
Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

157

A static approach to estimation of execution
time of components in AADL models

A.M. Troitskiy <troitskiy@ispras.ru>

D.V. Buzdalov <buzdalov@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. During development of modern avionics systems and other mission-critical systems

modelling is vitally used. Models can be used for checking and validation of developed system,

including early validation. Early validation is very important because the cost of errors is

raising exponentially depending on the development stage. For modelling of such systems,

Architecture Analysis and Design Language (AADL) is widely used. It allows to model both

architecture of a developed system and some of behavioral characteristics of its components.

In the paper, the task of automated model checking for consistency of some behavioral

properties is considered. In particular, we focus on the problem of estimation of working time

of model components and corresponding between this time and other properties in a model.

This problem is close to the worst-case execution time problem (WCET) but it has its own

specific in this application. We considered a static approach allowing to work with standard

specification of components behaviour in AADL-models with specialized extended finite

automata. In the paper, peculiarities of used behaviour model (specialized finite automata) were

considered including work with time and external events. We considered the problem of

working time estimation for such models connected with non-local characteristic of this

property. We propose an algorithm for time estimation for such behaviour models. This

algorithm was implemented in MASIW framework, a tool for development of AADL-models.

Key words: AADL; avionics design; static analysis.

DOI: 10.15514/ISPRAS-2016-28(2)-10

For citation: Troitskiy A.M., Buzdalov D.V. A static approach to estimation of execution time

of components in AADL models. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp.

157-172. DOI: 10.15514/ISPRAS-2016-28(2)-10

1. Introduction

Modern avionics is responsible for control of almost all aspects of aircraft operation.

As a result, the complexity of such systems is really high. Thus making sure that

developed system is correct is a challenging task.

Nowadays problems and their solution bring additional complexity to avionics

systems. To satisfy models requirements for weight and power consumption,

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

158

integrated modular avionics (IMA [1]) approach is used. It means that several

resources (e.g. universal processor modules and network) are shared between several

pieces of software. The approach leads to appearing of step of the integration of the

whole system, i.e. deployment of software on different hardware, network

configuration and etc.

This approach solves weight and power consumption problems, but leads to potential

problems of interfering of applications. It means that the whole system correctness

must be checked and this problem is not solvable by checking of correctness of each

part of the system.

The model-driven approach of development allows to manage with the complexity of

a system being developed. In particular, models are needed to perform different kinds

of analysis of the modelled system though analysis of appropriate models. Such

analyses are intended to be performed on different stages of development, in

particular, to eliminate errors at early steps of development.

One kind of checks that are needed to be performed is check of timing properties of

software components.

In particular, during design and deployment stages, each particular application is

bound to a processor module. Appropriate timing properties are assigned to them, for

example

 dispatch protocol, i.e. whether an application is fired periodically,

eventually (sporadically) or both;

 period of execution for periodic applications;

 compute deadline, i.e. time interval in which an application has to finish its

work after it was given an ability to execute;

 recover deadline, i.e. time interval in which an application has to recover

from recoverable errors;

 process time, i.e. the time between sending a processed output data after

getting some input data;

 output rate, i.e. rate at which an application has to produce its output, when

it is periodic;

 output jitter, i.e. maximum deviation of time for periodic output and etc.

Being assigned to some particular application, these properties can be used in

schedulability analysis, data flow timing analysis, worst case execution time (WCET)

analysis and etc. Some desired or expected values can appear before implementation

of particular software.

During the system development, models of it are refined. In particular, for software

some behaviour specifications can appear. Such behaviour specifications can be

purely functional (i.e. containing only information about which outputs will be

produced in particular inputs at the given state).

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

159

Also such specifications can contain how much time will be consumed in this or that

situation. The addition of this information can lead to inconsistency in the model,

because some assumptions about timing properties of software can already exist in

the model and these assumptions can contradict with behavior specification.

To check the consistency of a model, it is important to estimate timing properties of

particular behaviour specifications.

Compute deadline consistency example

Consider a periodic software component with some particular period set in the model.

Consider also that this component has compute deadline property bounds set to a

range 𝑝from 𝑝1to 𝑝2ms.

This property can be used in the schedule building: e.g. a time frame of 𝑝2ms can be

reserved each period to ensure this software component has enough time to compute.

This can be done on early stages of system development when no particular behavior

is known yet.

Consider the case when after development this software component is refined: now

its behaviour is specified with automaton with transitions containing how much time

is consumed by computations assigned to them. We can estimate general time

consuming of an application each period as a range ℎfrom ℎ1to ℎ2ms.

After getting estimations ℎwe can compare it with bounds 𝑝from the model and there

are several decisions we can take:

 when ℎ = 𝑝, behavior corresponds to property and the model is consistent;

 when ℎ ⊄ 𝑝, the model can be inconsistent because real execution time

may miss the bounds;

 when ℎ ⊂ 𝑝, 𝑝 ≠ ℎ, the behaviour specification corresponds to the

property; also, we can say that the property in the model can be refined to a

more precise value;

 when 𝑝 ∩ ℎ = ∅, the model is inconsistent.

Fig. 1. Example of behavior specification

Example of consistent case

Consider an example when the model has bounds for compute deadline property set

to be from 3 to 10 ms. Consider also that this application has behavior specification

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

160

with automaton shown on the fig.1. Each period this application begins in state 𝑠0 and

finishes in 𝑠𝑓.

In this example we can estimate execution time of the application to be between 5 and

10 ms. This value is consistent with property set in the model.

There is another case when such estimations are useful. Consider a situation when

some software component in the model did not have any timing properties set.

Consider then, that later it was refined and some behavior specification has appeared

for it. The model still needs to be checked for schedulability and other timing-aware

properties. So, we need to derive these timing properties for a component with some

behaviour specification. Again, we run into an issue of estimation of timing properties

having a particular behavior specification.

So, generally we can resume that there is an important issue of estimation of timing

properties in responsible systems' models with behavior specifications.

2. AADL and BA

We use AADL (Architecture Analysis and Design Language, [2]) as a modelling

language. It allows to describe both physical and logical parts of the modelled system,

connections between components and bindings between layers of the system. AADL

has a mechanism of the language extending though special language annexes and it

has a number of standard annexes.

One of such extensions is called Behavior Model Annex [3] (BA). It allows to specify

behavior of AADL-components using extended time-aware finite-state machine.

Behaviors are set to components of a modelled system. The basic elements used in

BA behavior specifications are

 automaton states change;

 internal computations;

 accessing and assigning to internal or external variables (data components);

 interaction with the outer world using input/output ports; depending of

behavior, input ports can be managed both by pulling data and by waiting

for data to come;

 handling dispatch events, i.e. a situation when software component is

allowed to perform its execution (e.g., an operating system signals a thread

to start).

Behavior Annex automaton must contain a single initial state. When the automaton

goes out from the initial state, its internal variables are being initialized. The

automaton can contain several final states, in these states automaton can stop its

execution.

Each state of the automaton belongs to one of the classes of complete states or

execution states.

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

161

Transitions from execution states occur immediately after automaton comes to such

state. In complete states automaton waits for external events (data for input ports or

dispatch event). Transitions going out of complete states are fired as soon as

corresponding event happens.

In BA each state transition is assigned with a list of actions which is run when

automaton performs this transition.

There are actions that appear in the list of actions in BA behavior specification:

 actions with ports: reading, writing, getting of messages count in ports;

 actions with local and accessible external variables: reading and

assignment;

 locking on resources: getting and releasing;

 action for modelling of time consumption 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑡𝑚𝑖𝑛 . . 𝑡𝑚𝑎𝑥);

 stop action for automaton interruption;

 composite actions (loops, conditionals);

 computation of arithmetical expressions.

3. Problem

We focus on AADL models with behavior specifications set using Behavior Model

Annex language.

We consider a BA behavior specification of a single component in a model. Also, we

consider two states 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑒𝑛𝑑 of the automaton are given.

We want to estimate the maximum and minimum model time the BA automaton will

consume to go out from state 𝑠𝑠𝑡𝑎𝑟𝑡 and to come to 𝑠𝑒𝑛𝑑 .

4. Solution

Automaton can reach a given state starting from another given state in several ways

depending on variables state, external events and nondeterminism. We will call an

interleaving sequence of states and transitions as a path in automaton.

Thus we divide the original problem to considering a single path in automaton and

then considering the automaton itself as a source of paths.

4.1. Estimation for a path

First, let us look at a finite path starting and ending at given states 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑒𝑛𝑑 ,

and going through states 𝑠1,𝑠2,. . . , 𝑠𝑛, which could be equal to each other and to states

𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑒𝑛𝑑 . We would designate it as 𝑠𝑠𝑡𝑎𝑟𝑡 → 𝑠1 → 𝑠2 →. . . → 𝑠𝑛 → 𝑠𝑒𝑛𝑑. The

question is how long does it take to go along this path out from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 .

Some of states in the path may be complete. An automaton is waiting for external

events in these states while going through them. It is a hard task to estimate how much

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

162

time would it take because it is not a local property, i.e. it depends on other

components in the model.

Execution states do not consume any time by definition, thus there is no such problem

for them.

Also, in BA actions assigned to transitions can take some time (e.g. computation

action takes time, which is specified with its argument; input/output operations may

take time too). Time taken by composite actions (loops and conditionals) depend on

very actions inside them and external conditions (state of variables and ports). Having

dependency on external conditions, estimation of time consumption by conditionals

it a tricky task (undecidable in the general case).

Thus, task of estimation of time, taking by execution of a finite path, can be split into

two tasks: time estimation for each complete state in the path and for each list of

actions assigned to a transition in the path.

4.2. Estimations for an automaton

The whole automaton containing both execution and complete states is a challenging

object. Let us at first consider simpler kind of automata containing only execution

states and then to consider the general case.

4.2.1 Automata with execution states only

In this case, automaton is not waiting for external events and goes through states right

away. We can represent such automaton as a weighted graph. Vertexes of the graph

are states of the automaton, and edges of the graph are transitions of the automaton.

Weight of each edge is time estimation for the actions of corresponding transition.

We can use all known algorithms for finding minimum and maximum times (e.g. for

finding minimum time we can use Dijkstra's algorithm [4]).

However, when the graph is cyclic these estimations can be inaccurate. For example,

we have a loop of the automaton, which is executed exactly 50 times. If this fact is not

used, estimation of the time consumption of this loop may be too imprecise, up to +∞

for the higher bound and to 0 for the lower bound. Considering information of the

number of loop iterations, we can estimate the time to be 50𝑡𝑏𝑜𝑑𝑦 where 𝑡𝑏𝑜𝑑𝑦 is an

estimation of the time consuming by the loop body, or even more precise if 𝑡𝑏𝑜𝑑𝑦

depends on the loop iteration number in a known way.

Despite inaccuracy in some cases, time estimation for this kind of automaton is a

pretty studied problem.

4.2.2 Automata with complete states too

Approaches with simple weighted graphs with weights only on edges do not model

the fact that automaton can wait some time in a complete state during its execution.

But we work with automata having complete states. Thus, we need to manage with it

somehow while estimating automata execution time.

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

163

It seems that this problem can be reduced to the previous one, e.g. though replacing a

single complete state with two connected execution states with a transition consuming

the same time as automaton waits in this complete state.

But what we realized trying to implement such approach is that time of waiting in a

complete state is not local and cannot be represented by some constant. This time

actually depends both on the way this state was reached and on how regular external

events occur. So, automata with complete states need special treatment, one variant

of which will be discussed below.

4.2.3 Solution structure

So, to solve the original task we have divided the original problem to the following

subtasks:

 estimation of time consumption of paths in automaton:

 estimation of execution time for transitions;

 estimation of time of waiting in complete states;

 estimation of time consumption by automaton itself:

 in a particular case, when the automaton contains only execution states;

 in the general case, when automata with both complete and execution

states are considered.

The rest of the paper follows this division.

5. Estimation of time for paths

5.1. Estimation of time for transitions

Let us estimate how much time can take different Behavior Annex actions. At first,

look at simple actions.

The action computation has a time as an argument, which is the execution time of this

action.

Also, the action get resource can take some time, because at the moment when this

action is executed, needed resource can be used by some other component. And so it

will be necessary to wait for some time until the resource can be used. We will

estimate this time from 0 to +∞.

If action stop occurs at some point, then the execution of automaton became

interrupted and it does not go to the next state. The action does not take time.

However, since we are interested in the time between the states of the automaton, it

is convenient to assume that the time of this action is +∞. Indeed, if the transition

from 𝑠 to 𝑞 with action stop exists, it means that automaton will not ever be in state

𝑞after this transition.

Now let us consider composite actions. Loops which contains the actions occupying

some time, we will estimate with time from 0 to +∞. Making this estimation to be

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

164

more accurate is possible but it is not considered in this paper. Other loops do not take

any time.

We will estimate conditional constructs in the following way. Time of actions in if-

block is from 𝑡1 to 𝑡2, time of actions in else-block is from 𝜏1 to 𝜏2 (if there is no

else-block 𝜏1 = 𝜏2 = 0). Then the estimation is the time range from min(𝑡1, 𝜏1) to

max(𝑡2, 𝜏2).

In this way, estimations for transitions of the automaton can be performed. Now let

us estimate time, that automaton is waiting in complete states.

5.2. Estimation of time for complete states

Behavior Annex allows to handle two types of external events: receiving a message

to input port and a dispatch signal.

At first, look at the first type of events. Since the expectation of the receiving message

can take arbitrarily much time, we will estimate this time with 0 to +∞. So, this is

the estimations of time of waiting in the complete states for the external event of the

first type.

Estimations of time waiting for events of the second type can be performed in same

way. But the estimations can be more accurate when the component is a thread. This

is due to the fact, that AADL allows to set properties for the thread, which determined

how often dispatch signal arrives to the thread (such properties are Dispatch Protocol

and Period).

These properties determine the time between neighboring complete states in

automaton. Consider any path in an automaton, which starts and ends in complete

states, all other states are execution states, and the transition from the first complete

state is the transition of the second type. Above AADL-properties can determine the

execution time of this path from going out from the first complete state to going out

from the second complete state. This time is determined by time range with possibly

infinite bounds.

In this way, when automaton comes to complete state, the waiting time in this state is

determined by the time elapsed from going out from the previous complete state and

by AADL-properties.

6. Estimation of time for the whole automaton

6.1. Particular case, execution states only

6.1.1 Problem

The weighted oriented graph 𝐺 = {𝑉, 𝐸} and two vertices 𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑒𝑛𝑑 are given. The

weights of the edges are determined by the function 𝑤: 𝐸 → ℝ2.

Weight of each edge is a range of two real numbers [𝑟1, 𝑟2]; 𝑟2 ≥ 𝑟1, where 𝑟1 is the

lower bound, 𝑟2 is the upper bound of the range. Weights are partially ordered in the

following way:

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

165

[𝑟1, 𝑟2] < [𝑞1, 𝑞2] ⇔ 𝑟2 < 𝑞1.

Also, the addition function for weights is determined:

[𝑟1, 𝑟2] + [𝑞1, 𝑞2] = [𝑟1 + 𝑞1, 𝑟2 + 𝑞2].

The task is to find the maximal and minimal weight of paths from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 ,

where weight of a path is a sum of weights of path’s 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑠𝑒𝑛𝑑 transitions

counted with multiplicity.

For example, we will consider the graph on the fig. 2 and vertices 𝑠0 and 𝑠6 as 𝑠𝑠𝑡𝑎𝑟𝑡

and 𝑠𝑒𝑛𝑑 respectively.

Fig. 2. Graph G and strongly connected components

6.1.2 Algorithm

1) We find strongly connected components (SCC) in graph 𝐺 with Tarjan's

algorithm [5]. Strongly connected components of the graph 𝐺 are

highlighted by a dotted line on fig. 2.

2) We build acyclic graph 𝐸 from strongly connected components of the graph

𝐺 (fig. 3).

3) Let vertices 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑒𝑛𝑑 belong to strongly connected components

с𝑠𝑡𝑎𝑟𝑡 and 𝑐𝑒𝑛𝑑 respectively. Then we find all paths in acyclic graph 𝐸 (we

 Fig. 3. Graph E

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

166

call them SCC-paths) from с𝑠𝑡𝑎𝑟𝑡 to 𝑐𝑒𝑛𝑑. In the example, all paths from с0

to с3 are с0 → с1 → с3 and с0 → с1 → с3.

4) For each SCC-path 𝑐𝑠𝑡𝑎𝑟𝑡 → 𝑐1 →. . . → 𝑐𝑛−1 → 𝑐𝑒𝑛𝑑 we pick vertices from

each SCC and consider the following path through them:

(𝑠𝑠𝑡𝑎𝑟𝑡 ⇒ 𝑠0
𝑜𝑢𝑡) → (s1

in ⇒ 𝑠1
𝑜𝑢𝑡) → ⋯ → (sn−1

in ⇒ 𝑠𝑛−1
𝑜𝑢𝑡) → (sn

in ⇒ 𝑠𝑒𝑛𝑑),

where 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝑐0, 𝑠𝑒𝑛𝑑 ∈ 𝑐𝑛 , 𝑠𝑖
𝑖𝑛 , 𝑠𝑖

𝑜𝑢𝑡 ∈ 𝑐𝑖 , 𝑖 = 1, 2, … , n, and edges

(𝑠𝑗
𝑜𝑢𝑡 → 𝑠𝑗+1

𝑖𝑛) ∈ 𝐸, 𝑗 = 1, 2, … , n − 1. We will designate such paths as

𝑝𝑝𝑖𝑐𝑘𝑒𝑑 . Designation 𝑠𝑖
𝑖𝑛 ⇒ 𝑠𝑗

𝑜𝑢𝑡 represents an automaton path from state 𝑠𝑖

to state 𝑠𝑗 inside a single SCC-component. Vertices 𝑠𝑖
𝑖𝑛 and 𝑠𝑖

𝑜𝑢𝑡 can be the

same. On the fig. 4 all paths are presented. Notice that number of such paths

is finite because each SCC-path is finite.

5) Let us find the weight of each path 𝑝𝑝𝑖𝑐𝑘𝑒𝑑. Weight of each transition

si
out → sj

in is equal to weight of edge (si
out, sj

in) of graph 𝐺. To estimate

weight of transitions 𝑠𝑖
𝑖𝑛 ⇒ 𝑠𝑖

𝑜𝑢𝑡 , 𝑖 = 1. . 𝑛 − 1, we consider two cases.

Case 1: 𝑐𝑖 is acyclic (thus containing a single vertex), then weight of the

transition 𝑠𝑖
𝑖𝑛 ⇒ 𝑠𝑖

𝑜𝑢𝑡 is 0.

Case 2: 𝑐𝑖 is cyclic, then upper bound of weight of the transition 𝑠𝑖
𝑖𝑛 ⇒ 𝑠𝑖

𝑜𝑢𝑡

is positive infinity, and the lower bound is calculated using Dijkstra's

algorithm [4].

6) For possibly infinite set of paths between 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑒𝑛𝑑 we have considered

finite set of 𝑝𝑝𝑖𝑐𝑘𝑒𝑑 paths. We calculated weight of each 𝑝𝑝𝑖𝑐𝑘𝑒𝑑 path, got a

finite set of weights. Thus, we can pick maximal and minimal ones.

Fig. 4. Paths in graph G from s0 to s6

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

167

6.2. General case, both execution and complete states

6.2.1 Problem

The Behavior Annex automaton and two states of the automaton are given. The

problem is to find estimation of the execution time of the automaton between leaving

the state 𝑠𝑠𝑡𝑎𝑟𝑡 and entering the state 𝑠𝑒𝑛𝑑 .

We designate the set of states of the automaton as 𝑆. The set of execution states of the

automaton is 𝐸𝑥𝑒𝑐 ⊂ 𝑆, the set of complete states of the automaton is 𝐶𝑜𝑚𝑝 ⊂ 𝑆.

For example, let us consider the automaton on fig. 5. Complete states are marked by

white color, execute states are gray. The goal is to find time between state e2 and

state c2.

Fig. 5. Graph with complete states and execution states

6.2.2 Solution idea

Two different states types are determined in Behavior Annex. So we consider two

different graphs.

We consider graph of the complete states and the graph of the execution states

separately. Then if we need to find time between exit from one complete state to exit

from other complete state, we use graph of complete states. In other cases we use the

graph of execution states.

6.2.3 Algorithm

At first, we introduce few functions.

Function 𝑃𝑅𝐸𝑉: 𝑆 → 𝐶𝑜𝑚𝑝 computes all previous complete states for a state of the

automaton, i.e. those complete states starting with which it is possible to reach the

state through only execution states. More formally, ∀𝑠 ∈ 𝑆 ∀𝑐 ∈ 𝐶𝑜𝑚𝑝:
𝑐 ∈ 𝑃𝑅𝐸𝑉(𝑠) ⟺ ∃(𝑐 ⇢ 𝑠), where 𝑐 ⇢ 𝑠 means (𝑐 → 𝑒1 → 𝑒2 → ⋯ → 𝑒𝑛 → 𝑠),

with 𝑛 ≥ 0, 𝑒1, 𝑒2 … 𝑒𝑛 ∈ 𝐸𝑥𝑒𝑐.

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

168

Function 𝑁𝐸𝑋𝑇: 𝑆 → 𝐶𝑜𝑚𝑝 computes all possible next complete states for a state of

the automaton, i.e. those complete states, which can be reached from the state through

only execution states. More formally, ∀𝑠 ∈ 𝑆 ∀𝑐 ∈ 𝐶𝑜𝑚𝑝: 𝑐 ∈ 𝑁𝐸𝑋𝑇(𝑠) ⟺
∃(𝑠 ⇢ 𝑐). It is easy to see that ∀𝑐1, 𝑐2 ∈ 𝐶𝑜𝑚𝑝: 𝑐1 ∈ 𝑃𝑅𝐸𝑉(𝑐2) ⟺
𝑐2 ∈ 𝑁𝐸𝑋𝑇(𝑐1).

6.2.3.1 General scheme

We have two states 𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑠𝑒𝑛𝑑 ∈ 𝑆. The aim is to find the minimum and the

maximum possible time between leaving the state 𝑠𝑠𝑡𝑎𝑟𝑡 and entering the state 𝑠𝑒𝑛𝑑 .

We will do this by estimation of time for each path 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑠𝑒𝑛𝑑 . The problem

is that execution time of the path depends on complete states before state 𝑠𝑠𝑡𝑎𝑟𝑡, if

𝑠𝑠𝑡𝑎𝑟𝑡 is execution state.

We will consider two cases: when 𝑠𝑠𝑡𝑎𝑟𝑡 is complete state, and when 𝑠𝑠𝑡𝑎𝑟𝑡 is

execution state.

When 𝒔𝒔𝒕𝒂𝒓𝒕 is complete state, each path 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑠𝑒𝑛𝑑 can be divided into

smaller paths: 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑐𝑖𝑛 and 𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑 , where 𝑐𝑖𝑛 ∈ 𝑃𝑅𝐸𝑉(𝑠𝑒𝑛𝑑). For each

𝑐𝑖𝑛 ∈ 𝑃𝑅𝐸𝑉(𝑠𝑒𝑛𝑑) time of the path 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑 is 𝑇(𝑠𝑠𝑡𝑎𝑟𝑡 → 𝑐𝑖𝑛) +
𝑡(𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑), where 𝑇(𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑐𝑖𝑛) is time between leaving 𝑠𝑠𝑡𝑎𝑟𝑡 and

leaving 𝑐𝑖𝑛, and time 𝑡(𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑) is time between leaving 𝑐𝑖𝑛 and entering 𝑠𝑒𝑛𝑑 .

Notice that times 𝑇 and 𝑡 can be different for the same path, when the last state of the

path is complete state. The ways of estimation of time 𝑇(𝑐𝑖 ⇢ 𝑐𝑗) were described in

section 5.2.

When 𝒔𝒔𝒕𝒂𝒓𝒕 is execution state, each path 𝑠𝑠𝑡𝑎𝑟𝑡 → 𝑠𝑒𝑛𝑑 is a part of path like

𝑐𝑜𝑢𝑡 ⇢ 𝑠𝑠𝑡𝑎𝑟𝑡 ⇢ 𝑐𝑚𝑒𝑑 → ⋯ → 𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑 where 𝑐𝑚𝑒𝑑 ∈ 𝑁𝐸𝑋𝑇(𝑠𝑠𝑡𝑎𝑟𝑡),

𝑐𝑜𝑢𝑡 ∈ 𝑃𝑅𝐸𝑉(𝑠𝑠𝑡𝑎𝑟𝑡), 𝑐𝑖𝑛 ∈ 𝑃𝑅𝐸𝑉(𝑠𝑒𝑛𝑑). Time of the path 𝑠𝑠𝑡𝑎𝑟𝑡 → ⋯ → 𝑠𝑒𝑛𝑑 can

Fig. 6. Graph 𝐺𝑒 and graph 𝐺𝑐

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

169

be computed as 𝑇(𝑐𝑜𝑢𝑡 ⇢ 𝑐𝑚𝑒𝑑) − 𝑡(𝑐𝑜𝑢𝑡 ⇢ 𝑠𝑠𝑡𝑎𝑟𝑡) + 𝑇(𝑐𝑚𝑒𝑑 → ⋯ → 𝑐𝑖𝑛) +
 𝑡(𝑐𝑖𝑛 ⇢ 𝑠𝑒𝑛𝑑).

Fig. 7. Usage of graph 𝐺𝑒: graphs 𝐺𝑒
′ (𝑒2, 𝑐3), 𝐺𝑒

′ (𝑐2, 𝑐3), 𝐺𝑒
′ (𝑐0, 𝑒2), 𝐺𝑒

′ (𝑐1, 𝑒2).

6.2.3.2 Calculation of 𝑇

Let us focus on the function 𝑇. Value of 𝑇 is described in section 5.2 for paths

𝑐𝑖 ⇢ 𝑐𝑗, where 𝑐𝑖 , 𝑐𝑗 ∈ 𝐶𝑜𝑚𝑝. To find time 𝑇 for arbitrary paths (𝑐𝑖 → ⋯ → 𝑐𝑗) we

build weighted oriented graph 𝐺𝑐. The vertices of the graph 𝐺𝑐 are complete states of

the automaton. We build edge (𝑐𝑖 , 𝑐𝑗), if a path 𝑐𝑖 ⇢ 𝑐𝑗 exists in the automaton.

Weights of edges are determined with AADL-properties of the component as

described in section 5.2, i.e. weight of an edge (𝑐𝑖 , 𝑐𝑗) equals to 𝑇(𝑐𝑖 ⇢ 𝑐𝑗). Graph

𝐺𝑐 for the considered example is presented on fig. 6. To find time 𝑇(𝑐𝑖 → … → 𝑐𝑗)

we execute the algorithm described in section 6.1 on graph 𝐺𝑐.

6.2.3.3 Calculation of 𝑡

To find time 𝑡(𝑠1 ⇢ 𝑠2) we build weighted oriented graph 𝐺𝑒. The vertices of the

graph 𝐺𝑒 are all execution states of the automaton. For each transition 𝑒1 → 𝑒2 of the

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

170

automaton we build edge (𝑒1, 𝑒2) in graph 𝐺𝑒. The weight of this edge is time

estimation for transition’s actions (see section 5.1). Graph 𝐺𝑒 can be not connected.

Graph 𝐺𝑒 is presented on the top of fig. 6.

With graph 𝐺𝑒 we can estimate time 𝑡(𝑠1 ⇢ 𝑠2). To do this we build new graph

𝐺𝑒
′(𝑠1, 𝑠2). Vertices set of graph 𝐺𝑒

′(𝑠1, 𝑠2) is union of states set of 𝐺𝑒 and {𝑠1, 𝑠2}. It

contains all edges from 𝐺𝑒. Additionally, it contains all edges, which are

corresponding to outgoing transitions of automaton from state 𝑠1 to vertices from

𝐺𝑒
′(𝑠1, 𝑠2) and incoming transitions from vertices of 𝐺𝑒

′(𝑠1, 𝑠2) to 𝑠2. To find

𝑡(𝑠1 ⇢ 𝑠2) we execute the algorithm from section 6.1 on graph 𝐺𝑒
′(𝑠1, 𝑠2).

On the second line of fig. 7 the graph 𝐺𝑒 for calculating the time between exit from

complete state 𝑐2 to enter to complete state 𝑐3 is presented.

6.2.3.4 Calculation of the result

For each path 𝑠𝑠𝑡𝑎𝑟𝑡 → … → 𝑠𝑒𝑛𝑑 we calculate time estimation. The result of the

algorithm is the smallest time range, that contains all these time ranges.

7. Related works

One close problem to the problems, considered in this paper, is WCET problem. This

problem is well-known, and a lot of algorithms solving WCET exist. But these

algorithms cannot be applied to our problem directly, due to considered specific

object class, defined by Behavior Annex language. As Behavior Annex describes

behavior based on timed automata, consider WCET algorithms working on timed

automata.

The WCET problem for timed automata was considered in the paper [6]. This paper

has a description of the algorithm using the difference-bound matrix data structure to

represent zones (heuristic). This algorithm can be applied in the particular case, which

was described in section 6.1.

The main specific construct in Behavior Annex is complete states. In the particular

case we consider automata with only execution states. These automata are very

similar to timed automata from the paper [6]. It means that algorithms from the paper

can be applied to the particular case. We are thinking about applying it, but currently

we have chosen simpler algorithm.

But to use it in the general case from 6.2, it should be adapted. We have decided that

the adaptation of the algorithm would be harder, than to develop the new algorithm

applied to a needed object class.

8. Conclusion

In this paper, the development of mission-critical systems is considered. In this

context, we have considered the task of correct integration of the whole system.

System modelling with language AADL and analysis of models are using to solve the

task.

Троицкий А.М., Буздалов Д.В. Способ статической оценки времени работы компонентов AADL-моделей. Труды

ИСП РАН, 2016, том 28, выпуск 2, с. 157-172.

171

The problem is that a component of an AADL model can have behavioral properties

set. At the same time the behavior of the component can be set with Behavior Model

Annex. That can lead to inconsistency of the model. So, we considered a task of

automated analysis of behaviors in AADL-models.

In this paper, one static approach for analysis of timing properties is proposed. An

algorithm for finding of execution time estimation of behaviour of AADL-

components was offered and described in the paper. This algorithm was implemented

in MASIW, a framework for development and analysis of AADL models [7].

Characteristics of behaviors, acquired using proposed algorithm can be used for

checking of model consistency and for model refinement, when AADL-properties are

not set.

References

[1]. B. C. Watkins, “Transitioning from federated avionics architecture to Integrated Modular

Avionics”, AIAA 26th Digital Avionics Systems Conference, 2007.

[2]. Architecture Analysis & Design Language (AADL), SAE International standard

AS5506B, SAE International, 2012, http://standards.sae.org/as5506b/.

[3]. Architecture Analysis & Design Language (AADL), Annex Volume 2, Behavior Model

Annex, SAE International, 2011, http://standards.sae.org/as5506/2/.

[4]. E.W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische

Mathematik, 1959.

[5]. R.E. Tarjan, “Depth-first search and linear graph algorithms”, SIAM Journal on

Computing, 1972.

[6]. O. I. Al-Bataineh, “Verifying worst-case execution time of timed automata models with

cyclic behaviour”. Ph. D. dissertation, School of Computer Science & Software

Engineering, 2015.

[7]. D. Buzdalov, S. Zelenov, E. Kornykhin, A. Petrenko, A. Strakh, A. Ugnenko, and A.

Khoroshilov, “Tools for system design of integrated modular avioics”. Trudy ISP

RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230 (in Russian). DOI:

10.15514/ISPRAS-2014-26(1)-6

Способ статической оценки времени работы
компонентов AADL-моделей

А.М. Троицкий <troitskiy@ispras.ru>

Д.В. Буздалов <buzdalov@ispras.ru>

Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25.

Аннотация. При проектировании современных систем авионики, а также других

ответственных систем, неотъемлемой частью разработки является моделирование этих

систем. Модели могут использоваться для проверок и валидации системы, в том числе

на ранних этапах разработки. Ранняя валидация важна из-за того, что стоимость

исправления ошибок растёт экспоненциально от времени внесения этой ошибки. Для

Troitskiy A.M., Buzdalov D.V.. A static approach to estimation of execution time of components in AADL models.

Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 157-172.

172

моделирования такого рода систем широко используется язык моделирования AADL,

позволяющий моделировать как архитектуру разрабатываемых систем, так и некоторые

поведенческие характеристики компонентов модели. В статье рассматривается задача

автоматизированной проверки модели на консистентность некоторых поведенческих

свойств. В частности, рассматривается проблема оценки времени работы компонентов

моделей и соответствия этого времени другим свойствам в модели. Эта проблема близка

к проблеме худшего времени выполнения (WCET), но имеет свою специфику в данном

приложении. Рассмотрен статический подход, работающий со стандартной

спецификацией поведения компонентов AADL-моделей специализированными

расширенными конечными автоматами. В статье были рассмотрены особенности

используемой модели поведения (специализированных конечных автоматов), в

частности, за счёт работы автомата со временем и внешними событиями. Были

рассмотрены проблемы оценки времени работы таких моделей поведения, связанные с

нелокальностью этой характеристики в ряде случаев. Был рассмотрен важный частный

случай, а также общий случай этой проблемы. В статье предлагается алгоритм,

позволяющий оценить время работы таких моделей поведения в этих случаях. Данные

алгоритм реализован и используется в среде разработки AADL-моделей АРМ СИ

(MASIW).

Ключевые слова: AADL; авионика; статический анализ.

DOI: 10.15514/ISPRAS-2016-28(2)-10

Для цитирования: Троицкий А.М., Буздалов Д.В. Способ статической оценки времени

работы компонентов AADL-моделей. Труды ИСП РАН, том 28, вып. 2, 2016 г., стр. 157-

172 (на английском). DOI: 10.15514/ISPRAS-2016-28(2)-10

Список литературы

[1]. B. C. Watkins, “Transitioning from federated avionics architecture to Integrated Modular

Avionics”, AIAA 26th Digital Avionics Systems Conference, 2007.

[2]. Architecture Analysis & Design Language (AADL), SAE International standard

AS5506B, SAE International, 2012, http://standards.sae.org/as5506b/.

[3]. Architecture Analysis & Design Language (AADL), Annex Volume 2, Behavior Model

Annex, SAE International, 2011, http://standards.sae.org/as5506/2/.

[4]. E.W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische

Mathematik, 1959.

[5]. R.E. Tarjan, “Depth-first search and linear graph algorithms”, SIAM Journal on

Computing, 1972.

[6]. O. I. Al-Bataineh, “Verifying worst-case execution time of timed automata models with

cyclic behaviour”. Ph. D. dissertation, School of Computer Science & Software

Engineering, 2015.

[7]. Д.В. Буздалов, С.В. Зеленов, Е.В. Корныхин, А.К. Петренко, А.В. Страх, А.А.

Угненко, А.В. Хорошилов, “Инструментальные средства проектирования систем

интегрированной модульной авионики”, Труды ИСП РАН, том 26, выпуск 1, 2014

г., стр. 201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

