Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Constructing Private Service with
CRYP2CHAT Application

Andrey Kiryantsev <reyzor2142@gmail.com>,
Irina Stefanova, <aistvt@mail.ru>,
Volga Region State University of Telecommunications and Informatics, 77
Moskovskoe sh., Samara, 443090, Russian Federation

Annotation. The article contains the description of a private service with the client-side data
encryption and data decryption. Owing to the Onion Router (TOR) technology, anonymous
network connection protected from interception becomes possible. Users in TOR network
may remain anonymous while visiting websites, uploading materials, sending messages and
working with other applications that use TCP protocol. Traffic security is ensured by the
distributed network of onion routers. The focus of the article is on the direct client-to-client
connection. Nowadays messengers — programs for on-line messages exchange — place
metadata on the central server without encryption, which provides an opportunity to learn (if
required) the information about the common users, time of their communication, the number
of messages they send within a session. To solve the problem the authors offer CRYP2CHAT
program for client-side encryption. Sending messages through TOR network is performed by
asymmetric encryption, e.g. by RSA method that enables other encryption algorithms as well.
The article provides the algorithm for work of the programs. The authors describe the
methods of protection from some network attacks, such as MITM and the experiment of
prototype work. They check clean access server and use self-destruction of messages after the
session end. Additionally, the authors consider some potential dangers of an external
character that can violate confidential communication data, for instance, change of the
application code, password attack or private key theft. The article illustrates the way the
Onion Router technology works. It allows to protect from MITM attacks, to remain
anonymous and to proxy. Moreover, there is a comparative analysis of Cryp2Chat qualitative
characteristics and its analog.

Keywords: cryptography; encryption; encoding; MITM-attack; end2end encryption; node.js;
cryprico; java script

DOI: 10.15514/ISPRAS-2015-27(3)-19

For citation: Kiryantsev Andrey, Stefanova Irina. Constructing Private Service with
CRYP2CHAT Application. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-
290. DOI: 10.15514/ISPRAS-2015-27(3)-19.

279

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

1. Introduction

Modern society is characterized by the exchange and buffering information in
electronic form. While processing the information, we may need to react
immediately on constantly emerging problems with data protection and security of
data centers.

The problem is now becoming more urgent considering declarations and current
publications by Edward Snowden, the former system administrator for the Central
Intelligence Agency. He reports on the fact that the National Security
Agency (NSA) operates global surveillance programs with the cooperation of
telecommunication companies and European governments through the existing
communication networks.

Nowadays to exchange information on-line special programs — messengers — are
used. They are particularly useful for transmission of text messages, sound signals,
images, video and games as well as for organization of teleconferences by coding
messages of on-line users. Messengers usually operate in coordination with a server,
and they are defined as client-side programs with their own rules of work and
peculiarities in operating, e.g. 1ICQ, Skype. The main drawback of these programs is
that while using them, we leave metadata on a hosting server as non-encrypted data
flow, which provides an opportunity to learn (if required) the information about the
common users, time of their communication, the number of messages they send
within a session.

2. Description of CRYP2CHAT program

To eliminate the defect we develop a model to run a program that allows coding the
data on the client side with the help of Cryp2Chat Application
Currently existing Internet messengers fail to perform the following functions:

- to check for MITM (Men in the middle)-attacks;

- to provide a ‘clean’ (data free) server;

- to destruct messages automatically after the session is over.
MITM-attack is the most wide-spread way to attack for stealing the data of some
users. This type of attack presupposes that the attackers are able to read and alter
messages of a sender and a receiver as they wish. Additionally, neither a sender nor
a receiver sees any hints of the attacker to be in the channel. It is the matter of no
importance if SSL cryptographic protocol is applied or not. The attacker hooks into
a channel between users and interferes actively with the communication protocol.
He/ she may delete, falsify data or provide the false ones.
The term ‘clean’ server implies that the communication between two users leaves
no information on the server. In this case the server functions as a repeater and
simply translates the encrypted message between the clients. After the session is
over, the access to the data of the on-line chart is lost without any opportunity for
return.

280

http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Global_surveillance
http://www.multitran.ru/c/m.exe?t=3431053_1_2&s1=%EA%F0%E8%EF%F2%EE%E3%F0%E0%F4%E8%F7%E5%F1%EA%E8%E9%20%EF%F0%EE%F2%EE%EA%EE%EB
http://www.multitran.ru/c/m.exe?t=3432975_1_2&s1=%E7%E0%F8%E8%F4%F0%EE%E2%E0%ED%ED%EE%E5%20%F1%EE%EE%E1%F9%E5%ED%E8%E5

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

The described problems with messengers could be solved if we use a new
application — Cryp2Chat.

Cryp2Chat application has been developed to minimize the drawbacks of the
Internet messengers, i.e. it leaves no metadata on the central server. The client is the
only person who can decode the incoming message. The client possesses data de-
encryption key, and the key does not go further.

The program operation procedure is the following (fig. 1). A server receives a list of
network user’s contacts. A data encryption key is generated on the side of a sender.
Further the public key is sent to the server and, finally, to a receiver. The private
part of a key remains on the user’s (sender’s) side.

S ... S
server
o
'y et

sender -
receiver

Fig. 1. An Example of Cryp2Chat Application Running

When a user (a receiver) sends back a message, the operation is realized within
three main stages:

1. He/she receives a public key of a receiver from the server;

2. The message is encrypted by a public key;

3. The cryptographed message is sent to the server.

RSA method is employed for encryption; the key length includes 1024 bit.
However, the possibility to use other algorithms of encryption is also provided.

The server created as a prototype of this application is written in Node.js
programming language (advanced JavaScript) on the basis of Socket.lO library.
Cryp2Chat application is an original service designed to exchange rapidly-changing
messages. It supports End2End encryption.

To enable the program to use proxy servers (to protect the client’s computer from
some network attacks) and to increase the reliability of a channel, we offer the use
of network of TOR (The Onion Router). On the computer of a client a proxy server
connected to the network of TOR starts its work [1]. It involves a multilevel
encryption. The process of message transmission in a network is schematically
presented on fig. 2.

281

http://www.multitran.ru/c/m.exe?t=5416562_1_2&s1=%EA%EB%FE%F7%20%F8%E8%F4%F0%EE%E2%E0%ED%E8%FF%20%E4%E0%ED%ED%FB%F5
http://www.multitran.ru/c/m.exe?t=5416562_1_2&s1=%EA%EB%FE%F7%20%F8%E8%F4%F0%EE%E2%E0%ED%E8%FF%20%E4%E0%ED%ED%FB%F5
http://www.multitran.ru/c/m.exe?t=1805601_1_2&s1=%F8%E8%F4%F0%EE%E3%F0%E0%EC%EC%E0

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Ef) How Tor Works: 2 3 Tornode

« « 4 unencrypted link
- encrypted link

Alice

_S N

Step 2: Alice's Tor client
picks a random path to

destination server. Green - -
links are encrypted, red - _ - s : T oy

links are in the clear. : Jane
— | [+ [—
Dave = e — Bob

Fig.2. Schematic Presentation of TOR Work
Before transmitting the data packet to the server, it goes through three random
computers. Before being sent, the package is encrypted by three keys: for each of
the three computers respectively. In addition, the TOR network can provide
anonymity for servers.
Network users start TOR multi-level (“onion™) proxy server on their machine. It
connects to the TOR servers, periodically forming a chain through the TOR network
that uses a multi-level encryption. Every packet entering the system passes through
three different proxy servers - server nodes that are randomly selected. Before being
sent, the package is sequentially encrypted by three keys: first, in the third node,
then in the second node, and, finally, in the first node. When the first node receives
a packet, it decrypts the "upper" layer encryption (similar to how we clean the
onion) and gets the information where to send the packet to. The second and the
third servers do the same. At the same time, the software multi-level (“onion"
proxy server provides a SOCKS-interface.
SOCKS (SOCKet Secure) are the programs, running on the SOCKS-based
interface. Their work could be configured through the TOR network. The TOR
network creates multiplexed traffic and sends data through a virtual chain of the
TOR network, thus, providing anonymous web surfing.
Inside the TOR network the traffic is forwarded from one router to another, and
finally it reaches the exit point from which the pure (unencrypted) data package
comes to the original recipient address (server). The traffic from the receiver is sent
back to the exit point of the TOR network [2].
The server prototype of this application is written in Node.js (advanced JavaScript)
with the help of the library for web sockets - Socket.1O.

282

https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BA%D0%B5%D1%82_(%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D0%B9%D1%81)

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Node.js is a programming platform founded on V8 database engine that translates
JavaScript into the machine code. In this way it transforms JavaScript from the
higly-specialised language into the common language for users. The client part is
realized on Html and JavaScript with the help of Cryprico library.

Node.js has not been chosen by chance. This is one of the few servers that
work quickly and productively with a single-threaded code. For instance,
being the programming language it does not need to create a new thread to
transmit a stream of query parameters and to interpret the code.

Node.js is the aggregate of the V8 database engine used in Google Chrome and in
the abstraction to access the file system and similar server modules.

To shift away from the standard web 2.0 scheme of data transmission we used Web-
Sockets and their implementation for node.js servers in the form of Socket.lO
library. It should be mentioned that Web-Socket is a Protocol intended for
exchanging messages between the browser and the web server in real time.

At the same time, the Socket.1O library provides a good level of abstraction above
the sockets that are implemented in JavaScript. With its help you can easily pass
objects to the server and from the server, without serializing them.

The structure of the server part is the following: the server accepts the message. If it
is a command, the server performs certain actions. If it is simply a message, the
server sends it to the client.

The JavaScript language, which is used in the prototype, is currently the most
common cross-platform language. It is commonly used as an embedded language
for program access to the application objects. The JavaScript language is widely
used in browsers as a scripting language to add interactivity to the web-pages.

The JavaScript language may be distinguished by its main architectural features:
dynamic typing, weak typing, automatic memory management, prototype
programming, and functions as the first class objects.

The only requirement for JavaScript work (and it is present by default in all
operating systems) is the availability of the browser. It does not need to be rewritten
when migrating from one operating system to another. We write the script and run it
in the place where there is a browser on an electronic device.

Over the last decade JavaScript turned from the applied language for checking how
the blanks are filled, into a language that can provide the programmer a powerful
tool to tackle any kind of problems. The JavaScript library is constantly updated
with new scripts and styles.

Now there are many add-in settings for JavaScript as its possibilities are constantly
growing, but the syntax and its architecture is not changed. A simple example is
CoffeeScirpt language, which allows you to write more compact code compared to
JavaScript. It helps to solve some architectural omissions such as the lack of OOP
(object oriented programming), collbecki (CallBacks) — callback and syntactic
‘sugar’ (code lines that improve the way the program looks like). All this makes the
language more convenient for the programmer.

283

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

3. Prototype work

As an example, we may consider the fragments of scripts in Cryp2Chat prototype.
Below there is a fragment of the script that implements the simultaneous exchange
of encryption keys between clients:

socket.on('key1',function(data)

keys[0] = data.key;
¥
)i
socket.on('key2',function(data){
keys[1] = data.key;
chat.emit('key’, { keyl: keys[1], key2: keys[0], stats: "ok™});
}
)i
When the client sends his/her first client key ‘keyl’, it is immediately saved.
However, while sending the second client key ‘key2’, the handshake happens. The
handshake process is asynchronous exchange of public keys to encrypt data between
two clients.
In Cryp2Chat prototype the transmission of the incoming message is presented
through the following scrip:
socket.on('msg’, function(data)

{
socket.broadcast.to(socket.room).emit(‘receive’, {msg: data.msg, user:

data.user, img: data.img});

}

)i
Next, when the server receives an incoming message, the server sends it to the
second client with the help of the socket.io library.
The public RSA key is generated in the following lines of script:

var myRSAkey = cryptico.generateRSAKey(PassPhrase, 512);

var PublicKeyString = cryptico.publicKeyString(myRSAkey);
The decryption of the cryptogram and its presentation in the client side is
represented by the lines of the script:

var msgs = cryptico.encrypt(textarea.val(),roomKey);

socket.emit (‘'msg',{msg: msgs, user: name, img: img});
The client is the only one who can decrypt the transmitted message, as the private
key never leaves the client side. The connection is made directly from client to
client.

socket.on('key',function(data)

console.log(data);
console.log(yourName.val());
console.log(hisName.val());

284

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

if(myld == 1)

console.log("roomKey" + roomKey);
roomKey = data.keyl;

}

else
console.log("roomKey" + roomKey);
roomKey = data.key?2;
}

}

);

Encrypt Message

!

Send to server

!

Receiving encrypted
message

Yes
Have certificate ?

L J

h 4

Sending a message

Refusal to send the to the recipient
message l

Getting the message
recipient

!

Encrypt message

an recipient

|
Fig. 3. Generalized Algorithm of Cryp2Chat Application

285

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

The script describes the client-side function that implements handshake. The
generalized algorithm of the Cryp2Chat application is illustrated in Fig. 3.

As shown in the flowchart, from the moment of receiving the encrypted message
and till the moment the message is sent to the recipient, the server undertakes the
only action — certificate (i.e. license) verification. All the other steps associated with
encryption, key generation, the transmission of the cryptogram to the recipient and
decrypting of the cryptogram by the recipient, occur at the clients and in their
browsers.

4. Experiment procedure

Experimental study of the application was conducted on a typical mobile phone,
where Cryp2Chat program was installed. Mobile phone is Nexus 5 with the
processor speed 2260 MHz and with the operating system Android 4.4.4. This
operating system supports novelties related to the safe operation in the browser.
When a user opens an application, it verifies the certificate on the sender’s device.
In case of a successful verification the sender chooses a receiver. In case the
connection is completed, the receiver’s public key and a signature are taken from
the browser local database, or they are requested from the server.

Next the program encrypts the message and the sender's signature key. The message
is sent to the server, and it verifies this signature on the basis of the contacts list. If
the sender's signature exists in the server database, the latter immediately transmits
the message to the recipient. In case of an incoming message the signature of the
recipient is verified and it is decrypted with a secret decryption key.

The experimental results with Cryp2Chat prototype are shown on Figures 4 - 7.

et =0

Oops, there are no other people in this chat! Chat with Andrey

Andrey FRIEND

hitlp:iacalnost BOB0VChal 603708 allayhi con|

Fig. 4. Introducing the Users

286

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

Andrey

Andrey

Andrey Andrey
FRIEND FRIEND

Fig. 5. Exchange with Test Messages

NhVeNtTrxd@xkPr3veDhS 2 PEUT 1P xkiXcZV0==
ViugNtTrx40xkPr3veDhS2POUI 1P xkXcZVQ

TcbeK1IqUfviFaYQIDptNpguSGtNEUIQOw==

Fig. 6. Console of the First Client

On the console of the first client and on the server console one could see only the
encrypted string. This way the information is transmitted to the server (Fig. 7).
Additionally, the recipient - the second client - is the only one who possesses the
key to decrypt it.

D0kGo7uR
vYm7huqJHro

Fig. 7. Console of the Server

Further we conducted an experiment for a group of 20 users. Especially for this
purpose we launched the site in the cloud Azure that hosts Cryp2Chat application -
http://cryp2chat.azurewebsites.net/. Based on the experiment we have had the
following results:

- high speed of response from the client’s side as well as from the server side;

- a sufficiently high contact capacity of the program, as all 20 users managed
to establish contacts with their subscribers simultaneously.

287

http://cryp2chat.azurewebsites.net/

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Fig. 8 is a table of qualitative indicators of Cryp2Chat application along with its
analogues. In the table the following conventional symbols are employed:

@WhatsApp
mmum ‘
cryp2chat SnapChat | WhatsApp
End2End encrypting Vv
Support of crypto signs Vv
Business version v
Oriented onto the Russian v
Federation and CIS market
Audio & Video translation v
Crossplatform v
Self-destruction of messages Vv
The ability to work withouta v
server

Fig. 8. Cryp2Chat Application and its Analogues

v — activated functional features of the program,

— inactivated functional features of the program,

— business version. There exists a business version, but it is patented under a
different name and it might be a slightly different product.
Figure 8 illustrates the following advantages of Cryp2Chat application:
1) The application corresponds to all the parameters;
2) It provides a cross-platform messaging and self-destruction of messages;
3) It uses translator servers, i.e. working on peer2peer scheme.

5. Potential dangers

While designing the application three possible potential dangers were considered:

1. Brute force. Kaspersky blog has been used to assess the possibility of selecting
passwords [3]. The program has shown that the selection of the password with a key
of about 50 characters length, including special characters, will take more than
100,000 years. Even on a powerful botnet Conficker a password will be sorted out
for ten thousand centuries.

2. Key theft. It is impossible for two reasons:

— If it is android application, the "sandbox" - a tightly controlled set of
resources for the execution of the guest program - will not give to another
application access to the files with a password,

— If it is web application, the call to a variable is impossible, as a pointer to an
element is deleted, and it is only the inner code that can refer to this variable.

3. The application code cannot be changed because:

— If it is web application, then the downloaded code is stored when you start
the application for the first time and it cannot be downloaded when you run,
288

Anppeii Kupbsnues, Mpuna Credanoa. Co3aHie IPUBATHOTO CEPBHCA C HCIIOIb30BAHUEM PHIIOKECHHUS
CRYP2CHAT. Tpyast UCII PAH, Tom 27, BB 3, 2015 1., C. 279-290

— If it is the native application, changes in a code from the server side does not
lead to a change of the client application code.
The transfer of potentially dangerous information (acts of terrorism, drug sales) is
prevented because control data exchange is carried out with the use of an electronic
signature. While registering the user generates a signature. This is a RSA key that is
passed to the server, stored there and never changed.
When sending a message, the server checks the signature and if this signature is
missing on the server, this message is not sent. Also, the signature may be
withdrawn from server storage due to violation of the license agreement or similar
cases. Thus, it is possible also to control the transmission of messages. Though we
do not know what is encrypted in the message, we may deny the user in the network
communication services.

6. Conclusion

In the future, we plan to rewrite the project from scratch and to implement it as a
complete business solution with further access to the market. Additionally we plan
to develop graphical password and voice authentication function. In addition, the
plan is to transfer video, audio and other files.

References

[1] Tor — The Onion Router. Wikipedia, the free encyclopedia/ URL:
https://ru.wikipedia.org/wiki/Tor#.D0.90. [08.08.2014]

[2] Tor: Overview URL: www.torproject.org/about/overview.html.en

[3] Blog.kaspersky URL.: blog.kaspersky.com/password-check.

Cos3paHue npuBaTHOro cepBuca c
ucnornb3oBaHMEM NMPUIOXKEHUA
CRYP2CHAT

Anopeit Kupvanyes <reyzor2142@gmail.com>,
Hpuna Cmegpanosa <aistvt@mail.ru>
Tlosonxcckutl 2ocyoapcmeennblil yHugepcumen meieKoMMYHUKayuil u
ungpopmamuxu I1I'YTH, 443090, Poccus, . Camapa, Mockosckoe wiocce, 0. 77

AnHotaumsi. CraThs COJICP)KMT ONMCaHWE IIPUBATHOTO cepBuca ¢ IIM(POBaHUE WU
pacmudpoBaHEeM JaHHBIX Ha CTOPOHE KIMEHTa ¢ TMojuepkkoi TexHosormu The Onion
Router (TOR), koTopas NO3BONSET YyCTaHABIMBAaTh AHOHMMHOE CETEBOE COCIUHEHHE,
3aIuIieHHoe oT npociynmBanusa. C nomomnrsio cetn TOR monb3oBaTeny MOTyT COXpaHATh
AQHOHMMHOCTbH TIPH IIOCEUICHUH Be0O-CaliTOB, MyOIMKALUN MaTepHAaIOB, OTIIPABKE COOOIIEHUI
U TIpH paboTe ¢ APYTUMH MPUIOKEHUAMH, ncroys3yomumu nporokon TCP. bezomacHocTs

289

http://www.torproject.org/about/overview.html.en
http://blog.kaspersky.com/password-check
mailto:reyzor2142@gmail.com

Andrey Kiryantsev. Irina Stefanova. Constructing Private Service with CRYP2CHAT Application. Trudy ISP RAN
[Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 279-290

Tpaduka obecrednBaeTcsl 3a CUET MCHONB30BAaHMS paclpeelEHHON ceTH cepBepoB (onion
routers). B craree ommcaHo mpsiMoe coeiMHEHHME - KIMEHT K KineHTy. CoBpeMeHHEIe
MECCCHXKEphl — IPOrpaMMbl Ui OOMEHa COOONICHHH B PEAbHOM BPEMEHH OCTaBIISIOT
MEeTalaHHbIe Ha IICHTPAJbHOM cepBepe B He3allM(pOBAaHHOM BHUJE, YTO MO3BOJIIET Y3HATH
uHpopmalro 00 abOHEHTax, BPEMEHH M KOJMYECTBE COOOIICHHWI B cecCHH. ABTOpaMHU
npeanaraeTcsl mporpaMma IMUGpoBaHUS TaHHBIX Ha KnueHTckod cropoHe CRYP2CHAT,
KOTOpasi ycTpaHseT STOT HexocTarok. OrtmpaBieHne cooOmenus uepe3 cetb TOR
OCYIIECTBIISICTCS C UCTIOIb30BAaHNEM aCHMMETPHYHOTO IH(POBaHNUS COOOIIEHNS, HalIpUMep,
MeTo oM RSA ¢ BO3MOKHOCTBIO HCIIONB30BAaHUS M APYTHX AITOPUTMOB mudpoBaHus. B
CTaThe MPUBEICH AITOPUTM PAabOTHI IPOrpaMMBI, OIHCAHBI CIIOCOOBI 3aIIUTEl OT HEKOTOPBIX
ceTeBbIX arak 1o tumy MITM, npoBepka HAIMYHS «IHCTOTO» CepBepa, CaMOYHHYTOXKECHHE
COOOWIEHUsT TOCTE 3aKPBITHS CECCHM, a TaK JKe OKCIEPHMEHT pabOThl MPOTOTHIA.
PaccMoTpeHBl TOTEHIMATbHBIE ONACHOCTH BHEIIHEr0 XapakTepa B BHAE ITOJMEHBI
CEpPBEPHOT0 KOJa, 000pa Mapoist M Kpaku MPHUBATHOTO KIF0Ya, KOTOPBIE MOTYT HOBIHUAThH
Ha KOH(MAECHINATBHOCTh Mepeadn JaHHBIX. Tak e ONucaH MpuMep paboThl TEXHOIOTHH
The Onion Router, xoTopas mo3BomseT AoOuThca 3ammTel 0T MITM, aHOHMMHOCTH H
npoxcudukanuu. Kpome Toro, B crathe NpUBOIMTCS CPAaBHEHNE KAaUyeCTBEHHBIX I0OKa3aTelel
Cryp2Chat ¢ ero anamoramu.

Knroueswie cnosa — kpunmozpagus, wugposanue, end2end wugposanue, node.js, cryprico,
java script, MITM-amaxa

DOI: 10.15514/ISPRAS-2015-27(3)-19

Jas uutupoBanms: KupbsHueB Awxgpeii, CredanoBa HMpuna. Co3maHue NpHBaTHOTO
cepBuca ¢ ucnoiab3oBanueM npuwioxkenuss CRYP2CHAT. Tpynet UCIT PAH, Tom 27, BeIm. 3,
2015 r., ctp. 279-290 (na anrauiickom s3bike). DOI: 10.15514/ISPRAS-2015-27(3)-19.

Cnucok nutepartypbl

[1] Tor — The Onion Router. Wikipedia, the free encyclopedia / URL:
https://ru.wikipedia.org/wiki/Tor#.D0.90. [08.08.2014]

[2] Tor: Overview URL: www.torproject.org/about/overview.html.en

[3] Blog.kaspersky URL: blog.kaspersky.com/password-check.

290

http://www.torproject.org/about/overview.html.en
http://blog.kaspersky.com/password-check

