
К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

267

Remote Service of System Calls

in Microkernel Hypervisor

1Kurbanmagomed Mallachiev <mallachiev@ispras.ru>,
2Nikolay Pakulin <npak@ispras.ru>

1Lomonosov Moscow State University,

Faculty of Computational Mathematics and Cybernetics,

119991, Leninskie Gory, 1, Moscow, Russia
2 Institute for System Programming of the Russian Academy of Sciences,

109004, A. Solzhenitsina, 25, Moscow, Russia

Abstract. This paper presents further development of Sevigator hypervisor-based security

system. Original design of Sevigator confines users’ applications in a separate virtual ma-

chine that has no network interfaces. For trusted applications Sevigator intercepts network-

related system calls and routes them to the dedicated virtual machine that services those calls.

This design allows Sevigator protect networking from malicious applications including high-

level intruders residing in the kernel.

Modern microkernel-based hypervisors opened the door to redesign of Sevigator. Those hy-

pervisors are small operating systems by nature, where management of virtual machines as

well as most of hardware operations are isolated in processes with low priority level. Com-

promising such a process does not result in compromising the whole hypervisor.

In this paper we present an experimental design of Sevigator based on NOVA hypervisor

where system calls of trusted applications are serviced by a dedicated process in the hypervi-

sor rather than a separate VM. The experiment shows about 25% performance gain due to

reduced number of context switches.

Keywords: virtualization, hypervisor, security, microkernel

DOI: 10.15514/ISPRAS-2015-27(3)-18

For citation: Mallachiev Kurbanmagomed, Pakulin Nikolay. Remote Service of System

Calls in Microkernel Hypervisor. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015,

pp. 267-278. DOI: 10.15514/ISPRAS-2015-27(3)-18.

mailto:npak@ispras.ru

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

268

1. Introduction

The main purpose of the project is to develop a security facility that protects data

confidentiality on a computer connected to the Internet and managed by an untrust-

ed operating system. We assume that malicious code can get unlimited access to all

hardware and software system resources through vulnerabilities or backdoors in

system software.

Today popular modern operating systems (such as Linux or Windows) are based on

monolithic kernel, where all components of kernel have equally high privileges. In

this case if malicious code penetrates OS kernel, then there is a risk of losing control

over any OS resources including application in-memory data, confidential infor-

mation in file storage, etc. Integrity and confidentiality of data transmitted over the

network are also threatened, even in the case when cryptography is used.

The question is whether it is possible to protect unmodified applications that run

under unmodified commodity OS like Windows or Linux on a commodity work-

station with x86 CPU. Protection systems located in kernel, such as antivirus, fire-

wall, intrusion detection, can themselves be attacked by privileged malicious code.

Possible way of protection from those attacks is the transfer of protection to more

privileged level.

The answer is “probably yes”: a prototype called Sevigator [3, 4, 5] protects appli-

cations in Linux from malware and comprised kernel. It uses hardware-assisted vir-

tualization [1, 2] to secure operating memory of applications and control access to

communication hardware (network interface card). It allows to launch OS under

control of virtual machine monitor (VMM, also called hypervisor). Hypervisor is

much smaller than OS, fully isolated from it, and has higher privilege than OS.

Hardware virtualization is supported by most modern processors, making the wide-

spread use of security systems based on hypervisors possible.

Sevigator provides isolation of untrusted OS from network, but keeps operability of

trusted application. For them, and only for them, an access to network resources is

granted. An important feature of this approach is that there is no need to modify or

recompile any applications or OS.

Within Sevigator approach OS resides in a virtual machine, while protection system

is located in hypervisor. It provides facilities to isolate untrusted applications from

network access; to prevent data leaks due to code intrusion or memory attacks it

controls memory integrity of the applications under protection. The hypervisor pro-

vides simultaneous execution of two completely isolated from each other virtual

machines. The first one called user is the primary one, user interacts with it, and it

believes that network adapter is physically absent. The second VM called service is

service system which has unlimited access to network. Network support for trusted

processes in user machine is provided by hypervisor through remote execution of

required (limited) set of system calls in the service virtual machine. Full description

of security algorithms can be found in [3, 4, 5].

К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

269

Fig 1. Sevigator architecture

We refer to this scheme as remote servicing of system calls since the hypervisor

intercepts parameters of a system call in the user VM and transfer them to the ser-

vice VM, where the actual code is executed.

The scheme with two VMs was motivated by the following considerations: isolation

networking operations from user machine and minimization the risk of hypervisor

compromise in the case of compromised network component. Isolation makes net-

work access possible only for trusted application. Execution within service VM

means that compromise of the VM will not lead to compromise of hypervisor ker-

nel.

Sevigator system originally was based on hypervisor KVM (Kernel-based Virtual

Machine), and using the second VM was the only possible solution to satisfy the

constraints. Later Sevigator without changes of its architecture was ported to NOVA

microkernel hypervisor [6].

Our work shows that using hypervisor based on the microkernel architecture allows

us to replace the second virtual machine with a process in hypervisor with the same

functionality. This is possible because microkernel isolates processes and executes

them at lower privilege level than the microkernel. And this change significantly

reduces overhead of having dedicated OS only for remote execution of service calls.

2. Hypervisors Overview

There is a lot of hypervisors and they use different ideas. We chose NOVA [7] to

port Sevigator because it was the only one that satisfied own requirements for origi-

nal Sevigator design (requirements and hypervisor comparison can be found in [6]).

And when we ported Sevigator, NOVA architecture gave us idea how we can rede-

sign Sevigator to reduce overhead but keeping security.

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

270

With new design of Sevigator, where dedicated process is responsible for servicing

system call, we again looked if it can be implemented in different hypervisor be-

sides NOVA. The following hypervisors were considered: BitVisor[8], SecVisor[9],

Xen[10], Qubes OS [11]. All of them are distributed under open source licenses and

don't require existence of a host operating system.

BitVisor is hypervisor and virtual machine monitor (VMM), designed to ensure

security of computer systems. BitVisor provides encryption of network connections

and data on disk. Ensuring confidentiality of network and disk data is transparent to

the operating system. BitVisor designed to create minimal overhead on encryption

and decryption of data.

Bitvisor doesn't separate VMM and kernel of the hypervisor, so performed at the

same privilege level. BitVisor supports exactly one virtual machine - this is done in

order to minimize the overhead on the interaction of the guest OS with the devices,

primarily input and output devices. Bitvisor based on parapass-through architecture:

hypervisor intercepted memory access and I/O access, and pass-through anything

else. Bitvisor intercept accesses to protect hypervisors from the guest OS, and en-

force security functionalities. Bitvisor cannot execute processes at lower privilege

level. Therefore Bitvisor didn’t satisfy the requirements.

SecVisoris a very small hypervisor (about 10 times smaller than NOVA) which goal

is protecting OS kernel against an attacker who controls everything but the CPU, the

memory controller, and system memory chips.

SecVisor provides a lifetime guarantee of the integrity of the code executing with

kernel privilege. In other words, SecVisor prevents an attacker from either modify-

ing existing code in a kernel or from executing injected code with kernel privilege,

over the lifetime of the system. SecVisor ensures that only code approved by the

user can execute with kernel privilege. SecVisor also executes all its parts at the

same privilege level.

Xen is a very popular virtualization platform, which is widely used to build cloud

services. Xen virtualization platform includes a hypervisor, virtual machine monitor

for guest OS, dedicated virtual machine dom0 to work with devices and specialized

drivers to access the device via the dom0. These drivers are called paravirtualized as

they "know" that the OS is running under Xen and effectively interact with the hy-

pervisor and dom0.

Xen hypervisor implements the minimum set of operations: management of RAM,

processor status, real time clock, interrupt processing and control of DMA (IOM-

MU). All other functions, such as the implementation of virtual devices, creation

and deletion virtual machines, moving VMs between servers in the cloud, etc. is

implemented in a dedicated virtual machine dom0.

All functions related to network, disk drives, video cards emulation and other devic-

es are placed outside the hypervisor. Typically, the request handling devices consist

of two parts. Driver in the guest operating system translates requests from the OS to

program handler in dom0. To increase the security of the system servers, virtualize

К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

271

devices run as separate processes in OS dom0. Failure in such a program leads to a

denial of only one virtual device in one VM and does not affect the work of other

copies of the server.

Xen architecture requires using dedicated virtual machine for servicing network-

releated system calls and this is a big overhead. Furthermore, Xen codebase is large

and nearly impossible for thorough security analisys.

Qubes OS is a hypevisor based on Xen. Qubes implements a security–by-isolation

approach. In Qubes, the isolation is provided in two dimensions: hardware (separat-

ed network domain, storage domain, GUI) and software (domain with different lev-

els of trust e.g. work domain – most trusted, shopping domain, random domain –

less trusted). Domains are separated by executing within different virtual machines.

3. Original Sevigator Design

3.1 General Architecture

Among the applications running in the OS, the protection system identifies several

applications that are considered as trusted. All others applications are considered as

untrusted. The security problem is to prevent the leakage or compromising of confi-

dential data of trusted applications. Trusted applications for the normal functioning

may require access to the public network. This network connection can be used by

malicious code in the OS kernel for the leakage of sensitive data.

The solution is based on use of hardware virtualization technology, execution of an

OS in the virtual machine (VM), and implementation protection system in the body

of a virtual machine monitor (hypervisor) [3]. The hypervisor provides simultaneous

execution of two completely isolated from each other virtual machines (fig. 1). Both

are running the same untrusted OS. The first VM, we will call it user, is the primary

one. It is there where critical data resides and applications (both trusted and untrust-

ed) are executed processing those data. Hypervisor blocks access to the network

interface for user VM and its guest OS believes that the network adapter is physical-

ly absent. Thus, even if malicious code managed to gain access to critical data, it

will not be able to transfer them to the outer world.

Network access for trusted applications is supplied by the second VM called ser-

vice. It has free access to the network. However, due to VMs isolation provided by

the hypervisor the software in the service VM (including OS kernel) cannot gain

access to data residing within the user VM.

Network support for trusted processes is implemented through remote servicing of

required set of system calls in the service VM. The hypervisor intercepts network-

related system calls invoked by a trusted process, analyzes the data and, when nec-

essary, transmits them to the service VM. Note that the remote service of the system

call is made transparent for a trusted process and an OS.

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

272

3.2 NOVA based architecture

NOVA is a microkernel for hypervisor. NOVA itself is only a kernel, for running

virtual machines you should use one of the environments, built atop of it: NUL,

NRE or Genode. We use NUL because NRE still misses some NUL features, and

Genode is much larger.

Because of microkernel design, only the NOVA kernel runs with the highest priority

and every process of NUL is executed as user space process with priority level

CPL3 (lowest on Intel IA-32 architecture).

NUL is an experimental operational environment and it is still work in progress. It

contains a number of simplified components, e.g. direct access to host PCI devices

works unstable. As a result VMM (Virtual Machine Monitor) has to emulate hard-

ware devices for the guest virtual machine. And if the emulated model needs access

to a host device, than a driver in NUL is required for that device. For networking

NUL provides a small number of drivers, most notable is the classic NE2000 net-

work card. For our experiment we used NE2000-compatible network card

RTL8029AS, for which NUL has a driver.

The port of Sevigator architecture to NOVA hypervisor uses two virtual machines

[13] to service network-related system calls of trusted users’ applications. As an

example Fig. 2 shows how servicing send system call works.

Fig 2. Path of send message in original design Sevigator

Yellow colored boxes are processes in NOVA. Interaction with and between pro-

cesses always imply calling NOVA kernel, but for simplicity we don’t show them

on the figure.

When trusted process executes send system call the Sevigator module in OS kernel

intercepts it (1), forms special fixed size message and free size vault and executes

the hypercall (2). VMM passes (3) the message and the vault to another VMM. This

VMM sends (4) the message to service VM kernel module. Module finds vault size

К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

273

in message, allocates memory, asks (5) for vault and receives (6) it. Module forms a

new message and sends it to Linux kernel, which calls (7) network driver for net-

work card emulated by VMM. The driver sends (8) bytes to the network card mod-

el, which passes (9) them to driver of the actual card. And finally the driver in the

hypervisor sends bytes to the network card.

As we can see the path that passes network messages is really long. In the next

chapter we will show how to achieve a shorter pass.

4. New Sevigator Design

Microkernel based hypervisor allows us to redesign Sevigator. Those hypervisors

have well isolated parts. Only a small kernel has highest priority level. Most of

hardware operations as well as management of virtual machines are isolated in pro-

cesses with low priority level.

 The idea of the redesign is to move servicing system calls of trusted applications to

hypervisor applications. Having dedicated processes in hypervisor we keep all plus-

es of using dedicated virtual machine such as isolation of servicing system calls in

code and securing the risk of compromise the system by reduction of priority level.

It means that compromising such a code doesn’t mean compromising the whole

hypervisor. But redesigning gives more: it reduces trusted code base from millions

of lines of code (LoC) for service VM to tens of thousands LoC for dedicated appli-

cations in hypervisor. And also we reduce overhead of context switching: rede-

signed system doesn’t need at least context switching between VMM and service

VM; so we increase performance of the whole system.

In our paper we present a proof of concept of the new approach to servicing system

calls of trusted applications in dedicated environment.

We selected networking system calls for study. Fig. 3 presents the idea: networked

system calls are serviced in the dedicated process over NOVA microkernel. The

application is based on popular embedded TCP/IP stack called lwIP[12]. The appli-

cation is a wrapper around lwIP that parses the parameters of remote system calls

and invokes corresponding lwIP operations. In the following text we will refer to

this application as “lwIP”.

Fig.3 shows servicing of send message in redesigned system. Here we will only

discuss difference of redesigned system. Steps (1) and (2) are the same as in the

original design. VMM sends (3) message and vault to LwIP process, which analyses

the message, understands what system call was called, and forms a packet, that will

be sent (4) to driver. Driver sends bytes to the real network card.

We can see that in the new design the path is much shorter, and one can expect that

the new design should work faster. We present the performance study in the in the

next section. In order to support the concept of socket used by trusted application

we implemented a small glue layer over lwIP. The prototype implementation sup-

ports socket create and close, socket bind and connect, send and recv for TCP and

UDP. Raw sockets (e.g. for ICMP messages) are not supported yet.

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

274

Fig 3. Path of send message in redesigned Sevigator

5. Performance

We conducted an experiment to measure network performance of the redesigned

system. During experiment we compared performance of the original design with

two VMs, and the new design with the dedicated process. As the reference point we

used native Linux running on hardware without hypervisor and ran hypervisor with

pure lwIP application without VMM.

All measurements were performed on the same machine with AMD Phenom II x4

980 3.7 GHz CPU, 16 GB RAM. As network card we used once popular

RTL8029AS card. It is ne2000 compatible and is one of the few cards supported by

NOVA/NUL. The card is 10Mbit/s. We use this old card because other cards sup-

ported by NOVA turned out to be much harder to find.

For testing, we run test application in Linux, which executes 1000 times sendto sys-

tem call, sending UDP packets to the network. We were sending short 60 bytes

message. The destination workstation received the packets, identified lost packets

and measured time between the first and the last packets. We did not measure time

at the guest virtual machine because return from sendto call does not mean that the

corresponding packet was actually sent.

Fig.4 shows the test performance difference between original and new architectures

and pure Linux.

The experiments showed that replacing the virtual machine with a dedicated appli-

cation increased performance by 26%. The overhead compared to the native Linux

execution was reduced from almost 100% to 29%.

Comparing with pure lwIP case shows that current overhead for transfer system call

in lwIP is only 1.4 µs. For 10 Mbit/s network this is insensitive. The bottleneck of

current realization is lwIP and NE2000 driver. The NE2000 driver in NOVA is far

from perfection and careful queuing of pending packets may reduce the total over-

head even more.

К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

275

Fig 4. Time for sending 1000 UDP packets

Servicing of system calls in an application compared to a dedicated VM simplifies

the flow control. Removing the second VM resulted in omitting:

interrupt injection in the service VM (required to notify the VM that there are pack-

ets pending);

VM exit to pass frames from service OS to NIC model in the VMM;

IPC calls between VMM and NIC driver in the hypervisor.

Another important gain is significant reduction of the trusted code base required for

servicing network-related system calls. The design with two virtual machines im-

plied that we have to trust the whole Linux kernel, i.e. millions lines of code due to

the monolithic nature of that kernel. When system calls are serviced by the lwIP

application, the trusted computing base shrinks to about 70,000 LoC, the size of

lwIP.

6. Future Work

In future we want to develop NUL drivers for modern network cards and make ex-

periments on them. Also because NOVA UserLand was made as a test project and is

not fully stable for now, we have encountered problems with memory management,

and have errors while working with big packets. We want to find the causes the re-

vealed problems and fix it.

Finally, we will port guest modules to modern Linux kernel and see if there are any

changes in performance.

7. Conclusion

Our work shows that using microkernel-based hypervisors opens new perspectives

and facilitates new approach to servicing OS system calls in hypervisor.

0

20

40

60

80

100

120

140

TIME, MS

Pure Linux

LwIP in NOVA

lwIP based
Sevigator

Public VM based
Sevigator

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

276

Using microkernel hypervisor allow us to redesign system by moving system call

servicing in hypervisor application. Those applications are executed as processes

with low priority, so compromising of an application doesn’t lead to compromising

of the whole hypervisor.

We were able to move servicing of network-related system calls to such a process. It

significantly reduces overhead for servicing network-assisted system calls and

speeds up execution: new design makes network connection 30% faster. Further-

more, it reduced trusted code base by two orders of magnitude, and this is very im-

portant for security system, because it makes audit or verification of system simpler.

References

[1]. Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes

3A, 3B, and 3C: System Programming Guide.

[2]. AMD64 Architecture Programmer’s Manual Volume 2: System Programming PDF,

2011

[3]. I. Burdonov, A. Kosachev, P. Iakovenko Virtualization-based separation of privilege:

working with sensitive data in untrusted environment. 1st Eurosys Workshop on Virtual-

ization Technology for Dependable Systems, New York, NY, USA, ACM. 2009. P. 1-6.

[4]. D. Silakov. Using Hardware-assisted Virtualization in the Information Security Area.

pp. 25-36. Proceedings of ISP RAS, volume 20, 2011. ISSN 2220-6426 (Online), ISSN

2079-8156 (Print)

[5]. P. Iakovenko. Transparent mechanism for remote system call execution. pp. 221-242.

Proceedings of ISP RAS, volume 18, 2010. ISSN 2220-6426 (Online), ISSN 2079-8156

(Print)

[6]. K. Mallachiev, N. Pakulin. Protecting Applications from Highly Privileged Malware Us-

ing Bare-metal Hypervisor. DOI: 10.15514/SYRCOSE-2014-8-10.

[7]. U. Steinberg and B. Kauer. 2010. NOVA: a microhypervisor-based secure virtualization

architecture. In Proceedings of the 5th European conference on Computer systems (Eu-

roSys '10). ACM, New York, NY, USA, 209-222.

[8]. T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano, K.

Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. 2009. BitVi-

sor: a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE

'09). ACM, New York, NY, USA, 121-130.

[9]. A. Seshadri, M., Ning Qu, and A. Perrig. 2007. SecVisor: a tiny hypervisor to provide

lifetime kernel code integrity for commodity OSes.SIGOPS Oper. Syst. Rev.41, 6, 335-

350. DOI=10.1145/1323293.1294294 C. Takemura and L. S. Crawford. The Book of

Xen. 2009, 312 pp. ISBN-13 978-1-59327-186-2,

[10]. J. Rutkowska. Software compartmentalization vs. physical separation. Invisible Things

Lab, 2014

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_

physical_separation.pdf

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf

К. Маллачиев, Н. Пакулин, Удаленное обслуживание системных вызовов в микроядерном гипервизоре. Труды

ИСП РАН, том 27, вып. 3, 2015 г., с. 267-278

277

[11]. A. Dunkels lwIP, a small independent implementation of the TCP/IP protocol suite.

http://www.nongnu.org/lwip

Удаленное обслуживание системных

вызовов в микроядерном гипервизоре

1К. Маллачиев <mallachiev@ispras.ru> ,
2Н. Пакулин <npak@ispras.ru>

1Московский государственный университет имени М.В.Ломоносова,

факультет вычислительной математики и кибернетики

119991, Россия, г. Москва, Ленинские горы, д. 1
2Институт Системного Программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25.

Аннотация. В данной работе описывается дальнейшая разработка системы защиты

Sevigator, использующей аппаратную виртуализацию. Изначальное устройство

Sevigator состоит в исполнении пользовательских приложений в отдельной виртуаль-

ной машине, у которой отсутствует сетевой интерфейс. Для доверенных приложений

Sevigator перехватает системные вызовы, связанные с операциями с сетью, и перена-

правляет их на обслуживание в выделенную виртуальную машину. Такое устройство

позволяет системе Sevigator защищать сетевое взаимодействие от вредоносных прило-

жений, включая злонамеренный код на самом высоком уровне привилегий в ядре ОС.

Использование современных гипервизоров, построенных по микроядерной архитекту-

ре, позволяет изменить архитектуру системы Sevigator. Такие гипервизоры по своей

природе являются маленькой операционной системой, в которой большинство аппа-

ратных операций и управление виртуальными машинами изолированно в процессы с

низким уровнем приоритета. Компрометация таких процессов не приведет к компро-

метации всего гипервизора.

В данной работе мы предоставляем экспериментальную архитектуру Sevigator-а, осно-

ванную на гипервизоре NOVA, в рамках которой системные вызовы доверенных при-

ложений обрабатываются в отдельном процессе в гипервизоре, а не в отдельной вирту-

альной машине. Этот эксперимент показал 25% прирост производительности при

уменьшении количества переключений контекстов.

Ключевые слова: виртуализация, гипервизор, безопасность, микроядро

DOI: 10.15514/ISPRAS-2015-27(3)-18

http://www.nongnu.org/lwip

Kurbanmagomed Mallachiev, Nikolay Pakulin. Remote Service of System Calls in Microkernel Hypervisor. Trudy ISP

RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 267-278

278

Для цитирования: Маллачиев К., Пакулин Н. Удаленное обслуживание системных

вызовов в микроядерном гипервизоре. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр.

87-96 (на английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-18.

Список литературы

[1]. Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes

3A, 3B, and 3C: System Programming Guide.

[2]. AMD64 Architecture Programmer’s Manual Volume 2: System Programming PDF,

2011

[3]. I. Burdonov, A. Kosachev, P. Iakovenko Virtualization-based separation of privilege:

working with sensitive data in untrusted environment. 1st Eurosys Workshop on Virtual-

ization Technology for Dependable Systems, New York, NY, USA, ACM. 2009. P. 1-6.

[4]. Д.В. Силаков. Использование аппаратной виртуализации в контексте информаци-

онной безопасности, Труды ИСП РАН том 20. 2011 г. стр.25-36. ISSN 2220-6426

(Online), ISSN 2079-8156 (Print)

[5]. П.Н. Яковенко. Прозрачный механизм удаленного обслуживания системных вызо-

вов. Труды ИСП РАН Том 18. 2010 г. Стр. 221-242. ISSN 2220-6426 (Online), ISSN

2079-8156 (Print)

[6]. K. Mallachiev, N. Pakulin. Protecting Applications from Highly Privileged Malware Us-

ing Bare-metal Hypervisor. DOI: 10.15514/SYRCOSE-2014-8-10.

[7]. U. Steinberg and B. Kauer. 2010. NOVA: a microhypervisor-based secure virtualization

architecture. In Proceedings of the 5th European conference on Computer systems (Eu-

roSys '10). ACM, New York, NY, USA, 209-222.

[8]. T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano, K.

Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato. 2009. BitVi-

sor: a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE

'09). ACM, New York, NY, USA, 121-130.

[9]. A. Seshadri, M., Ning Qu, and A. Perrig. 2007. SecVisor: a tiny hypervisor to provide

lifetime kernel code integrity for commodity OSes.SIGOPS Oper. Syst. Rev.41, 6, 335-

350. DOI=10.1145/1323293.1294294 C. Takemura and L. S. Crawford. The Book of

Xen. 2009, 312 pp. ISBN-13 978-1-59327-186-2,

[10]. J. Rutkowska. Software compartmentalization vs. physical separation. Invisible Things

Lab, 2014

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_

physical_separation.pdf

[11]. A. Dunkels lwIP, a small independent implementation of the TCP/IP protocol suite.

http://www.nongnu.org/lwip

http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.nongnu.org/lwip

