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Abstract. This paper presents further development of Sevigator hypervisor-based security
system. Original design of Sevigator confines users’ applications in a separate virtual ma-
chine that has no network interfaces. For trusted applications Sevigator intercepts network-
related system calls and routes them to the dedicated virtual machine that services those calls.
This design allows Sevigator protect networking from malicious applications including high-
level intruders residing in the kernel.

Modern microkernel-based hypervisors opened the door to redesign of Sevigator. Those hy-
pervisors are small operating systems by nature, where management of virtual machines as
well as most of hardware operations are isolated in processes with low priority level. Com-
promising such a process does not result in compromising the whole hypervisor.
In this paper we present an experimental design of Sevigator based on NOVA hypervisor
where system calls of trusted applications are serviced by a dedicated process in the hypervi-
sor rather than a separate VM. The experiment shows about 25% performance gain due to
reduced number of context switches.
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1. Introduction

The main purpose of the project is to develop a security facility that protects data
confidentiality on a computer connected to the Internet and managed by an untrust-
ed operating system. We assume that malicious code can get unlimited access to all
hardware and software system resources through vulnerabilities or backdoors in
system software.

Today popular modern operating systems (such as Linux or Windows) are based on
monolithic kernel, where all components of kernel have equally high privileges. In
this case if malicious code penetrates OS kernel, then there is a risk of losing control
over any OS resources including application in-memory data, confidential infor-
mation in file storage, etc. Integrity and confidentiality of data transmitted over the
network are also threatened, even in the case when cryptography is used.

The question is whether it is possible to protect unmodified applications that run
under unmodified commodity OS like Windows or Linux on a commodity work-
station with x86 CPU. Protection systems located in kernel, such as antivirus, fire-
wall, intrusion detection, can themselves be attacked by privileged malicious code.
Possible way of protection from those attacks is the transfer of protection to more
privileged level.

The answer is “probably yes”: a prototype called Sevigator [3, 4, 5] protects appli-
cations in Linux from malware and comprised kernel. It uses hardware-assisted vir-
tualization [1, 2] to secure operating memory of applications and control access to
communication hardware (network interface card). It allows to launch OS under
control of virtual machine monitor (VMM, also called hypervisor). Hypervisor is
much smaller than OS, fully isolated from it, and has higher privilege than OS.
Hardware virtualization is supported by most modern processors, making the wide-
spread use of security systems based on hypervisors possible.

Sevigator provides isolation of untrusted OS from network, but keeps operability of
trusted application. For them, and only for them, an access to network resources is
granted. An important feature of this approach is that there is no need to modify or
recompile any applications or OS.

Within Sevigator approach OS resides in a virtual machine, while protection system
is located in hypervisor. It provides facilities to isolate untrusted applications from
network access; to prevent data leaks due to code intrusion or memory attacks it
controls memory integrity of the applications under protection. The hypervisor pro-
vides simultaneous execution of two completely isolated from each other virtual
machines. The first one called user is the primary one, user interacts with it, and it
believes that network adapter is physically absent. The second VM called service is
service system which has unlimited access to network. Network support for trusted
processes in user machine is provided by hypervisor through remote execution of
required (limited) set of system calls in the service virtual machine. Full description
of security algorithms can be found in [3, 4, 5].
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Figl.  Sevigator architecture

We refer to this scheme as remote servicing of system calls since the hypervisor
intercepts parameters of a system call in the user VM and transfer them to the ser-
vice VM, where the actual code is executed.

The scheme with two VMs was motivated by the following considerations: isolation
networking operations from user machine and minimization the risk of hypervisor
compromise in the case of compromised network component. Isolation makes net-
work access possible only for trusted application. Execution within service VM
means that compromise of the VM will not lead to compromise of hypervisor ker-
nel.

Sevigator system originally was based on hypervisor KVM (Kernel-based Virtual
Machine), and using the second VM was the only possible solution to satisfy the
constraints. Later Sevigator without changes of its architecture was ported to NOVA
microkernel hypervisor [6].

Our work shows that using hypervisor based on the microkernel architecture allows
us to replace the second virtual machine with a process in hypervisor with the same
functionality. This is possible because microkernel isolates processes and executes
them at lower privilege level than the microkernel. And this change significantly
reduces overhead of having dedicated OS only for remote execution of service calls.

2. Hypervisors Overview

There is a lot of hypervisors and they use different ideas. We chose NOVA [7] to
port Sevigator because it was the only one that satisfied own requirements for origi-
nal Sevigator design (requirements and hypervisor comparison can be found in [6]).
And when we ported Sevigator, NOVA architecture gave us idea how we can rede-
sign Sevigator to reduce overhead but keeping security.
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With new design of Sevigator, where dedicated process is responsible for servicing
system call, we again looked if it can be implemented in different hypervisor be-
sides NOVA. The following hypervisors were considered: BitVisor[8], SecVisor[9],
Xen[10], Qubes OS [11]. All of them are distributed under open source licenses and
don't require existence of a host operating system.

BitVisor is hypervisor and virtual machine monitor (VMM), designed to ensure
security of computer systems. BitVisor provides encryption of network connections
and data on disk. Ensuring confidentiality of network and disk data is transparent to
the operating system. BitVisor designed to create minimal overhead on encryption
and decryption of data.

Bitvisor doesn't separate VMM and kernel of the hypervisor, so performed at the
same privilege level. BitVisor supports exactly one virtual machine - this is done in
order to minimize the overhead on the interaction of the guest OS with the devices,
primarily input and output devices. Bitvisor based on parapass-through architecture:
hypervisor intercepted memory access and 1/0O access, and pass-through anything
else. Bitvisor intercept accesses to protect hypervisors from the guest OS, and en-
force security functionalities. Bitvisor cannot execute processes at lower privilege
level. Therefore Bitvisor didn’t satisfy the requirements.

SecVisoris a very small hypervisor (about 10 times smaller than NOVA) which goal
is protecting OS kernel against an attacker who controls everything but the CPU, the
memory controller, and system memory chips.

SecVisor provides a lifetime guarantee of the integrity of the code executing with
kernel privilege. In other words, SecVisor prevents an attacker from either modify-
ing existing code in a kernel or from executing injected code with kernel privilege,
over the lifetime of the system. SecVisor ensures that only code approved by the
user can execute with kernel privilege. SecVisor also executes all its parts at the
same privilege level.

Xen is a very popular virtualization platform, which is widely used to build cloud
services. Xen virtualization platform includes a hypervisor, virtual machine monitor
for guest OS, dedicated virtual machine dom0 to work with devices and specialized
drivers to access the device via the dom0. These drivers are called paravirtualized as
they "know" that the OS is running under Xen and effectively interact with the hy-
pervisor and domoO.

Xen hypervisor implements the minimum set of operations: management of RAM,
processor status, real time clock, interrupt processing and control of DMA (IOM-
MU). All other functions, such as the implementation of virtual devices, creation
and deletion virtual machines, moving VMs between servers in the cloud, etc. is
implemented in a dedicated virtual machine dom0.

All functions related to network, disk drives, video cards emulation and other devic-
es are placed outside the hypervisor. Typically, the request handling devices consist
of two parts. Driver in the guest operating system translates requests from the OS to
program handler in domO. To increase the security of the system servers, virtualize
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devices run as separate processes in OS dom0. Failure in such a program leads to a
denial of only one virtual device in one VM and does not affect the work of other
copies of the server.

Xen architecture requires using dedicated virtual machine for servicing network-
releated system calls and this is a big overhead. Furthermore, Xen codebase is large
and nearly impossible for thorough security analisys.

Qubes OS is a hypevisor based on Xen. Qubes implements a security—by-isolation
approach. In Qubes, the isolation is provided in two dimensions: hardware (separat-
ed network domain, storage domain, GUI) and software (domain with different lev-
els of trust e.g. work domain — most trusted, shopping domain, random domain —
less trusted). Domains are separated by executing within different virtual machines.

3. Original Sevigator Design

3.1 General Architecture

Among the applications running in the OS, the protection system identifies several
applications that are considered as trusted. All others applications are considered as
untrusted. The security problem is to prevent the leakage or compromising of confi-
dential data of trusted applications. Trusted applications for the normal functioning
may require access to the public network. This network connection can be used by
malicious code in the OS kernel for the leakage of sensitive data.

The solution is based on use of hardware virtualization technology, execution of an
OS in the virtual machine (VM), and implementation protection system in the body
of a virtual machine monitor (hypervisor) [3]. The hypervisor provides simultaneous
execution of two completely isolated from each other virtual machines (fig. 1). Both
are running the same untrusted OS. The first VM, we will call it user, is the primary
one. It is there where critical data resides and applications (both trusted and untrust-
ed) are executed processing those data. Hypervisor blocks access to the network
interface for user VM and its guest OS believes that the network adapter is physical-
ly absent. Thus, even if malicious code managed to gain access to critical data, it
will not be able to transfer them to the outer world.

Network access for trusted applications is supplied by the second VM called ser-
vice. It has free access to the network. However, due to VMs isolation provided by
the hypervisor the software in the service VM (including OS kernel) cannot gain
access to data residing within the user VM.

Network support for trusted processes is implemented through remote servicing of
required set of system calls in the service VM. The hypervisor intercepts network-
related system calls invoked by a trusted process, analyzes the data and, when nec-
essary, transmits them to the service VM. Note that the remote service of the system
call is made transparent for a trusted process and an OS.

271



Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP
RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

3.2 NOVA based architecture

NOVA is a microkernel for hypervisor. NOVA itself is only a kernel, for running
virtual machines you should use one of the environments, built atop of it: NUL,
NRE or Genode. We use NUL because NRE still misses some NUL features, and
Genode is much larger.

Because of microkernel design, only the NOVA kernel runs with the highest priority
and every process of NUL is executed as user space process with priority level
CPL3 (lowest on Intel 1A-32 architecture).

NUL is an experimental operational environment and it is still work in progress. It
contains a number of simplified components, e.g. direct access to host PCI devices
works unstable. As a result VMM (Virtual Machine Monitor) has to emulate hard-
ware devices for the guest virtual machine. And if the emulated model needs access
to a host device, than a driver in NUL is required for that device. For networking
NUL provides a small number of drivers, most notable is the classic NE2000 net-
work card. For our experiment we used NE2000-compatible network card
RTL8029AS, for which NUL has a driver.

The port of Sevigator architecture to NOVA hypervisor uses two virtual machines
[13] to service network-related system calls of trusted users’ applications. As an
example Fig. 2 shows how servicing send system call works.
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Fig2.  Path of send message in original design Sevigator

Yellow colored boxes are processes in NOVA. Interaction with and between pro-
cesses always imply calling NOVA kernel, but for simplicity we don’t show them
on the figure.

When trusted process executes send system call the Sevigator module in OS kernel
intercepts it (1), forms special fixed size message and free size vault and executes
the hypercall (2). VMM passes (3) the message and the vault to another VMM. This
VMM sends (4) the message to service VM kernel module. Module finds vault size
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in message, allocates memory, asks (5) for vault and receives (6) it. Module forms a
new message and sends it to Linux kernel, which calls (7) network driver for net-
work card emulated by VMM. The driver sends (8) bytes to the network card mod-
el, which passes (9) them to driver of the actual card. And finally the driver in the
hypervisor sends bytes to the network card.

As we can see the path that passes network messages is really long. In the next
chapter we will show how to achieve a shorter pass.

4. New Sevigator Design

Microkernel based hypervisor allows us to redesign Sevigator. Those hypervisors
have well isolated parts. Only a small kernel has highest priority level. Most of
hardware operations as well as management of virtual machines are isolated in pro-
cesses with low priority level.

The idea of the redesign is to move servicing system calls of trusted applications to
hypervisor applications. Having dedicated processes in hypervisor we keep all plus-
es of using dedicated virtual machine such as isolation of servicing system calls in
code and securing the risk of compromise the system by reduction of priority level.
It means that compromising such a code doesn’t mean compromising the whole
hypervisor. But redesigning gives more: it reduces trusted code base from millions
of lines of code (LoC) for service VM to tens of thousands LoC for dedicated appli-
cations in hypervisor. And also we reduce overhead of context switching: rede-
signed system doesn’t need at least context switching between VMM and service
VM; so we increase performance of the whole system.

In our paper we present a proof of concept of the new approach to servicing system
calls of trusted applications in dedicated environment.

We selected networking system calls for study. Fig. 3 presents the idea: networked
system calls are serviced in the dedicated process over NOVA microkernel. The
application is based on popular embedded TCP/IP stack called IwlIP[12]. The appli-
cation is a wrapper around IwlIP that parses the parameters of remote system calls
and invokes corresponding IwlIP operations. In the following text we will refer to
this application as “IwIP”.

Fig.3 shows servicing of send message in redesigned system. Here we will only
discuss difference of redesigned system. Steps (1) and (2) are the same as in the
original design. VMM sends (3) message and vault to LwIP process, which analyses
the message, understands what system call was called, and forms a packet, that will
be sent (4) to driver. Driver sends bytes to the real network card.

We can see that in the new design the path is much shorter, and one can expect that
the new design should work faster. We present the performance study in the in the
next section. In order to support the concept of socket used by trusted application
we implemented a small glue layer over IwlP. The prototype implementation sup-
ports socket create and close, socket bind and connect, send and recv for TCP and
UDP. Raw sockets (e.g. for ICMP messages) are not supported yet.
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Fig 3. Path of send message in redesigned Sevigator

5. Performance

We conducted an experiment to measure network performance of the redesigned
system. During experiment we compared performance of the original design with
two VMs, and the new design with the dedicated process. As the reference point we
used native Linux running on hardware without hypervisor and ran hypervisor with
pure IwlIP application without VMM.

All measurements were performed on the same machine with AMD Phenom Il x4
980 3.7 GHz CPU, 16 GB RAM. As network card we used once popular
RTL8029AS card. It is ne2000 compatible and is one of the few cards supported by
NOVA/NUL. The card is 10Mbit/s. We use this old card because other cards sup-
ported by NOVA turned out to be much harder to find.

For testing, we run test application in Linux, which executes 1000 times sendto sys-
tem call, sending UDP packets to the network. We were sending short 60 bytes
message. The destination workstation received the packets, identified lost packets
and measured time between the first and the last packets. We did not measure time
at the guest virtual machine because return from sendto call does not mean that the
corresponding packet was actually sent.

Fig.4 shows the test performance difference between original and new architectures
and pure Linux.

The experiments showed that replacing the virtual machine with a dedicated appli-
cation increased performance by 26%. The overhead compared to the native Linux
execution was reduced from almost 100% to 29%.

Comparing with pure IwlP case shows that current overhead for transfer system call
in IwIP is only 1.4 ps. For 10 Mbit/s network this is insensitive. The bottleneck of
current realization is lwlP and NE2000 driver. The NE2000 driver in NOVA is far
from perfection and careful queuing of pending packets may reduce the total over-
head even more.
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Fig4.  Time for sending 1000 UDP packets

Servicing of system calls in an application compared to a dedicated VM simplifies
the flow control. Removing the second VM resulted in omitting:

interrupt injection in the service VM (required to notify the VM that there are pack-
ets pending);

VM exit to pass frames from service OS to NIC model in the VMM,;

IPC calls between VMM and NIC driver in the hypervisor.

Another important gain is significant reduction of the trusted code base required for
servicing network-related system calls. The design with two virtual machines im-
plied that we have to trust the whole Linux kernel, i.e. millions lines of code due to
the monolithic nature of that kernel. When system calls are serviced by the IwlIP
application, the trusted computing base shrinks to about 70,000 LoC, the size of
IwlP.

6. Future Work

In future we want to develop NUL drivers for modern network cards and make ex-
periments on them. Also because NOVA UserLand was made as a test project and is
not fully stable for now, we have encountered problems with memory management,
and have errors while working with big packets. We want to find the causes the re-
vealed problems and fix it.

Finally, we will port guest modules to modern Linux kernel and see if there are any
changes in performance.

7. Conclusion

Our work shows that using microkernel-based hypervisors opens new perspectives
and facilitates new approach to servicing OS system calls in hypervisor.
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Using microkernel hypervisor allow us to redesign system by moving system call
servicing in hypervisor application. Those applications are executed as processes
with low priority, so compromising of an application doesn’t lead to compromising
of the whole hypervisor.

We were able to move servicing of network-related system calls to such a process. It
significantly reduces overhead for servicing network-assisted system calls and
speeds up execution: new design makes network connection 30% faster. Further-
more, it reduced trusted code base by two orders of magnitude, and this is very im-
portant for security system, because it makes audit or verification of system simpler.
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AHHoTanms. B naHHO# paboTe omuchiBaeTcs NanbHEHImIas pa3paboTKa CHCTEMbI 3aIlUThHI
Sevigator, HCIOIB3YIOIIEH aNmapaTHYI0 BUPTyalIu3aluio. [3HadalbHOE YCTPOHCTBO
Sevigator COCTOMT B HCIIOJIHEHUH IOJIb30BATEIBCKUX MPHUIOKEHUIT B OTAENBHOI BUPTYyab-
HOW MalInHe, Y KOTOPOW OTCYTCTBYET ceTeBOW mHTepdelic. [y JOBEpEHHBIX MPHIIOKEHUH
Sevigator mepexBaTaeT CHCTEMHbIE BBI3OBBI, CBS3aHHBIE C OIEpPALUSIMHU C CEThIO, U MepeHa-
HpaBIsIeT X Ha OOCITy)KMBaHUE B BBIACIECHHYIO BUPTYaTbHYIO MAamUHy. Takoe ycTpoicTBO
HO3BOJIIET cCUCTEME Sevigator 3allUIaTh CETeBOE B3aUMOJCHCTBHE OT BPEIOHOCHBIX MPHIIO-
JKeHHUH, BKIIIOYas 3T0HAMEPEHHBIH KO/l Ha CaMOM BBICOKOM ypoBHe mpuBmiernit B sape OC.
Hcnonp30BaHne COBPEMEHHBIX THIIEPBU30POB, IIOCTPOSHHBIX 110 MHUKPOSIEPHOH apXUTEKTY-
pe, MO3BOJISIET N3MEHHTh apXUTEKTYpy cucTeMbl Sevigator. Takue rUmepBH30pEI IO CBOEH
HPHUPOJIE SIBISAIOTCS MAJICHPKOH OIEPAllMOHHOM CHCTEMOH, B KOTOPOH OONBIIMHCTBO amma-
paTHbIX onepauni/'l U ynpasJ€HUE BUPTYAJIbHBIMU MallMHaAMU U30JIUPOBAHHO B IIPOLIECCHI C
HHU3KHM YpOBHEM IpHopureTa. Kommpomerarus Takux IpOIECCOB HE NPHUBENET K KOMIIPO-
METaluH BCEro THIIEPBH30PA.

B naHHO# paboTe MbI IPelOCTaBIAeM SKCIEPUMEHTAIBHYIO apXHTEKTYpy Sevigator-a, OCHO-
BaHHYIO Ha runepsu3ope NOVA, B paMKkax KOTOPOIl CHCTEMHBIE BEI30BHI JOBEPEHHBIX IIPH-
J0KeHnit 00pabaThIBaOTCs B OTACIBFHOM MPOLIECCe B TUIIEPBU30PE, @ HE B OTICIBHON BUPTY-
QIPHOM MamMHe. JTOT 3KCIEePUMEHT Mokasal 25% HpHpPOCT MPOHM3BOJUTEILHOCTH IPH
YMEHBIICHUU KOJINUECTBA nepexmouex—mﬁ KOHTCKCTOB.
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