-aware information systems
[1]. A wide variety of different notations has been developed to model processes.

219

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

In this paper we present a new tool for editing and simulating process models in
different notations. Our goal is not to build yet another complicated model
simulator.

Our ambition was to develop a model editor which may be used for educational
purposes. Thus, the decision was made to implement a simple and extensible model
editor for different modeling notations. In particular, a modular architecture of
Carassius allowed us to implement simulation modules in addition to different
editors.

The remainder of this work is organized as follows. Section 2 gives a description of
the tool, implemented approaches and algorithms. Furthermore, the description of
the tool’s features is provided.

In section 3 we consider other tools with similar functionality. The advantages and
disadvantages of these tools are provided. Section 4 concludes the paper.

2. Tool Overview

2.1 Functionality

Here one can see the brief description of all features implemented in Carassius.

In this paper we present a tool which intended to help researchers and other people
easily make and edit models of different types. Carassius works with graphs of 3
types: classical graphs, Petri nets and finite-state machines. First of all, it permits to
edit process models by hand. Besides, the tool supports several markup languages
(PNML [2], [3], GraphML [4], [5] and FSAML) and can read and save models from
and into these formats. FSAML is a new XML format we developed for storing a
finite state machines system.

The working area has a grid helping users position the nodes. The tool can
automatically arrange model elements according to the grid. Users may set or
change all the possible properties of the whole model or its parts (for example: node
names, arc weights etc.) The tool can arrange models using different layout
algorithms: for graphs and finite-state machines it uses the force-directed algorithm,
whereas for Petri nets it uses the layering algorithm developed for Carassius. Both
of them are described in details in subsection Visualization refinement.

In addition, Carassius has features for a Petri net simulation. The tool supports step-
by-step token-game of a process model [6]. Moreover, there is a special coloring
mode that shows the real way of tokens during the simulation. Because of these
features, the tool can be used successfully in educational purposes.

2.2 Supported Notations
This section describes the modeling notations supported by Carassius.

220

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

2.2.1 Petri Nets

Fig.1. A Petri net editing.

The main supported formalism is Petri nets. Petri nets are widely used in process
modeling [6], [7]. A Petri net is a directed bipartite graph with two types of nodes:
transitions (denoted by rectangles) and places (denoted by circles). There are
directed arcs between places and transitions (denoted by arrows). Places can contain
so-called tokens inside, which determine the current state of a net and its marking.
Petri nets offer a graphical notation for step-by-step processes that include choice,

iteration, and concurrent execution. Execution of a process is depicted by tokens
flow.

2.2.2 Graphs

] S y— —
L R Tt TR
Ll
2 - aas
- . ":’ 1
™ b — L |
T, L S
'S 1_.--!_- _'-\.
b A, 4
|
e {L
\ 9 A
. i | .a-
o, _ s
o

Fig.2. A graph editing.

Carassius is also works with classical graphs. Both directed and undirected edges
are supported. It is possible to assign weights of edges. Process of graph editing is
quite simple. However, a possibility to deal with directed graphs and store them
using GraphML format is very useful.

221

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

2.2.3 Finite-State Machines

] - =y
5 Mk P ok -]
2R nas
Q ,»:} a
i -
—~ ¥
L=, T
!
l::.L .'5 . -
— O—L 7
L "'\-\.__\. (

Fig.3. A finite-state machine editing.

A finite-state machine (FSM, finite-state automaton [8]) is an abstract machine that
can be in an only one of a finite number of states at a point of time.

FSM recognizes or accepts certain word of some language with finite alphabet. It
can move from one state to another by triggering a transition with the same label as
a next letter of an input word. If a FSM stops in a state from the set of so-called
acceptance states, then it accepts a word. This is not always the case. Therefore, any
FSM forms a language consisting of the words accepted by this FSM.

A particular FSM is defined by a list of its states and transitions. States are usually
depicted by circles, and transitions are depicted by labeled directed arcs. There are
two special types of states: a single starting state and a set of final (accepting) states.
A starting state is depicted by a circle with an arrow from anywhere going into the
circle (see figure 3). Each accepting states is depicted by a double circle.

2.2.4 Systems of Finite-State Machines

Systems of communicating FSMs are also supported by Carassius. A system of
Finite-State Machines may be useful for modeling processes which appear at the
same time and have causal dependencies. A Finite-State Machine System deals with
some number of FSMs and relations between them. These relations may be of two
types: (1) synchronous (two transitions from the FSMs may fire only at the same
time) and (2) asynchronous (there is a special state in-between the FMSs called the
channel state). Synchronous relations are denoted by simple lines between two
models, which hold the information about transitions which are fired
simultaneously. Asynchronous - by sequence of arrow, place and another arrow,
meaning that some action performed in one fsm may have consequences in another.

222

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

[Y T R—— =

Fig.4. A system of finite-state machines editing.

2.2.5 Import and Export Formats

Carassius provides different import and export formats to facilitate work with
models. It deals with several convenient markup language formats for import:
PNML for Petri nets, GraphML for graphs, and FSAML for finite-state machines
and their systems. All of them are XML-based interchange formats. In addition, one
can easily export a model to png-picture or tikz-picture to import model to a TEX
file.

2.2.5.1 Markup language formats

PNML and GraphML formats are well-known in the world of modeling and have
been in use for a long time. Both of them have a clear specification and will be
described further. On the contrary, FSAML (Finite-State Automaton Markup
Language) has been developed recently by the authors of this paper and has not
been formally described yet.

A detailed explanation of a PNML format can be found in [9]. A typical PNML file
contains information about a net, a number of pages, lists of places, transitions and
arcs. A lot of additional information is available such as names of nodes,
dimensions etc. PNML is an extensible format. So, it is possible to make different
extensions for particular modeling aspects. It is impossible to cover all extensions.
That is why Carassius deals with PNML files according to the recent version of the
core standard (ISO/IEC 15909-2:2011).

GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a
language core for describing the structural properties of a graph. A detailed
description can be found in [10]. Carassius, in turn, supports only simple graphs
(directed, undirected and mixed) without any additional features.

223

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

FSAML is a format allowing exchange of finite-state machines and their systems.
The development of this format is still in progress. However, there is a working
alpha implementation of it in Carassius.

The structure of the file according to the format is following: the main node
(fsasystem) consists of its name (name), a number of finite-state machines (fsa),
synchronous (syncs) and asynchronous (channels) relations between them. In turn, a
fsa node contains a number of states (state) and transitions (transition). Each of
them has an attribute id holding unique id. Each state has its type: general, initial or
final, therefore there is an inner node statetype containing this information. The
second inner node is graphics representing the data about position and dimension of
a node. Transitions have their source states (source) and target states (target)
represented as attributes. The channels node consists of several channels (channel),
which, in turn, have two nodes: from and to containing information about fsa and a
corresponding state. The syncs node has the same structure except the fact that
relation is between two transitions, not states.

An example of the file in the FSAML format is shown on figure 5.

aml version scodings UTF-§ textxgenerale! tony

Fig.5. The FSAML format.

2.2.5.2 TEX and PNG export
The tool has features for TEX and PNG export. Carassius may generate a code to
import picture using tikz-package into your TEX file. Figure 6 shows a simple Petri

224

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

net edited with Carassius and exported directly into TEX. This feature has been
implemented with help of N. Chuykin (a student at HSE).

1

® f O D O

B
Fig.6. A picture compiled with tikz package.

2.3 Visualization refinement

The presented tool has several features to make model visualization better. There
are two special algorithms for the directed graphs and for Petri nets, which can
arrange nodes to make model easier to understand. Graphs and Petri nets can be
processed in different ways. The tool also provides a grid for working area which
helps placing nodes more accurately. Finally, Carassius provides possibility to
hide/show grid as well as node labels. This section describes the layout algorithms
in detail.

2.3.1 Petri Net layout

Firstly, the layout refinement algorithm for Petri nets is described. It is a layered-
based algorithm which was developed especially for Petri nets. Layered-based
algorithms are a group of layout algorithms which work with directed graphs and
take their hierarchical structure into account [11]. We chose this approach as the
most suitable for Petri nets as they are directed, and bipartite. The structure of the
Petri nets notation is quite suitable for a layered representation. The main scheme of
the layered-based approach is described in [12]. These algorithms are aimed to
cover the list of aesthetic points:

1) single edges direction,

2) occupied area minimization,

3) uniform nodes allocation,

4) long edges avoidance,

5) edges-crossing minimization.
Although some of these points may conflict with each other, the approach is viable.
It works using three steps:

1) allocation of nodes on layers in a way which ensures that edges have single

direction;

2) choice of the nodes order on layers with the aim of edges-crossing
minimization;

3) determination of node coordinates on layers with the aim of edges-length
minimization.

225

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

In the presented algorithm these three ideas are used, but some features are added
and changed as well.

The algorithm in Carassius takes into account: (1) a biparticity of Petri nets, (2) the
fact that they have directed arcs, and (3) a presence of initial places.

Data: List of all nodes as nodes

Result: All podes are amanged

it modeiNumber = 1

while exch mode dovsn’t belong to any model do
Node firstNode » findNode WithoutModeINumbert);
depthFirstScarchi firstNode, modelNumber),
modeINumber++;

end

foreach model do
List<Node > modelNodes »
getAlIMode INodes(modeINumber),

. List<Node > mitialNodes =

scarchForinitialNodes(modelNodes),

- e ..

" sctColumnForStartingNodes(starting Nodes)
" 1ColumnForEachNodet mode INodes);

” setY coordinate ForEachNodet mode INodes);
" seiSpaceBetweenColumns(),

1 oend

14 visualized),
e returm coond)

Alg.1. Petri net layout algorithm.

Generally, it determines connected components of a model (a number of individual
graphs in one model), applies layered-based approach for each component and then
gathers components together to visualize an overall model. We use so-called
‘columns’ to represent layers. Due to the Petri nets biparticity the content of
columns alternates from places to transitions. We start from the first column with
places. When several steps of the algorithm are made, each node has its column
(using breadth-first search), and we can arrange nodes in each column separately
(set them y-coordinate). The overall algorithm 1 shows all the steps.

Data: Inial pode m sode, nembor of model s modeiNum
Resabt: All nodes of the model ave marked

1 Torench Are are bn node thisAres da

x| N amk - Data: List of all nodes & nodes
o becicden o Yo: e Result: List of isitial nodes as initsalNodes

: be oo 1 List<Node > isstialNodes = new List< Node > () foreach Node
che :

. next w arc Froar, wode in nodes do

\ nd 2 W nodethishres, Cowmt wo O then

. scrlmodeiNumber » model Num ’ mitialNodes. Addnode)

. sl ivChecke e . e

- Sorvach An 1 in next thisdAres do ' bood haslagoiagArcs = Ll

" Node . foreach Arc are in nede thisAres do

" If wrcl To wm mode then ? I e To ww monde then

" oent] = arch Te . haskngosng Arcs = true;

“ ol . becak

" ’r\'\'.l = arct From .- end

[o

= — = - el " end

ad s et el craliezccd " If AustupoingArcs == false then

~ next] modeiNumber » modeiNum 0 initial Node Addinode);

- depthFerstSeanchs next |, madelNam u end

n ond 1 end

1 end w end

» oend o retuen oredand Node s

Alg.2. Determination of all nodes in a model. Alg.3. Search of initial nodes.

226

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

In order to arrange nodes the tool makes the following steps:

(a) Determines connected components of the models. A Petri net model
may consist of several individual connected components, so we have to detect them.
Also, for each set of nodes we have to assign the number used for component
identification.

Next steps are done for each connected component of the model:

(b) Finds all initial nodes (both transitions and places). A node considers as
initial if it doesn’t have any ingoing arcs.

(c) Sets columns for the initial nodes. This step is needed because these
nodes will become starting points to move through the graph.

(d) Sets a column for each node. This algorithm is layered-based, thus, we
need to distribute nodes among columns.

(e) Sets a y-coordinate for each node. At this step we want to place each
node in some place at a column. To make the model layout more compact we locate
nodes symmetrically from the center of a column (mean value between minimal and
maximal y-coordinate of nodes in a column).

(f) Sets margin between columns. There may be very few or, on the
contrary, too many arcs between the nodes in two adjacent columns. So, these
distances should depend on a number of arcs between neighbor columns.

(9) Visualizes the whole model. The whole model is visualized using all
information derived at the previous steps.

The listing 2 shows the algorithm which divides a model into several connected
components. To obtain the list of initial nodes the algorithm 3 is used.

Data: List of all sodes as sodes

am't wnn do
Limt<Node > cuneaeColumnNodes = new List< Nodie >(
‘ foreach Nowle node |

I monde, column

currentColumn
ond
. end
foreach Arc are in node thisAres do
. Node wmp
" I o To mevde 1hen
: temp = arc.From
ohw
“ et = are.To
ond
I monde, colamm 0 then
n node.column » currentColuna » |
ool
" ol
» currestColumnse +

Alg.4. Search of a column for each node.

The distribution of all nodes in columns is shown in the algorithm 4.
Algorithm 5 arranges each node for its place (y-coordinate) in a column.

227

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

column as column, maximum nsmbor of
del
of all nodes i one mode! as

Data: Curn
cheny
masNumberOfElements, st
modeiNodes

Reswlt: Each sode in ¢

it numberOfElementsls

R% B0 Cobummn fow all ¢

® has its own y-Coordinase

forcach Node nexde in n odex do
Il node codamn colwme then

‘ namberOfEle monts ++

. end

. end

s double cooedY = celiHeight / 2 * (maxNumberOfMEkments
oumberOfElements)

v Forvach Node nade in eolumn do

. aode Y = cooed Y

" coordY = cellHeight

ooend

Alg.5. Setting of a position for each node in a column.

2.3.2 Graph layout

In this subsection the layout algorithm for graphs is described. Carassius contains
implementation of the existing algorithm from [13] with little changes. It is a force-
directed algorithm aspired to achieve several goals:

(1) nodes should not be too close to each other,
(2) edges should have more or less equal length and do not cross each other too

often.

This algorithm does a number of iterations to achieve the best arrangement of a
graph. It is done by assigning so-called forces and velocities among the set of edges
and the set of nodes, based on their relative positions.

228

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Data: List of all sodes in one model as sodes, list of all acs in
oo model as arcs
Result: All nodes in one model are aranged
1 dowble oldX, oMY, newX, newY,
2 foreach Node node in ndes do
' # nextDouble returns 2 real sumber from 0 %0 | node X =
2000 + pextDoubled) * 300
. pode Y = 100 + nextDoublel) * 200,

s« end

s do

? for « « 0 to nodes. Count do

. podes|i) netForce X » nodes|i) netForce Y = 0

. for j « O to nodes. Count do

- ii==)then

" coatinue,

H end

o double squaredDistance =
(nodeli]. X — node[3). X)7 +
(rodels]. Y node(31.Y)%:

“ nodes{i]netForce X += 200 * (nodes]il X -
nodes|j).X) / squasedDistance;

" nodes| i) netForce Y ow 200 * (nodes]i) Y -
nodes|f].Y) 7 squared Distance;

i el

” foreach Arc arc in urcs do

= Node tempNode;

" I are. From == nodesfi] then

> sempNode » arc.To;

n ehve

FH kmpNode = arc. Fromx

B3] end

£ nodesi] netFoeceX 4= 006 * (lempNode X -
nodes]i) X\

2 nodes|i] netForce Y o= 0.06 * (tempNode. Y
nodes[t).Yr

EN end

n modes|ipveloctyX = (nodes{i] velocityX +

modes] i) setForceX) * 0,85
B sodes|i) velocityY = (nodes|i] welocity Y +
modes|i] metFoeceY) * 085

> end

» oldX = nodes]0].X;

n oldY = nodesiD)Y;

) foreach Nowle node in novdes do
" pode X += node, velockyX
“ pode. Y 4= node velocity Y.
" end

~ pewX = nodes{0]X:
” mwY = nodesfOL Y,
» while oldX '= newX | oldY = newY,

Alg.6. Force-based algorithm for a graph model layout.

An algorithm for graph layout in Carassius consists of two main steps:

(a) The force-directed algorithm (see algorithm 6) itself. It is applied for each
connected component. Constants used in the algorithm were selected experimentally
based on application Ul configuration.

(b) A movement of all nodes on fixed distances. Nodes can have negative
coordinates after applying the algorithm, so we need to move them because working
area shows only those which have positive coordinates. We also need to do some
movements to place models in such a way in order to save a distance between them.

2.4 Simulation

Petri nets are not only simple bipartite graphs but also a powerful tool able to
represent a process flow. There are ‘tokens’ (markers inside places), reflecting

229

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

current state of a net. They can change their places by the transitions firing. A
transition may be fired if all places which have outgoing arcs to this transition have
enough tokens inside (equal or more than weight of a corresponding arc). At each
step only one transition is fired (may be chosen by hand or randomly). When a
transition is fired it consumes the required number of tokens and passes a token to
each outgoing place. The simulation ends when there is no transition able to be
fired.

Simulation of an example Petri net made in Carassius is shown in figure 7.

Fig.7. Simulation of a Petri net.

2.4.1 Wave coloring

Simulation of a net in our tool may also be done in a waving mode. During
simulation nodes are colored in a specific way. A movement of a token from one
place to another will be considered as a single step. Nodes engaged in the last step
have deep blue color, whereas nodes used in previous steps are colored in light blue.
In other words, the later a step is made, the darker a node is colored, the earlier — the
lighter. This coloring allows for easily understanding of a process direction,
determining which nodes were visited and which were not.

230

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

! Uy
) ¥ 1l
e o Jo =
- ' - - L] »
- d d o
[— -
> x aHe L .-
~ g 288 g<gn — -

24 o o{olc{o;clo

4

Fig.8. Wave coloring during simulation of a Petri net.

Figure 8 shows how wave coloring of a simulation works in Carassius. The top part
of the picture shows simulation at the intermediate step. The bottom part shows a
window when the simulation has been ended.

2.5 Architecture

The tool is built as a standalone windows application using C#. We used the
Windows Presentation Foundation (WPF) platform to build our application because
of its functionality, extensibility and convenience. The WPF provides user controls
as a mechanism for reusing blocks of the Ul elements. The main window of
Carassius consists only of one user control, which may be easily moved to another
application as a component.

231

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

3. Related work

A variety of model editors are available now. Nevertheless, all of them did not fully
meet our two main requirements (simplicity and extensibility). This section
describes the closest existing tools which support model editing in a desirable way.
a) CPN Tools (see [14]): CPN Tools is a tool for working with Colored Petri nets. It
allows users to edit, simulate, and analyze them. CPN Tools has an interesting,
original interface which uses a lot of small inner windows for each type of editing.
However, at first a user can get stuck because the GUI is not very intuitive and the
user needs to read the help to understand what he should do in order to start
working. In addition, the tool works only with colored Petri nets and you cannot
work with simple ones.

b) Yasper (see [15]): Yasper, as authors say, is the yet another smart process editor.
It is a quite simple, but useful tool which supports editing and simulation of Petri
nets. It has rather user-friendly and easy to use interface, but it is still unevident how
to do some actions. Fortunately, its help paper is very useful and provides a lot of
information about usage of the tool. However, Yasper has a significant drawback - it
does not support the current version of the PNML format, so the user just cannot
download new PNML files and cannot work with exported files from the tool
anywhere else.

¢) Tina (see [16]): Tina is a tool for working with classical P/T and Time Petri nets.
It has features for editing and analysis of Petri nets. Tina’s interface is very simple,
but at the same time easy to understand. Editing functionality is not very wide, but
the tool provides several analysis techniques, which work well. Tina’s disadvantage
is that it cannot simulate Petri nets in a visual way and has a small number of
functions.

We can see that several tools for working with Petri nets are already exist, but all of
them have certain drawbacks. In our tool we endeavored to take into account all
disadvantages we found in other tools, and at the same time to add new
functionality. We tried to do interface easy to use and learnable, intuitive to work; to
provide support of different export and import formats; to implement all main tasks
which can be done with Petri nets; and, finally, to incorporate some new features
(e.g. several visualization refinement algorithms).

4. Conclusion

A lot of features and several modes are already implemented in Carassius. One can
use it to deal with graphs, Petri nets, Finite-State Machines. Due to modularity of
the tool we want to extend it with other modeling formalisms. The most difficult
thing is to preserve the simplicity of the software while adding new features.

Our tool has been used in different other projects at PAIS Lab [17], [18]. We hope it
will also be useful for other researchers (see [19]).

Of course, there is still a lot of work to do. Our main goal is to improve the FSM
aspect of the tool. This functionality is involved in other projects of our group.

232

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

Complete definition of the FSAML format is the key point of the future work.
Moreover, we intend to add simulation functionality for the finite-state machines.
Another aim is to carry out a number of user tests in order to find and eliminate
bugs in the tool. In addition, we are going to do usability testing to make Carassius
more intuitive to use and work with. There are several possible improvements of
GUI we want to implement.

Acknowledgment

We would like to thank members of the PAIS Lab for their support. Research
assistants 1. Shugurov and A. Begicheva tested the tool and reported lots of bugs.
Dr. A. A. Kalenkova and prof. I. A. Lomazova gave us a valuable advice on the
GUI design and the required features.

Also we would like to thank Nikolay Chuikin, who implemented the TEX-export
used in the tool.

This work is output of a research project implemented as part of the Basic Research
Program at the National Research University Higher School of Economics (HSE).

References

[1]. M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-aware
Information Systems: Bridging People and Software Through Process
Technology. New York, NY, USA: John Wiley & Sons, Inc., 2005.

[2]. M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems - Advances in Petri Nets, 2003,
pp. 124-144.

[3]. J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L.
Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup language:
Concepts, technology, and tools,” in Applications and Theory of Petri Nets
2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands, June 23-27, 2003, Proceedings, 2003, pp. 483-505.

[4]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,
“Graphml progress report structural layer proposal,” in Graph Drawing, ser.
Lecture Notes in Computer Science, P. Mutzel, M. Jnger, and S. Leipert, Eds.
Springer Berlin Heidelberg, 2002, vol. 2265, pp. 501-512.

[5]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report,” in Graph Drawing, 2001, pp. 501-512.

[6]. W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[7]. T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[8]. . A. Anderson, Automata theory with modern applications. Cambridge
University Press, 2006.

233

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

[9]. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer on the
petri net markup language and iso/iec 15909-2,” Petri Net Newsletter, vol. 76,
pp. 9-28, 2009.

[10]. U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” Online:
http://graphml. graphdrawing. org/primer/graphml-primer. html [29.05.2007],
2004.

[11]. G. D. Battista, P. Eades, R. Tamassia, and |. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[12]. V. Kasianov and V. Evstigneev, Grafi v programmirovanii. BHV - Peterburg,
2003. (In Russian)

[13]. S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[14]. M. Westergaard and L. M. Kristensen, “The access/cpn framework: A tool for
interacting with the cpn tools simulator,” in Applications and Theory of Petri
Nets. Springer, 2009, pp. 313-322.

[15]. K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf, “Yasper: a
tool for workflow modeling and analysis,” in Application of Concurrency to
System Design, 2006. ACSD 2006. Sixth International Conference on. IEEE,
2006, pp. 279-282.

[16]. B. Berthomieu*, P.-O. Ribet, and F. Vernadat, “The tool tina — construction of
abstract state spaces for petri nets and time petri nets,” International Journal of
Production Research, vol. 42, no. 14, pp. 2741-2756, 2004.

[17]. A. K. Begicheva and I. A. Lomazova, “Checking conformance of high-level
business process models to event logs,” in Proceedings of the Spring/Summer
Young Researchers Colloquium on Software Engineering, vol. 8, 2014.

[18]. A. A. Mitsyuk and 1. S. Shugurov, “On process model synthesis based on event
logs with noise,” Modeling and analysis of information systems, vol. 4(21), pp.
181-198, 2014.

[19]. N. Nikitina and A.Mitsyuk, “Carassius: A Simple Petri Net Editor,” accessed:
2015-04-01. [Online]. Available: www.pais.hse.ru/research/projects/carassius

Pepaktop moaenen npoueccoB «Carassius»

H. Huxumuna <nmnikitina@edu.hse.ru>,
A. Muyiox <amitsyuk@hse.ru>,
HYJI IIOUC, Hayuonanvuwiti Uccredosamenvckuil Yuueepcumem Boicwas [Lxona
Oronomuku, 125319, Poccus, e. Mockea, np. Kounosckuil, 0. 3.

AHHOTammsA. Mozenu u rpadbl IPOLECCOB PA3TUYHBIX TUIOB LIMPOKO HCIONB3YIOTCS AT
MOJEIMPOBAaHMS ¥ BU3yaNU3ally MPOLECCOB B HHPOPMAIIMOHHBIX CHCTeMaX. Takue MOAEIH
NPEACTAaBISAIOT B3aMMOCBA3M MEXIY OOBEKTaMHM, 3aJa4aMd WM COOBITHSMH B paMKax
nporecca. Vcrnonp3oBaHne OONBIIOTO KOJUYECTBA MOJENCH MPOIECCOB B Pa3HOOOPa3HBIX

234

mailto:nmnikitina@edu.hse.ru

H. Hukuruna, A. Muitok. Penakxrop mozeneii npoueccos «Carassiusy. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c.
219-236

HOTAIMAX BBI3BIBACT HEOOXOMUMOCTH pa3pabaTeiBaTh HPOTPaMMHBIC HHCTPYMEHTHI,
obecrieunBaroIye KOHCTPYHPOBaHUE, PEIAKTUPOBAHNE U aHATIN3 MOJIENIeH TIPOIIECCOB.
JlanHast paboTa ONHCHIBAET WHCTPYMEHT Ui PENAKTHPOBAHHS MOJENCH IIPOIECCOB,
obyaaromuii GyHKIMAMA Uit pabOThl ¢ MOIESIMH B BHAE KiaccHdyeckux rpados, cereit
IleTpu, KOHEYHBIX aBTOMATOB U CHCTEM B3aUMOJIEHCTBYIOMINX KOHEUHBIX aBTOMaToB. Kpome
3TOT0, IPOrpaMMa UMeET CIEAYIOUIUit HaOOp MOJIe3HBIX QYHKIMI: CUMYIISIIUS IPOIECCOB Ha
0aze ucnonHeHus ceteil IleTpu ¢ MCIONB30BaHMEM TOKEHOB, UMIIOPT M 3KCIIOPT MoJenel
MPOIIECCOB B Pa3lIMYHBIX (popMaTax XpaHEHHs, Pa3sHOOOpa3HbIe CIIOCOOBI aBTOMAaTHYECKOTO
rpadu9IecKoro pasMelleHns] MoJeneil Ha INIOCKOCTH, allTOPUTMbI BH3YaIH3alliH IIPOIECCOB.
Bonee Toro, monympHas apxurekrypa Carassius IO3BOJSET pacIIUpSATh HHCTPYMEHT,
JI00aBysisl TOANEPXKKY MOIOJNHUTENBHBIX HOTAMH MOZENeH IPOIecCOB, alrOpPUTMOB
00pabOTKM W BH3yalmu3alWM MoOJENel, X HMIOpTa M JKcrmopTra. B maHHOW craTbe
HpeUIarafoTcsl ABa airoputMa rpadudeckoro pasmemenus cereit Ilerpm u rpadoB Ha
IUIOCKOCTH, IPUBOJUTCS OMMCAHUE HX PEATU3AIMU B MPOrpaMMHOM obecrieueHnn Carassius.
OTH aNrOPUTMBI MOTYT CIYXXHTh OCHOBOH Ui pa3pabOTKU APYrHX, 0Ojee COBEpLICHHBIX
AJITOPUTMOB BU3yaIIN3aLIH Pa3HbIX aCIIEKTOB IIPOIIECCOB.

B xome mnpoektupoBaHus u pazpaboTku HHCTpyMeHTa Carassius oco0oe BHHUMaHHE
YIeISUIOCh OOECIIEUEHHIO MPOCTOTHI WCIOJNB30BaHMS, BHYTPEHHEro YCTpOiCTBa W
pacumpsieMocTH. biaromaps 3TOMy IpelCTaBIE€HHOE IPOrpaMMHOE 00ECICYEHHE MOXKET
HCIOJIb30BaThCs B 00Pa30BaTENIbHBIX U HCCIIEIOBATEIBCKUX LIEIIAX.

KmioueBbie ciaoBa: rpad; cerp Ilerpy; KOHEUYHBIH aBTOMAT; MOJENb IIpOIEcca;
BU3YaITH3aIIs MOJIENIeH IPOIIECCOB; PEIAKTOP MOEINICH IPOIIECCOB

DOI: 10.15514/ISPRAS-2015-27(3)-15

s untupoBanusi: Hukutiaa H., Mumok A. Pemaktop Mopneneii mpoueccoB «Carassiusy.
Tpynst UCIT PAH, Tom 27, Bem. 3, 2015 1., c1p. 219-236 (Ha anrmmiickoM s3bike). DOI:
10.15514/ISPRAS-2015-27(3)-15.

Cnucok numepamypsbl

[1]. M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-aware
Information Systems: Bridging People and Software Through Process
Technology. New York, NY, USA: John Wiley & Sons, Inc., 2005.

[2]. M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems - Advances in Petri Nets, 2003,
pp. 124-144.

[3]. J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer, L.
Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup language:
Concepts, technology, and tools,” in Applications and Theory of Petri Nets
2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands, June 23-27, 2003, Proceedings, 2003, pp. 483-505.

[4]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,
“Graphml progress report structural layer proposal,” in Graph Drawing, ser.
Lecture Notes in Computer Science, P. Mutzel, M. Jnger, and S. Leipert, Eds.
Springer Berlin Heidelberg, 2002, vol. 2265, pp. 501-512.

235

N. Nikitina, A. Mitsyuk. Carassius: A Simple Process Model Editor. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3,
2015, pp. 219-236

[5]. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report,” in Graph Drawing, 2001, pp. 501-512.

[6]. W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[7]. T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[8]. J. A. Anderson, Automata theory with modern applications. Cambridge
University Press, 2006.

[9]. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer on the
petri net markup language and iso/iec 15909-2,” Petri Net Newsletter, vol. 76,
pp. 9-28, 20009.

[10]. U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” Online:
http://graphml. graphdrawing. org/primer/graphml-primer. html [29.05.2007],
2004.

[11]. G. D. Battista, P. Eades, R. Tamassia, and |. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[12]. Kacesinos B. H., EBcturaees B. A. I'padsr B nporpammuposatuu //Q6paboTka,
Bu3yanuzaius 1 npumenenne. bXB-Ilerepoypr. — 2003.

[13]. S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[14]. M. Westergaard and L. M. Kristensen, “The access/cpn framework: A tool for
interacting with the cpn tools simulator,” in Applications and Theory of Petri
Nets. Springer, 2009, pp. 313-322.

[15]. K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf, “Yasper: a
tool for workflow modeling and analysis,” in Application of Concurrency to
System Design, 2006. ACSD 2006. Sixth International Conference on. IEEE,
2006, pp. 279-282.

[16]. B. Berthomieu*, P.-O. Ribet, and F. Vernadat, “The tool tina — construction of
abstract state spaces for petri nets and time petri nets,” International Journal of
Production Research, vol. 42, no. 14, pp. 2741-2756, 2004.

[17]. A. K. Begicheva and 1. A. Lomazova, “Checking conformance of high-level
business process models to event logs,” in Proceedings of the Spring/Summer
Young Researchers Colloquium on Software Engineering, vol. 8, 2014.

[18]. A. A. Mitsyuk and I. S. Shugurov, “On process model synthesis based on event
logs with noise,” Modeling and analysis of information systems, vol. 4(21), pp.
181-198, 2014.

[19]. N. Nikitina and A.Mitsyuk, “Carassius: A Simple Petri Net Editor,” accessed:
2015-04-01. [Online]. Available: www.pais.hse.ru/research/projects/carassius

EE)

236

