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Abstract. This paper presents further development of Sevigator hypervisor-based security 

system. Original design of Sevigator confines users’ applications in a separate virtual ma-

chine that has no network interfaces. For trusted applications Sevigator intercepts network-

related system calls and routes them to the dedicated virtual machine that services those calls. 

This design allows Sevigator protect networking from malicious applications including high-

level intruders residing in the kernel.   

Modern microkernel-based hypervisors opened the door to redesign of Sevigator. Those hy-

pervisors are small operating systems by nature, where management of virtual machines as 

well as most of hardware operations are isolated in processes with low priority level. Com-

promising such a process does not result in compromising the whole hypervisor.  

In this paper we present an experimental design of Sevigator based on NOVA hypervisor 

where system calls of trusted applications are serviced by a dedicated process in the hypervi-

sor rather than a separate VM. The experiment shows about 25% performance gain due to 

reduced number of context switches. 
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1. Introduction 

The main purpose of the project is to develop a security facility that protects data 

confidentiality on a computer connected to the Internet and managed by an untrust-

ed operating system. We assume that malicious code can get unlimited access to all 

hardware and software system resources through vulnerabilities or backdoors in 

system software. 

Today popular modern operating systems (such as Linux or Windows) are based on 

monolithic kernel, where all components of kernel have equally high privileges. In 

this case if malicious code penetrates OS kernel, then there is a risk of losing control 

over any OS resources including application in-memory data, confidential infor-

mation in file storage, etc. Integrity and confidentiality of data transmitted over the 

network are also threatened, even in the case when cryptography is used. 

The question is whether it is possible to protect unmodified applications that run 

under unmodified commodity OS like Windows or Linux on a commodity work-

station with x86 CPU. Protection systems located in kernel, such as antivirus, fire-

wall, intrusion detection, can themselves be attacked by privileged malicious code. 

Possible way of protection from those attacks is the transfer of protection to more 

privileged level. 

The answer is “probably yes”: a prototype called Sevigator [3, 4, 5] protects appli-

cations in Linux from malware and comprised kernel. It uses hardware-assisted vir-

tualization [1, 2] to secure operating memory of applications and control access to 

communication hardware (network interface card). It allows to launch OS under 

control of virtual machine monitor (VMM, also called hypervisor). Hypervisor is 

much smaller than OS, fully isolated from it, and has higher privilege than OS. 

Hardware virtualization is supported by most modern processors, making the wide-

spread use of security systems based on hypervisors possible. 

Sevigator provides isolation of untrusted OS from network, but keeps operability of 

trusted application. For them, and only for them, an access to network resources is 

granted. An important feature of this approach is that there is no need to modify or 

recompile any applications or OS. 

Within Sevigator approach OS resides in a virtual machine, while protection system 

is located in hypervisor. It provides facilities to isolate untrusted applications from 

network access; to prevent data leaks due to code intrusion or memory attacks it 

controls memory integrity of the applications under protection. The hypervisor pro-

vides simultaneous execution of two completely isolated from each other virtual 

machines. The first one called user is the primary one, user interacts with it, and it 

believes that network adapter is physically absent. The second VM called service is 

service system which has unlimited access to network. Network support for trusted 

processes in user machine is provided by hypervisor through remote execution of 

required (limited) set of system calls in the service virtual machine. Full description 

of security algorithms can be found in [3, 4, 5]. 
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Fig 1. Sevigator architecture 

We refer to this scheme as remote servicing of system calls since the hypervisor 

intercepts parameters of a system call in the user VM and transfer them to the ser-

vice VM, where the actual code is executed. 

The scheme with two VMs was motivated by the following considerations: isolation 

networking operations from user machine and minimization the risk of hypervisor 

compromise in the case of compromised network component. Isolation makes net-

work access possible only for trusted application. Execution within service VM 

means that compromise of the VM will not lead to compromise of hypervisor ker-

nel. 

Sevigator system originally was based on hypervisor KVM (Kernel-based Virtual 

Machine), and using the second VM was the only possible solution to satisfy the 

constraints. Later Sevigator without changes of its architecture was ported to NOVA 

microkernel hypervisor [6]. 

Our work shows that using hypervisor based on the microkernel architecture allows 

us to replace the second virtual machine with a process in hypervisor with the same 

functionality. This is possible because microkernel isolates processes and executes 

them at lower privilege level than the microkernel. And this change significantly 

reduces overhead of having dedicated OS only for remote execution of service calls. 

2. Hypervisors Overview 

There is a lot of hypervisors and they use different ideas. We chose NOVA [7] to 

port Sevigator because it was the only one that satisfied own requirements for origi-

nal Sevigator design (requirements and hypervisor comparison can be found in [6]). 

And when we ported Sevigator, NOVA architecture gave us idea how we can rede-

sign Sevigator to reduce overhead but keeping security. 
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With new design of Sevigator, where dedicated process is responsible for servicing 

system call, we again looked if it can be implemented in different hypervisor be-

sides NOVA. The following hypervisors were considered: BitVisor[8], SecVisor[9], 

Xen[10], Qubes OS [11]. All of them are distributed under open source licenses and 

don't require existence of a host operating system. 

BitVisor is hypervisor and virtual machine monitor (VMM), designed to ensure 

security of computer systems. BitVisor provides encryption of network connections 

and data on disk. Ensuring confidentiality of network and disk data is transparent to 

the operating system. BitVisor designed to create minimal overhead on encryption 

and decryption of data. 

Bitvisor doesn't separate VMM and kernel of the hypervisor, so performed at the 

same privilege level. BitVisor supports exactly one virtual machine - this is done in 

order to minimize the overhead on the interaction of the guest OS with the devices, 

primarily input and output devices. Bitvisor based on parapass-through architecture: 

hypervisor intercepted memory access and I/O access, and pass-through anything 

else. Bitvisor intercept accesses to protect hypervisors from the guest OS, and en-

force security functionalities. Bitvisor cannot execute processes at lower privilege 

level. Therefore Bitvisor didn’t satisfy the requirements. 

SecVisoris a very small hypervisor (about 10 times smaller than NOVA) which goal 

is protecting OS kernel against an attacker who controls everything but the CPU, the 

memory controller, and system memory chips. 

SecVisor provides a lifetime guarantee of the integrity of the code executing with 

kernel privilege. In other words, SecVisor prevents an attacker from either modify-

ing existing code in a kernel or from executing injected code with kernel privilege, 

over the lifetime of the system. SecVisor ensures that only code approved by the 

user can execute with kernel privilege. SecVisor also executes all its parts at the 

same privilege level.  

Xen is a very popular virtualization platform, which is widely used to build cloud 

services. Xen virtualization platform includes a hypervisor, virtual machine monitor 

for guest OS, dedicated virtual machine dom0 to work with devices and specialized 

drivers to access the device via the dom0. These drivers are called paravirtualized as 

they "know" that the OS is running under Xen and effectively interact with the hy-

pervisor and dom0. 

Xen hypervisor implements the minimum set of operations: management of RAM, 

processor status, real time clock, interrupt processing and control of DMA (IOM-

MU). All other functions, such as the implementation of virtual devices, creation 

and deletion virtual machines, moving VMs between servers in the cloud, etc. is 

implemented in a dedicated virtual machine dom0. 

All functions related to network, disk drives, video cards emulation and other devic-

es are placed outside the hypervisor. Typically, the request handling devices consist 

of two parts. Driver in the guest operating system translates requests from the OS to 

program handler in dom0. To increase the security of the system servers, virtualize 
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devices run as separate processes in OS dom0. Failure in such a program leads to a 

denial of only one virtual device in one VM and does not affect the work of other 

copies of the server. 

Xen architecture requires using dedicated virtual machine for servicing network-

releated system calls and this is a big overhead. Furthermore, Xen codebase is large 

and nearly impossible for thorough security analisys. 

Qubes OS is a hypevisor based on Xen. Qubes implements a security–by-isolation 

approach. In Qubes, the isolation is provided in two dimensions: hardware (separat-

ed network domain, storage domain, GUI) and software (domain with different lev-

els of trust e.g. work domain – most trusted, shopping domain, random domain – 

less trusted). Domains are separated by executing within different virtual machines. 

3. Original Sevigator Design 

3.1 General Architecture 

Among the applications running in the OS, the protection system identifies several 

applications that are considered as trusted. All others applications are considered as 

untrusted. The security problem is to prevent the leakage or compromising of confi-

dential data of trusted applications. Trusted applications for the normal functioning 

may require access to the public network. This network connection can be used by 

malicious code in the OS kernel for the leakage of sensitive data. 

The solution is based on use of hardware virtualization technology, execution of an 

OS in the virtual machine (VM), and implementation protection system in the body 

of a virtual machine monitor (hypervisor) [3]. The hypervisor provides simultaneous 

execution of two completely isolated from each other virtual machines (fig. 1). Both 

are running the same untrusted OS. The first VM, we will call it user, is the primary 

one. It is there where critical data resides and applications (both trusted and untrust-

ed) are executed processing those data. Hypervisor blocks access to the network 

interface for user VM and its guest OS believes that the network adapter is physical-

ly absent. Thus, even if malicious code managed to gain access to critical data, it 

will not be able to transfer them to the outer world. 

Network access for trusted applications is supplied by the second VM called ser-

vice. It has free access to the network. However, due to VMs isolation provided by 

the hypervisor the software in the service VM (including OS kernel) cannot gain 

access to data residing within the user VM. 

Network support for trusted processes is implemented through remote servicing of 

required set of system calls in the service VM. The hypervisor intercepts network-

related system calls invoked by a trusted process, analyzes the data and, when nec-

essary, transmits them to the service VM. Note that the remote service of the system 

call is made transparent for a trusted process and an OS. 
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3.2 NOVA based architecture 

NOVA is a microkernel for hypervisor. NOVA itself is only a kernel, for running 

virtual machines you should use one of the environments, built atop of it: NUL, 

NRE or Genode.  We use NUL because NRE still misses some NUL features, and 

Genode is much larger. 

Because of microkernel design, only the NOVA kernel runs with the highest priority 

and every process of NUL is executed as user space process with priority level 

CPL3 (lowest on Intel IA-32 architecture). 

NUL is an experimental operational environment and it is still work in progress. It 

contains a number of simplified components, e.g. direct access to host PCI devices 

works unstable. As a result VMM (Virtual Machine Monitor) has to emulate hard-

ware devices for the guest virtual machine. And if the emulated model needs access 

to a host device, than a driver in NUL is required for that device. For networking 

NUL provides a small number of drivers, most notable is the classic NE2000 net-

work card. For our experiment we used NE2000-compatible network card 

RTL8029AS, for which NUL has a driver. 

The port of Sevigator architecture to NOVA hypervisor uses two virtual machines 

[13] to service network-related system calls of trusted users’ applications. As an 

example Fig. 2 shows how servicing send system call works.  

 

Fig 2. Path of send message in original design Sevigator  

Yellow colored boxes are processes in NOVA. Interaction with and between pro-

cesses always imply calling NOVA kernel, but for simplicity we don’t show them 

on the figure.  

When trusted process executes send system call the Sevigator module in OS kernel 

intercepts it (1), forms special fixed size message and free size vault and executes 

the hypercall (2). VMM passes (3) the message and the vault to another VMM. This 

VMM sends (4) the message to service VM kernel module. Module finds vault size 
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in message, allocates memory, asks (5) for vault and receives (6) it. Module forms a 

new message and sends it to Linux kernel, which calls (7) network driver for net-

work card emulated by VMM. The driver sends (8) bytes to the network card mod-

el, which passes (9) them to driver of the actual card. And finally the driver in the 

hypervisor sends bytes to the network card. 

As we can see the path that passes network messages is really long. In the next 

chapter we will show how to achieve a shorter pass. 

4. New Sevigator Design 

Microkernel based hypervisor allows us to redesign Sevigator. Those hypervisors 

have well isolated parts. Only a small kernel has highest priority level. Most of 

hardware operations as well as management of virtual machines are isolated in pro-

cesses with low priority level.  

 The idea of the redesign is to move servicing system calls of trusted applications to 

hypervisor applications. Having dedicated processes in hypervisor we keep all plus-

es of using dedicated virtual machine such as isolation of servicing system calls in 

code and securing the risk of compromise the system by reduction of priority level. 

It means that compromising such a code doesn’t mean compromising the whole 

hypervisor. But redesigning gives more: it reduces trusted code base from millions 

of lines of code (LoC) for service VM to tens of thousands LoC for dedicated appli-

cations in hypervisor. And also we reduce overhead of context switching: rede-

signed system doesn’t need at least context switching between VMM and service 

VM; so we increase performance of the whole system. 

In our paper we present a proof of concept of the new approach to servicing system 

calls of trusted applications in dedicated environment. 

We selected networking system calls for study. Fig. 3 presents the idea: networked 

system calls are serviced in the dedicated process over NOVA microkernel. The 

application is based on popular embedded TCP/IP stack called lwIP[12]. The appli-

cation is a wrapper around lwIP that parses the parameters of remote system calls 

and invokes corresponding lwIP operations. In the following text we will refer to 

this application as “lwIP”. 

Fig.3 shows servicing of send message in redesigned system. Here we will only 

discuss difference of redesigned system. Steps (1) and (2) are the same as in the 

original design. VMM sends (3) message and vault to LwIP process, which analyses 

the message, understands what system call was called, and forms a packet, that will 

be sent (4) to driver. Driver sends bytes to the real network card. 

We can see that in the new design the path is much shorter, and one can expect that 

the new design should work faster. We present the performance study in the in the 

next section. In order to support the concept of socket used by trusted application 

we implemented a small glue layer over lwIP. The prototype implementation sup-

ports socket create and close, socket bind and connect, send and recv for TCP and 

UDP. Raw sockets (e.g. for ICMP messages) are not supported yet. 
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Fig 3.  Path of send message in redesigned Sevigator 

5. Performance 

We conducted an experiment to measure network performance of the redesigned 

system. During experiment we compared performance of the original design with 

two VMs, and the new design with the dedicated process. As the reference point we 

used native Linux running on hardware without hypervisor and ran hypervisor with 

pure lwIP application without VMM. 

All measurements were performed on the same machine with AMD Phenom II x4 

980 3.7 GHz CPU, 16 GB RAM. As network card we used once popular 

RTL8029AS card. It is ne2000 compatible and is one of the few cards supported by 

NOVA/NUL. The card is 10Mbit/s. We use this old card because other cards sup-

ported by NOVA turned out to be much harder to find. 

For testing, we run test application in Linux, which executes 1000 times sendto sys-

tem call, sending UDP packets to the network. We were sending short 60 bytes 

message. The destination workstation received the packets, identified lost packets 

and measured time between the first and the last packets. We did not measure time 

at the guest virtual machine because return from sendto call does not mean that the 

corresponding packet was actually sent.  

Fig.4 shows the test performance difference between original and new architectures 

and pure Linux. 

The experiments showed that replacing the virtual machine with a dedicated appli-

cation increased performance by 26%. The overhead compared to the native Linux 

execution was reduced from almost 100% to 29%. 

Comparing with pure lwIP case shows that current overhead for transfer system call 

in lwIP is only 1.4 µs. For 10 Mbit/s network this is insensitive. The bottleneck of 

current realization is lwIP and NE2000 driver. The NE2000 driver in NOVA is far 

from perfection and careful queuing of pending packets may reduce the total over-

head even more.  
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Fig 4. Time for sending 1000 UDP packets  

Servicing of system calls in an application compared to a dedicated VM simplifies 

the flow control. Removing the second VM resulted in omitting: 

interrupt injection in the service VM (required to notify the VM that there are pack-

ets pending); 

VM exit to pass frames from service OS to NIC model in the VMM; 

IPC calls between VMM and NIC driver in the hypervisor. 

Another important gain is significant reduction of the trusted code base required for 

servicing network-related system calls. The design with two virtual machines im-

plied that we have to trust the whole Linux kernel, i.e. millions lines of code due to 

the monolithic nature of that kernel. When system calls are serviced by the lwIP 

application, the trusted computing base shrinks to about 70,000 LoC, the size of 

lwIP. 

6. Future Work 

In future we want to develop NUL drivers for modern network cards and make ex-

periments on them. Also because NOVA UserLand was made as a test project and is 

not fully stable for now, we have encountered problems with memory management, 

and have errors while working with big packets. We want to find the causes the re-

vealed problems and fix it.  

Finally, we will port guest modules to modern Linux kernel and see if there are any 

changes in performance. 

7. Conclusion 

Our work shows that using microkernel-based hypervisors opens new perspectives 

and facilitates new approach to servicing OS system calls in hypervisor. 
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Using microkernel hypervisor allow us to redesign system by moving system call 

servicing in hypervisor application. Those applications are executed as processes 

with low priority, so compromising of an application doesn’t lead to compromising 

of the whole hypervisor.  

We were able to move servicing of network-related system calls to such a process. It 

significantly reduces overhead for servicing network-assisted system calls and 

speeds up execution: new design makes network connection 30% faster. Further-

more, it reduced trusted code base by two orders of magnitude, and this is very im-

portant for security system, because it makes audit or verification of system simpler. 
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Аннотация. В данной работе описывается дальнейшая разработка системы защиты 

Sevigator, использующей аппаратную виртуализацию. Изначальное устройство 

Sevigator состоит в  исполнении пользовательских приложений в отдельной виртуаль-

ной машине, у которой отсутствует сетевой интерфейс. Для доверенных приложений 

Sevigator перехватает системные вызовы, связанные с операциями с сетью, и перена-

правляет их на обслуживание в выделенную виртуальную машину. Такое устройство 

позволяет системе Sevigator защищать сетевое взаимодействие от вредоносных прило-

жений, включая злонамеренный код на самом высоком уровне привилегий в ядре ОС. 

Использование современных гипервизоров, построенных по микроядерной архитекту-

ре, позволяет изменить архитектуру системы Sevigator. Такие гипервизоры по своей 

природе являются маленькой операционной системой, в которой большинство аппа-

ратных операций и управление виртуальными машинами изолированно в процессы с 

низким уровнем приоритета. Компрометация таких процессов не приведет к компро-

метации всего гипервизора.  

В данной работе мы предоставляем экспериментальную архитектуру Sevigator-а, осно-

ванную на гипервизоре NOVA, в рамках которой системные вызовы доверенных при-

ложений обрабатываются в отдельном процессе в гипервизоре, а не в отдельной вирту-

альной машине. Этот эксперимент показал 25% прирост производительности при 

уменьшении количества переключений контекстов.  

Ключевые слова: виртуализация, гипервизор, безопасность, микроядро 
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