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Abstract. During development of modern avionics systems and other mission-critical systems
modelling is vitally used. Models can be used for checking and validation of developed system,
including early validation. Early validation is very important because the cost of errors is
raising exponentially depending on the development stage. For modelling of such systems,
Architecture Analysis and Design Language (AADL) is widely used. It allows to model both
architecture of a developed system and some of behavioral characteristics of its components.
In the paper, the task of automated model checking for consistency of some behavioral
properties is considered. In particular, we focus on the problem of estimation of working time
of model components and corresponding between this time and other properties in a model.
This problem is close to the worst-case execution time problem (WCET) but it has its own
specific in this application. We considered a static approach allowing to work with standard
specification of components behaviour in AADL-models with specialized extended finite
automata. In the paper, peculiarities of used behaviour model (specialized finite automata) were
considered including work with time and external events. We considered the problem of
working time estimation for such models connected with non-local characteristic of this
property. We propose an algorithm for time estimation for such behaviour models. This
algorithm was implemented in MASIW framework, a tool for development of AADL-models.
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1. Introduction

Modern avionics is responsible for control of almost all aspects of aircraft operation.
As a result, the complexity of such systems is really high. Thus making sure that
developed system is correct is a challenging task.

Nowadays problems and their solution bring additional complexity to avionics
systems. To satisfy models requirements for weight and power consumption,
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integrated modular avionics (IMA [1]) approach is used. It means that several
resources (e.g. universal processor modules and network) are shared between several
pieces of software. The approach leads to appearing of step of the integration of the
whole system, i.e. deployment of software on different hardware, network
configuration and etc.

This approach solves weight and power consumption problems, but leads to potential
problems of interfering of applications. It means that the whole system correctness
must be checked and this problem is not solvable by checking of correctness of each
part of the system.

The model-driven approach of development allows to manage with the complexity of
a system being developed. In particular, models are needed to perform different kinds
of analysis of the modelled system though analysis of appropriate models. Such
analyses are intended to be performed on different stages of development, in
particular, to eliminate errors at early steps of development.

One kind of checks that are needed to be performed is check of timing properties of
software components.

In particular, during design and deployment stages, each particular application is
bound to a processor module. Appropriate timing properties are assigned to them, for
example

o dispatch protocol, i.e. whether an application is fired periodically,
eventually (sporadically) or both;

e period of execution for periodic applications;

e compute deadline, i.e. time interval in which an application has to finish its
work after it was given an ability to execute;

o recover deadline, i.e. time interval in which an application has to recover
from recoverable errors;

e process time, i.e. the time between sending a processed output data after
getting some input data;

e output rate, i.e. rate at which an application has to produce its output, when

it is periodic;

e output jitter, i.e. maximum deviation of time for periodic output and etc.

Being assigned to some particular application, these properties can be used in
schedulability analysis, data flow timing analysis, worst case execution time (WCET)
analysis and etc. Some desired or expected values can appear before implementation
of particular software.
During the system development, models of it are refined. In particular, for software
some behaviour specifications can appear. Such behaviour specifications can be
purely functional (i.e. containing only information about which outputs will be
produced in particular inputs at the given state).
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Also such specifications can contain how much time will be consumed in this or that
situation. The addition of this information can lead to inconsistency in the model,
because some assumptions about timing properties of software can already exist in
the model and these assumptions can contradict with behavior specification.

To check the consistency of a model, it is important to estimate timing properties of
particular behaviour specifications.

Compute deadline consistency example

Consider a periodic software component with some particular period set in the model.
Consider also that this component has compute deadline property bounds set to a
range pfrom p,to p,ms.

This property can be used in the schedule building: e.g. a time frame of p,ms can be
reserved each period to ensure this software component has enough time to compute.
This can be done on early stages of system development when no particular behavior
is known yet.

Consider the case when after development this software component is refined: now
its behaviour is specified with automaton with transitions containing how much time
is consumed by computations assigned to them. We can estimate general time
consuming of an application each period as a range hfrom h;to h,ms.

After getting estimations hwe can compare it with bounds pfrom the model and there
are several decisions we can take:

e when h = p, behavior corresponds to property and the model is consistent;

e when h & p, the model can be inconsistent because real execution time
may miss the bounds;

e when h c p, p # h, the behaviour specification corresponds to the
property; also, we can say that the property in the model can be refined to a
more precise value;

e whenp n h = @, the model is inconsistent.

[otherwise]

Fig. 1. Example of behavior specification

Example of consistent case

Consider an example when the model has bounds for compute deadline property set
to be from 3 to 10 ms. Consider also that this application has behavior specification
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with automaton shown on the fig.1. Each period this application begins in state s, and
finishes in s¢.

In this example we can estimate execution time of the application to be between 5 and
10 ms. This value is consistent with property set in the model.

There is another case when such estimations are useful. Consider a situation when
some software component in the model did not have any timing properties set.
Consider then, that later it was refined and some behavior specification has appeared
for it. The model still needs to be checked for schedulability and other timing-aware
properties. So, we need to derive these timing properties for a component with some
behaviour specification. Again, we run into an issue of estimation of timing properties
having a particular behavior specification.

So, generally we can resume that there is an important issue of estimation of timing
properties in responsible systems' models with behavior specifications.

2. AADL and BA

We use AADL (Architecture Analysis and Design Language, [2]) as a modelling
language. It allows to describe both physical and logical parts of the modelled system,
connections between components and bindings between layers of the system. AADL
has a mechanism of the language extending though special language annexes and it
has a number of standard annexes.

One of such extensions is called Behavior Model Annex [3] (BA). It allows to specify
behavior of AADL-components using extended time-aware finite-state machine.
Behaviors are set to components of a modelled system. The basic elements used in
BA behavior specifications are

e automaton states change;
e internal computations;
e accessing and assigning to internal or external variables (data components);

e interaction with the outer world using input/output ports; depending of
behavior, input ports can be managed both by pulling data and by waiting
for data to come;

o handling dispatch events, i.e. a situation when software component is
allowed to perform its execution (e.g., an operating system signals a thread
to start).

Behavior Annex automaton must contain a single initial state. When the automaton
goes out from the initial state, its internal variables are being initialized. The
automaton can contain several final states, in these states automaton can stop its
execution.

Each state of the automaton belongs to one of the classes of complete states or
execution states.
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Transitions from execution states occur immediately after automaton comes to such
state. In complete states automaton waits for external events (data for input ports or
dispatch event). Transitions going out of complete states are fired as soon as
corresponding event happens.

In BA each state transition is assigned with a list of actions which is run when
automaton performs this transition.

There are actions that appear in the list of actions in BA behavior specification:
e actions with ports: reading, writing, getting of messages count in ports;

e actions with local and accessible external variables: reading and
assignment;

o locking on resources: getting and releasing;

e action for modelling of time consumption computation(tin--tmax):
e stop action for automaton interruption;

e composite actions (loops, conditionals);

e computation of arithmetical expressions.

3. Problem

We focus on AADL models with behavior specifications set using Behavior Model
Annex language.

We consider a BA behavior specification of a single component in a model. Also, we
consider two states sg;4+ and s.,,4 Of the automaton are given.

We want to estimate the maximum and minimum model time the BA automaton will
consume to go out from state sg,.+ and to come to s, -

4. Solution

Automaton can reach a given state starting from another given state in several ways
depending on variables state, external events and nondeterminism. We will call an
interleaving sequence of states and transitions as a path in automaton.

Thus we divide the original problem to considering a single path in automaton and
then considering the automaton itself as a source of paths.

4.1. Estimation for a path

First, let us look at a finite path starting and ending at given states sy 4+ and Senq,
and going through states s; s, ..., s,, which could be equal to each other and to states
Sstare aNd Sq,q. We would designate it as Sgiqrt = S; = Sz =...— Sy = Sepg. The
question is how long does it take to go along this path out from sgq,+ 10 Seng-

Some of states in the path may be complete. An automaton is waiting for external
events in these states while going through them. It is a hard task to estimate how much
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time would it take because it is not a local property, i.e. it depends on other
components in the model.

Execution states do not consume any time by definition, thus there is no such problem
for them.

Also, in BA actions assigned to transitions can take some time (e.g. computation
action takes time, which is specified with its argument; input/output operations may
take time too). Time taken by composite actions (loops and conditionals) depend on
very actions inside them and external conditions (state of variables and ports). Having
dependency on external conditions, estimation of time consumption by conditionals
it a tricky task (undecidable in the general case).

Thus, task of estimation of time, taking by execution of a finite path, can be split into
two tasks: time estimation for each complete state in the path and for each list of
actions assigned to a transition in the path.

4.2. Estimations for an automaton

The whole automaton containing both execution and complete states is a challenging
object. Let us at first consider simpler kind of automata containing only execution
states and then to consider the general case.

4.2.1 Automata with execution states only

In this case, automaton is not waiting for external events and goes through states right
away. We can represent such automaton as a weighted graph. Vertexes of the graph
are states of the automaton, and edges of the graph are transitions of the automaton.
Weight of each edge is time estimation for the actions of corresponding transition.
We can use all known algorithms for finding minimum and maximum times (e.g. for
finding minimum time we can use Dijkstra's algorithm [4]).

However, when the graph is cyclic these estimations can be inaccurate. For example,
we have a loop of the automaton, which is executed exactly 50 times. If this fact is not
used, estimation of the time consumption of this loop may be too imprecise, up to 4o
for the higher bound and to 0 for the lower bound. Considering information of the
number of loop iterations, we can estimate the time to be 50t;,4, Where t;,4y is an
estimation of the time consuming by the loop body, or even more precise if ¢4y
depends on the loop iteration number in a known way.

Despite inaccuracy in some cases, time estimation for this kind of automaton is a
pretty studied problem.

4.2.2 Automata with complete states too

Approaches with simple weighted graphs with weights only on edges do not model
the fact that automaton can wait some time in a complete state during its execution.
But we work with automata having complete states. Thus, we need to manage with it
somehow while estimating automata execution time.
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It seems that this problem can be reduced to the previous one, e.g. though replacing a
single complete state with two connected execution states with a transition consuming
the same time as automaton waits in this complete state.

But what we realized trying to implement such approach is that time of waiting in a
complete state is not local and cannot be represented by some constant. This time
actually depends both on the way this state was reached and on how regular external
events occur. So, automata with complete states need special treatment, one variant
of which will be discussed below.

4.2.3 Solution structure
So, to solve the original task we have divided the original problem to the following
subtasks:
e estimation of time consumption of paths in automaton:
e estimation of execution time for transitions;
e estimation of time of waiting in complete states;
e estimation of time consumption by automaton itself:
e ina particular case, when the automaton contains only execution states;
¢ inthe general case, when automata with both complete and execution
states are considered.
The rest of the paper follows this division.

5. Estimation of time for paths

5.1. Estimation of time for transitions

Let us estimate how much time can take different Behavior Annex actions. At first,
look at simple actions.

The action computation has a time as an argument, which is the execution time of this
action.

Also, the action get resource can take some time, because at the moment when this
action is executed, needed resource can be used by some other component. And so it
will be necessary to wait for some time until the resource can be used. We will
estimate this time from 0 to +co.

If action stop occurs at some point, then the execution of automaton became
interrupted and it does not go to the next state. The action does not take time.
However, since we are interested in the time between the states of the automaton, it
is convenient to assume that the time of this action is 4+oo. Indeed, if the transition
from s to g with action stop exists, it means that automaton will not ever be in state
qafter this transition.

Now let us consider composite actions. Loops which contains the actions occupying
some time, we will estimate with time from 0 to 4+c0. Making this estimation to be
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more accurate is possible but it is not considered in this paper. Other loops do not take
any time.

We will estimate conditional constructs in the following way. Time of actions in if-
block is from t; to t,, time of actions in else-block is from 7, to 7, (if there is no
else-block 7; = 7, = 0). Then the estimation is the time range from min( t,, z,) to
max(t,, ;).

In this way, estimations for transitions of the automaton can be performed. Now let
us estimate time, that automaton is waiting in complete states.

5.2. Estimation of time for complete states

Behavior Annex allows to handle two types of external events: receiving a message
to input port and a dispatch signal.

At first, look at the first type of events. Since the expectation of the receiving message
can take arbitrarily much time, we will estimate this time with 0 to +oco. So, this is
the estimations of time of waiting in the complete states for the external event of the
first type.

Estimations of time waiting for events of the second type can be performed in same
way. But the estimations can be more accurate when the component is a thread. This
is due to the fact, that AADL allows to set properties for the thread, which determined
how often dispatch signal arrives to the thread (such properties are Dispatch Protocol
and Period).

These properties determine the time between neighboring complete states in
automaton. Consider any path in an automaton, which starts and ends in complete
states, all other states are execution states, and the transition from the first complete
state is the transition of the second type. Above AADL-properties can determine the
execution time of this path from going out from the first complete state to going out
from the second complete state. This time is determined by time range with possibly
infinite bounds.

In this way, when automaton comes to complete state, the waiting time in this state is
determined by the time elapsed from going out from the previous complete state and
by AADL-properties.

6. Estimation of time for the whole automaton

6.1. Particular case, execution states only

6.1.1 Problem
The weighted oriented graph G = {V, E} and two Vertices Ss;q,¢» Senq are given. The
weights of the edges are determined by the function w: E - R2.

Weight of each edge is a range of two real numbers [ry, 1,]; , = 17, where 7, is the
lower bound, r, is the upper bound of the range. Weights are partially ordered in the
following way:
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[r,12] <[q1,92] © 12 < g4

Also, the addition function for weights is determined:

[r, 2] +[q1,q2] = [ + g2 + q2]-
The task is to find the maximal and minimal weight of paths from sg;q+ 10 Sena,
where weight of a path is a sum of weights of path’s Sgiqrt = *** = Seng transitions
counted with multiplicity.
For example, we will consider the graph on the fig. 2 and vertices s, and sg as Sszart
and s,,4 respectively.

Fig. 2. Graph G and strongly connected components

Fig. 3. Graph E

6.1.2 Algorithm

1) We find strongly connected components (SCC) in graph G with Tarjan's
algorithm [5]. Strongly connected components of the graph G are
highlighted by a dotted line on fig. 2.

2) We build acyclic graph E from strongly connected components of the graph
G (fig. 3).

3) Let vertices syq¢ and s,,,4 belong to strongly connected components
Cstare aNd copnq respectively. Then we find all paths in acyclic graph E (we
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4)

5)

6)

call them SCC-paths) from c;q.¢ 10 Cong. In the example, all paths from c,
tocgare cp > ¢c; @ czandcy, > ¢; = cs.

For each SCC-path cg1qrt = €1 =... = Cp_q = Cong We pick vertices from
each SCC and consider the following path through them:

(sstart = s(z))ut) - (Siln = Sfut) i (Sriln—l = 51011—“:1) - (Siln = Send)v
where  Sgeare € Co» Sena € Cn» ST sP% € ¢y, i=1,2,...,n, and  edges
(s - sft) €E, j=1,2,..,n—1. We will designate such paths as
Ppickea. DeSignation sin = s{™* represents an automaton path from state s;
to state s; inside a single SCC-component. Vertices s/ and s** can be the
same. On the fig. 4 all paths are presented. Notice that number of such paths
is finite because each SCC-path is finite.

Let us find the weight of each path pp;ckeq. Weight of each transition
s?Ut - s™is equal to weight of edge (sP"%,sj") of graph G. To estimate
weight of transitions s/ = s%¢, i = 1..n — 1, we consider two cases.
Case 1: ¢; is acyclic (thus containing a single vertex), then weight of the
transition s = s% is 0.

Case 2: ¢; is cyclic, then upper bound of weight of the transition s/ = s2%¢
is positive infinity, and the lower bound is calculated using Dijkstra's
algorithm [4].

For possibly infinite set of paths between s, 4+ and s.,,4 We have considered
finite set of p,;ckeq Paths. We calculated weight of each p,;creq path, got a
finite set of weights. Thus, we can pick maximal and minimal ones.

Fig. 4. Paths in graph G from s0 to s6
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6.2. General case, both execution and complete states

6.2.1 Problem

The Behavior Annex automaton and two states of the automaton are given. The
problem is to find estimation of the execution time of the automaton between leaving
the state s.4,+ and entering the state s,,,4.

We designate the set of states of the automaton as S. The set of execution states of the
automaton is Exec c S, the set of complete states of the automaton is Comp c S.
For example, let us consider the automaton on fig. 5. Complete states are marked by

white color, execute states are gray. The goal is to find time between state e2 and
state c2.

Fig. 5. Graph with complete states and execution states

6.2.2 Solution idea

Two different states types are determined in Behavior Annex. So we consider two
different graphs.

We consider graph of the complete states and the graph of the execution states
separately. Then if we need to find time between exit from one complete state to exit
from other complete state, we use graph of complete states. In other cases we use the
graph of execution states.

6.2.3 Algorithm

At first, we introduce few functions.

Function PREV:S — Comp computes all previous complete states for a state of the
automaton, i.e. those complete states starting with which it is possible to reach the
state through only execution states. More formally, Vs €S Vc € Comp:
¢ € PREV(s) & 3(c - s), where ¢ > s means (c - e; 2 e, > = e, > 5),
withn >0, e, e, ... e, € Exec.
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Function NEXT: S — Comp computes all possible next complete states for a state of
the automaton, i.e. those complete states, which can be reached from the state through
only execution states. More formally, Vs € S Vc € Comp: c € NEXT(s) &
A(s -» ¢). It is easy to see that Vc;,c, € Comp:c, € PREV(c,) &
¢, € NEXT(cy).

Fig. 6. Graph G, and graph G,

6.2.3.1 General scheme

We have two states Sgiqrt)Sena €S- The aim is to find the minimum and the
maximum possible time between leaving the state s, and entering the state s,,,4.
We will do this by estimation of time for each path sg;grt = *** = Seng- The problem
is that execution time of the path depends on complete states before state sgqr¢, if
Sstare 1S €XECUtiON State.

We will consider two cases: when sg.q,+ iS complete state, and when sgq4+ IS
execution state.

When sgq,+ IS cOmplete state, each path sgqt = =+ = Seng Can be divided into
smaller paths: s¢iqrt = =+ = Cip @Nd Cjy, = Sena, Where ¢;, € PREV (Spnq). FOr €ach
Cin € PREV (Sgpnq) time of the path sy 0re = -+ = Cin > Sena 1S T (Sgtart = Cin) +
t(Cin > Sena), Where T(Sgeqrt = - = Cin) IS time between leaving sg:,+ and
leaving c;,,, and time t(c;, —> Senq) IS time between leaving c;, and entering s.,4.
Notice that times T and t can be different for the same path, when the last state of the
path is complete state. The ways of estimation of time T(cl- - cj) were described in
section 5.2.

When sgq¢ IS execution state, each path Sgu+ = Seng 1S @ part of path like
Cout = Sstart "> Cmed = " = Cin ™ Send where Cmea € NEXT(Sstart)’
Cout € PREV (Sstart)s Cin € PREV (Sgng). Time of the path sgqrt = *++ = Seng CanN
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be computed as T(Cout - Cmed) - t(Cout = Sstart) + T(Cmed Idi Cin) +
t(cin o Send)'

Fig. 7. Usage of graph G,: graphs G, (e,, c3), G,(c,, ¢3), G,(co, €3), G,(c1, €5).

6.2.3.2 Calculation of T

Let us focus on the function T. Value of T is described in section 5.2 for paths
c; > c;, where ¢;,¢; € Comp. To find time T for arbitrary paths (¢; - -+ - ¢;) we
build weighted oriented graph G,. The vertices of the graph G, are complete states of
the automaton. We build edge (c;, ¢;), if a path ¢; -» ¢; exists in the automaton.
Weights of edges are determined with AADL-properties of the component as
described in section 5.2, i.e. weight of an edge (c;, ¢;) equals to T(c; - ¢;). Graph
G, for the considered example is presented on fig. 6. To find time T(¢; » ... = ¢;)
we execute the algorithm described in section 6.1 on graph G..

6.2.3.3 Calculation of t
To find time t(s; ~» s,) we build weighted oriented graph G,. The vertices of the
graph G, are all execution states of the automaton. For each transition e; — e, of the
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automaton we build edge (e,,e,) in graph G,. The weight of this edge is time
estimation for transition’s actions (see section 5.1). Graph G, can be not connected.
Graph G, is presented on the top of fig. 6.

With graph G, we can estimate time t(s; ~» s,). To do this we build new graph
G;(s1,S,). Vertices set of graph G¢(sy, s,) is union of states set of G, and {s;, s,}. It
contains all edges from G,. Additionally, it contains all edges, which are
corresponding to outgoing transitions of automaton from state s, to vertices from
G;(sy,S;) and incoming transitions from vertices of G.(s;,s,) to s,. To find
t(s; - s,) we execute the algorithm from section 6.1 on graph G4 (s, S5).

On the second line of fig. 7 the graph G, for calculating the time between exit from
complete state c, to enter to complete state c is presented.

6.2.3.4 Calculation of the result

For each path ssge = ... = Seng We calculate time estimation. The result of the
algorithm is the smallest time range, that contains all these time ranges.

7. Related works

One close problem to the problems, considered in this paper, is WCET problem. This
problem is well-known, and a lot of algorithms solving WCET exist. But these
algorithms cannot be applied to our problem directly, due to considered specific
object class, defined by Behavior Annex language. As Behavior Annex describes
behavior based on timed automata, consider WCET algorithms working on timed
automata.

The WCET problem for timed automata was considered in the paper [6]. This paper
has a description of the algorithm using the difference-bound matrix data structure to
represent zones (heuristic). This algorithm can be applied in the particular case, which
was described in section 6.1.

The main specific construct in Behavior Annex is complete states. In the particular
case we consider automata with only execution states. These automata are very
similar to timed automata from the paper [6]. It means that algorithms from the paper
can be applied to the particular case. We are thinking about applying it, but currently
we have chosen simpler algorithm.

But to use it in the general case from 6.2, it should be adapted. We have decided that
the adaptation of the algorithm would be harder, than to develop the new algorithm
applied to a needed object class.

8. Conclusion

In this paper, the development of mission-critical systems is considered. In this
context, we have considered the task of correct integration of the whole system.
System modelling with language AADL and analysis of models are using to solve the
task.
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The problem is that a component of an AADL model can have behavioral properties
set. At the same time the behavior of the component can be set with Behavior Model
Annex. That can lead to inconsistency of the model. So, we considered a task of
automated analysis of behaviors in AADL-models.

In this paper, one static approach for analysis of timing properties is proposed. An
algorithm for finding of execution time estimation of behaviour of AADL-
components was offered and described in the paper. This algorithm was implemented
in MASIW, a framework for development and analysis of AADL models [7].
Characteristics of behaviors, acquired using proposed algorithm can be used for
checking of model consistency and for model refinement, when AADL-properties are
not set.
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AHHoTamms. Ilpy NpoekTUpOBaHMM COBPEMEHHBIX CHUCTEM ABHOHHKH, a TaKKe IPYTHX
OTBETCTBEHHBIX CUCTEM, HEOTHEMIIEMON JacCThIO Pa3pabOTKHU SABISETCS MOJEIMPOBAHUE ITUX
cucteM. Mozenu MoryT HCHONIB30BaThCs ISl MPOBEPOK M BAIUIAIMN CUCTEMBI, B TOM YHCIIE
Ha paHHMX 3Tamax pa3paboTkH. PaHHss Banmupanuss BaKHA HU3-32 TOTO, YTO CTOMMOCTb
UCIIPABJICHUS OIIHOOK PacTET HKCIOHEHIMAIBLHO OT BPEMEHH BHECEHHUs 3TOH ommOku. J{is
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MOJICJIUPOBAHUS TaKOT0 POAa CHUCTEM HIMPOKO UCIOJB3YeTcs sA3bIK MoaenupoBanus AADL,
TIO3BOJISONIMI MOAENMPOBATH KaK apXUTEKTYpy pa3pabaTbIBaeMBIX CHCTEM, TaK H HEKOTOPHIE
MOBEJICHUECKHEe XapaKTEPUCTHKNA KOMIIOHEHTOB MOJENH. B craThe paccmaTpuBaeTcs 3amada
aBTOMAaTU3UPOBAHHON IMPOBEPKU MOJEIM HAa KOHCHCTEHTHOCTh HEKOTOPBIX MOBEACHYECKUX
cBoifcTB. B wactHOCTH, paccMaTpuBaeTCst MpoOIeMa OIIEHKH BPEMEHU PabOThl KOMIIOHEHTOB
MoJeNel U COOTBETCTBHS 3TOTO BPEMEHH IPYTUM CBOHCTBAaM B MOJIENHU. DTa mpodiema Onn3ka
k npo6Guieme xyanrero Bpemenu BoinonHeHns: (WCET), Ho nMmeeT cBolo crierupuKy B JaHHOM
NIPWIOKEHNH. PaccMOTpeH cTaTHdeckumid TOAXoxA, paboTarommii co  CTaHZApTHOI
crnenuduKanueii moBeneHus KoMmoHeHTOB AADL-mozenell  crenualn3upOBaHHBIME
pacIIMpeHHBIMA KOHEYHBIMH aBTOMAaTaMH. B craThe OBUIM PAacCMOTPEHBI OCOOEHHOCTH
HCTIONB3YeMOH MO TOBEACHMS (CHEeUaNn3UpOBAaHHBIX KOHEYHBIX aBTOMAroB), B
YaCTHOCTH, 3a CYET paboOThl aBTOMAaTa CO BPEMEHEM U BHENIHUMM COOBITUSAMHU. bbimn
PpaccMOTpEHBI MPOOIEMBI OIIEHKH BpEeMEHU paboThl TAKUX MOJIENel TOBEIEHHs, CBI3aHHBIE C
HEJOKaJbHOCTBIO ATON XapaKTEPUCTUKU B psifie ciaydaeB. bbll pacCMOTPEH BaXKHBIN 4aCTHBIN
cllydail, a Tarke oOmmid cimydaid 3Toi mpoOiembl. B cTaTee mpemaraercsi ajaropuTM,
MO3BOJIIOIINI OIIEHUTH BpeMsl pabOTHl TAKUX MOJIENeil MOBEIEeHHS B 3THX CiIydasx. [laHHbIe
AITOPUTM pPEATH30BaH M HCIOJIB3yeTcs B cpexe paspaborku AADL-mogmeneit APM CU
(MASIW).
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