Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Design and architecture of real-time
operating system

L2K.M. Mallachiev <mallachiev@ispras.ru=
L2.3 N.V. Pakulin <npak@ispras.ru>
12,34 A V. Khoroshilov <khoroshilov@ispras.ru=>
! Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
3 Moscow Institute of Physics and Technology (State University)
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4 National Research University Higher School of Economics (HSE)
11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. Modern airliners such as Airbus A320, Boeing 787, and Russian MS-21 use so called
Integrated Modular Avionics (IMA) architecture for airborne systems. This architecture is
based on interconnection of devices and on-board computers by means of uniform real-time
network. It allows significant reduction of cable usage, thus leading to reducing of takeoff
weight of and airplane. IMA separates functions of collecting information (sensors), action
(actuators), and avionics logic implemented by applied avionics software in on-board
computers. International standard ARINC 653 defines constraints on the underlying real-time
operation system and programming interfaces between operating system and associated
applications. The standard regulates space and time partitioning of applied IMA-related tasks.
Most existing operating systems with ARINC 653 support are commercial and proprietary
software. In this paper, we present JetOS, an open source real-time operating system with
complete support of ARINC 653 part 1 rev 3. JetOS originates from the open source project
POK, created by French researchers. At that time POK was the only one open source OS with
at least partial support for ARINC 653. Despite this, POK was not feasible for practical usage:
POK failed to meet a number of fundamental requirements and was executable in emulator
only. During JetOS development POK code was significantly redesigned. The paper discusses
disadvantages of POK and shows how we solved those problems and what changes we have
made in POK kernel and individual subsystems. In particular we fully rewrote real-time
scheduler, network stack and memory management. Also we have added some new features to
the OS. One of the most important features is system partitions. System partition is a
specialized application with extended capabilities, such as access to hardware (network card,
PCI controller etc.) Introduction of system partitions allowed us moving large subsystems out
of the kernel and limiting the kernel to the minimal functionality: context switching, scheduling
and message pass. In particular, we have moved network subsystem to system partition. This

181

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

moving reduces kernel size and potentially reduces probability on having bug in kernel and
simplifies verification process.

Keywords: ARINC 653; RTOS; IMA, partitioning; real-time.
DOI: 10.15514/ISPRAS-2016-28(2)-12

For citation: Mallachiev K.M., Pakulin N.V., Khoroshilov A.V. Design and architecture of
real-time operating system. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 2, 2016, pp. 181-
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

1. Introduction

Real-time Safety-critical systems have strong requirements in terms of time and
resource consumption. Most of them have several concurrently executing separate
functions (applications), which communicate from time to time. The most obvious
approach is running those applications on separate devices and connecting to sensors
and actuators by point-to-point link, on which applications should communicate. But
firstly, there will be a lot of wires in large system. And secondly, having a separate
computing node for periodic application, which is idle most of the time, results in a
great number of computing nodes and high cost of hardware.

Integrated modular avionics (IMA) network is a solution to those problems in
avionics. Core modules are main part of IMA network. Core module runs a real-time
operating system (RTOS), which supports independent execution of several avionics
applications that might be supplied by different vendors. System provides
partitioning, i.e., space and time separation of applications for fault tolerance (fault
of one application doesn’t affect others), reliability and deterministic behavior. The
unit of partitioning is called partition. Basically partition is the same as process in
commodity operating systems. ARINC 653 standardizes constraints to the underlying
RTOS and associated API. [1]

Civil aircraft airborne computers are mostly PowerPC architecture. In this paper we
present the project on development of an open source ARINC 653 compatible
operating system, which can run on PowerPC CPU and, in the future, on other CPU
architectures, such as MIPS and x86.

1.1 Overview of ARINC 653

ARINC 653 is the standard for implementing IMA architecture; it defines general
purpose APplication Executive (APEX) interface between avionics software and
underlying real-time operating system, including interfaces to control the scheduling,
communication, concurrency execution and status information of its internal
processing elements.

Key concept of ARINC 653 is partitioning of applications in integrated module by
space and time. [2]. A partition is a partitioning program unit representing an
application. Every partition has its own memory space, so one partition cannot get
access to the memory of another. Partitions are executed in user (non-privileged)

182

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

mode, so errors in partition cannot affect OS kernel (which is executed in privileged
mode) and other partitions. Partition consists of one or more processes, which operate
concurrently. Processes in partition have the same address space and can have a
different priority. Process has an execution context (processor registers and data and
stack areas), and they resemble well-known concept of threads. Fig. 1 shows example
architecture.

Integrated module

Partition 1 Partition 2

’ process 1 | | process 1

process 2

OS kemnel
CPU

Fig. 1. Example module architecture

Partitions are scheduled using a simple round-robin algorithm. System defines a
major time frame of fixed duration which is constantly repeated through integrated
module execution time. Major frame is divided into several time windows. Each
partition is assigned to one or more time windows, and partitions are running only
during corresponding assigned time window. Assignment of time windows and major
frame duration are statically configured by the system integrator, therefore scheduling
is fully deterministic.

Scheduling of processes within partition is a dynamic priority based scheduling and
communication and synchronization mechanism make it more sophisticated than
partitions scheduling.

ARINC 653 provides interface for communication between applications (partitions),
potentially running on different modules connected by onboard communication
network. All inter-partition communication is conducted via messages. Message is a
continuous block of data. The ARINC 653 interface doesn’t support fragmented
messages. Message source and destination are linked by channels; a channel links a
single source to one or more destinations. Partitions have access to channels via
defined access points called ports. Port has single direction; it can be either source or
destination port. One port can be assigned only to one partition. Each partition can
have multiple ports. It is even possible to have a channel where both source and
destination ports are assigned to one partition

Partition code works with ports regardless of underlying channels. Channels are
preconfigured statically.

183

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

To control the concurrent execution of processes ARINC 653 offers synchronization
primitives such as semaphores, events and mutexes. Buffers and blackboards provide
inter-process communication within a partition. Buffer is a messages queue, while
blackboard has only one message, which is rewritten by every write operation.

2. Related works

ARINC-653 requirements results in constrains to underlying operating system. OS
must support:

e space partitioning, so partitions have no access to memory areas of the other

partitions and OS kernel;
e time partitioning, so not more than one partition can run at any time;
e strict and determinate inter-partition scheduler that ensures application
response time.

Furthermore, in safety-critical systems the operating system must undergo
certification process. As a result, size and complexity of OS become a real issue.
Popular real-time operating systems (such as RTERMS [3] and FreeRTOS[4]) don’t
support ARINC 653. Furthermore, RTERMS doesn’t support memory protection.
Operating systems that satisfy all of these constrains are exist, but they are
commercial and proprietary software. They are VxWorks[5] (by Wind River),
PikeOS[6] (by Sysgo), LynxOS [7](by LynuxWorks).
There are research projects on real-time and ARINC 653 [12] enhancements of Linux.
But Linux is a large system, so certification of Linux kernel seems impossible.
There are research projects that exploit the virtualization technology to support
ARINC 653. But they are either proprietary like LithOS[8] (works over open
hypervisor XtratuM[9]), or limited prototype VanderLeest implementation of ARINC
653 over Xen [10].
Only POK operating system [11], which is available under BSD license terms, mostly
satisfies our requirements, so we decided to fork POK and continue its development.

3. POK

POK is a partitioned operating system focused on safety and security [11]. We
describe it in detail here since it is the basis for the JetOS that we are working on.

POK has been designed for x86 and ported to PowerPC (PReP) and Sparc. POK has
two layers: kernel and partition, where services of partition layer run at low-privileged
level (user mode), and kernel services are executed at high-privileged level (kernel
mode). Besides the kernel POK provides a library for partition code (libpok), which
translates ARINC 653 API to POK kernel syscalls. Fig 2 shows POK architecture.

184

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Integrated module

Partition 1 Partition 2

| process 1 ‘ ‘ process 1

process 2

libpok ‘ libpok ‘

0OS kemel
CPU

Fig. 2. POK architecture

We selected POK as the basis for our RTOS. Below in this paper we describe parts
of POK that were changed or rewritten. We describe limitations of current
implementation or architecture of these parts.

Partition management. POK provides partition isolation:

e intime by allocating fixed time slots for partitions in the schedule,

e inspace by associating a uniqgue memory segment to each partition.
Partition scheduling and memory management of POK partly comply the ARINC 653
specification. But PowerPC processor, on which we focus (P3041), doesn’t support
memory segmentation.

Processes management. POK supports ARINC 653 partition processes. All
processes are represented in the kernel as array entries of a single processes array that
stores process information for all partitions. POK has no logical separation in kernel
representation of ARINC-653 processes of different partitions.

POK supports two intra-partition schedulers: Rate Monotonic Scheduling (RMS) and
Earliest Deadline First (EDF). Those partitions schedule processes within a partition
when its time slot is active.

The problem with POK scheduler is that ARINC 653 requires much more from intra-
partition scheduler: priority scheduling and fault management.

POK runs both inter- and intra-partition schedulers in the kernel mode.
Inter-partition communication. For every ARINC port there is a buffer of
corresponding size inside the kernel. User code while sending to (or receiving from)
port accesses those buffers by means of syscalls. At the beginning of every major
frame POK copies data from source buffers to destinations. For large buffers there is
possibility to spend significant part of partition time slot on buffer-to-buffer copying.
If a process tries to send to a full port (or read from an empty one) the kernel blocks
the process until buffer becomes operational. POK supported this feature but did not

185

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

obey to the ARINC-653 requirement on that the order of unblocking should be the
same as the order of blocking on each priority level.

Intra-partition communication support is implemented by the user-mode library
libpok, using system calls for synchronization purpose. It supports locking resources
for concurrent access to shared data resources (such as buffer and blackboards)
between processes in partition. When process tries to accesses a locked resource, it
will be blocked (so scheduler will skip this process) until the resource is unlocked.
POK scheduler has some inherent problems with handling of locked processes. Let’s
consider an example. A low-priority locks a buffer for writing and before it unlocks
the buffer a higher priority process wakes up. POK scheduler unconditionally
switches to the second process. If the second process tries to get status information
about the locked buffer it blocks and POK wakes the first process. But according to
ARINC-653 standard the process that requests status information must not block.

4. JetOS

JetOS is the real time operating system with ARINC-653 support that we currently
develop at ISPRAS. It originates from POK but has evolved significantly since then.
Before we introduce the new features of JetOS compared to POK let us mention the
facility that was removed from POK: the AADL configuration tool. Originally POK
was designed and implemented as a demonstration of a number of approaches, and
the developed selected rather exotic approach to configuration. The suggested way to
create an embedded application by means of POK is to specify its environment and
capabilities as an AADL specification. In JetOS we dropped AADL support in favor
of XML-based configuration files.

Integrated module

Partition 1 Partition 2 drivers
process 1 | ‘ process 1 |
system
services
ARINC lib ‘
ARINC lib ARINC lib S (s ‘

Kernel (mmu, scheduler, ipc)

Arch lib

Hardware

Fig. 3. JetOS architecture

186

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

Furthermore, we dropped support of the SPARC platform as there are no onboard
avionics systems that are built atop of SPARC CPUs. At the moment JetOS runs on
x86 and PowerPC (Book E branch).

Partition management. Unlike x86 and SPARC the new target hardware for JetOS,
PowerPC platform, features direct MMU control through TLB writes. To reduce
cache flushes at context switches and simplify TLB lookups PowerPC provides
tagged cache where each tag is an 8 bit identifier. We use that identifier as partition
identifier (pid). At context switch we just change value of the special-purpose register
responsible for current pid. This is simple and secure method.

The inter-partition scheduler of POK was able to switch partitions only when the
active process runs in user mode. If a process calls syscall it cannot be switched until
the end of that call. Such behavior violates requirements of real-time since system
calls might be prolonged. Currently we are working on kernel-mode critical section
and synchronization primitives to enable context switch while a process executes a
system call.

Processes management. We store process-related data in kernel separately for
different partitions. Intra-partition scheduler was fully rewritten to support ARINC
653 specification. The new scheduling facility allows for multiple schedulers, and
different partitions might utilize different schedulers (a.g. ARINC-653 for avionics
applications and preemptive pthreads for system partitions). New intra-partition
scheduler can be accessed only by functions

o start() is called when partition is starting or restarting

e on_event() is called on every event such as timer interrupt and returning
control to partition.

Inter-partition communication. We use one ring buffer for every channel. Its size
is the sum of source and destination ports buffers size in original POK design. It
removes the need for copying from source to destinations buffers. Correct work of
send and receive function achieved by two pointers, one for source port, and one for
destination. Sending increases source port pointer, receiving increases destination
port pointer. When pointers are met then buffer either full or empty, uncertainty is
resolved by another variable associated with the channel, which stores current number
of messages in the channel’s buffer. Example can be seen at Fig. 4.

destination port index T
source port index

Fig. 4. Example kernel channel buffer. Yellow cells are already received messages, blue
cells are sent but not yet received messages, white cells are empty

Intra-partition communication. Correct handling of concurrent data access to
buffers and blackboards without violating the ARINC 653 scheduling requirements

187

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

with user mode scheduler is a hard task. Therefore the intra-partition schedulers are
implemented in the kernel to simplify lock-wait-unlock and priority scheduling. In
future versions we may design a solution that solves this issue while keeping a code
in user space.

4.1 Configuration

The characteristic feature of real-time operating systems is deterministic behavior.
The primary way to ensure reliable and dependable behavior is static pre-allocation
of all resources — memory, CPU time, access to devices, etc. For instance, partition
code is executed only during fixed time slots within the schedule, no sooner, but no
later. Memory is pre-allocated for every partition, memory image of the partition is
fixed, no pages could be added or removed during runtime.

Many parameters of our operating system are configured statically and cannot be
changed dynamically. These parameters are number of partitions and their memory
size, number of ports, their names, sizes and directions, channels etc.

Configuration of the system is stored in xml documents. To keep the kernel minimal
we got rid of the need to include xml parser to kernel: the configuration files are
processed at build time. The processor generates C code where parameters are
presented as either preprocessor macros (#define constants) or enum constants. The
generated files are included in the build process.

4.2 System partitions

Beside ordinary partitions, that interact with the kernel and the outer world thought
ARINC 653 APEX, the standards allows for so called system partitions that utilize
interfaces outside the scope of APEX services, such access to devices or network
sockets. The standard doesn’t specify their operations and interfaces other than
constraints on time and space partitioning: system partitions are subject to scheduling.
The difference between system partitions and kernel modules is that system partitions
run in user space and have time and space partitioning constrains.

Our OS supports system partitions. From the kernel point of view system partitions
are like ordinary partitions with some additional memory mapping and additional
system calls. Communication between application partitions and system partitions is
performed through ARINC-653 ports.

Currently we have only one system partition: the 10 partition that is responsible for
communication over the network. In the future we will implement a number of other
system partitions — file system, graphics server,

10 partition has access (by corresponding entry in TLB) to special memory areas,
where network card registers are mapped, so 10 partition can work directly with
hardware without kernel system calls.

10 partition receive and send data either from partitions in the same integrated module
by ports or from other integrated modules by network card drivers. In the simple case
the communication over network is based on UDP messages, and the configuration

188

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Ipyowr UCI1 PAH, 2016, Tom 28, Beimyck 2, ¢. 181-192.

defines mapping between ARINC 653 port and a pair of IP address and UDP port.
This mapping looks like ARINC channel, so we also call it channel.

But network communication may be based on other protocols, such as AFDX. So in
general, the channel maps ARINC port to some network specific data. We support
parallel work with several network protocols, by assigning channel driver to channel.
Channel driver is interlayer between port and device driver. In most cases channel
driver is a network stack.

System can have several network cards, so we support parallel independent work of
several device drivers. Currently we support three network cards drivers: virtio, ne2k
family and hardware cards on the platform with P3041 processor.

Each network driver manages one or more uniform devices. During initialization each
driver, which cards are connected through PCI bus, registers as PCI device in PCI
driver. After initialization of all network drivers PCI driver starts enumeration of PCI
bus. If it finds a physical device that matches a registered PCI device, then it signals
to the corresponding network driver. Network driver dynamically for every signal
registers a network device. Network device has a nhame and method to send and
receive data from assigned physical device. Names to network device are assigned
dynamically; name is concatenation of drivers name and sequential number of current
device in driver.

The configuration assigns channel drivers to network devices by name. Example of
sending two messages in parallel to two different network cards can be seen at Fig. 5.

Integrated module

Partiion1 | :ports: 10 partition

dev driver 1

- channel driver 1 -

£+{ channel driver 2 i\
ot |

OS kernel

process 1

process 2 [~&

i

Fig.5. Two messages are being parallel sent to different network cards

Different drivers require different configuration. We have dedicated xml parsers of
some specific part of xml document, this parser generates data specific for
corresponding driver.

This architecture allows independent work of different drivers, which can possibly
come from different developers. Furthermore, it allows adding new drivers with
minimal effort and change of common parts.

189

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

5. Future work

There is research group to develop OpenGL renderer and frame buffer driver for our
OS. Their work will show how well we thought out architecture of 10 partition.

We finally need to measure latency without providing which we cannot tell that our
operating system is a real-time system.

We are going to seek way to minimize kernel code, and move code, for which it is
possible, to user-space.

Currently we use only one CPU core of the e500mc multicore processor. Newest
version of ARINC 653 introduces interfaces for multicore work. We are going to
support multicore CPUs as well.

Another objective is to port the OS to MIPS CPU family and another PowerPC
family, namely IBM PPC 440.

6. Conclusion

In this paper, we sketched JetOS, a real-time operating system, which support ARINC
653 standard. Our system started as fork of POK OS. We describe architecture of
POK, architecture of our operating system and differences between them.

References

[1]. Avionics application software standard interface part 0 overview of ARINC 653, ARINC
specification 653P0-1, August 3, 2015

[2]. Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

[3]. G. Bloom, J. Sherrill. 2014. Scheduling and thread management with RTEMS. SIGBED
Rev. 11, 1 (February 2014), 20-25. DOI=http://dx.doi.org/10.1145/2597457.2597459

[4]. C. S. Stangaciu, M. V. Micea, V. |. Cretu; Hard real-time execution environment
extension for FreeRTOS Conference: IEEE International Symposium on RObotic and
SEnsors Environments (ROSE 2014), At Timisoara DOI: 10.1109/ROSE.2014.6953035

[5]. VxWorks 653 http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf

[6]. R. Kaiser, S. Wagner: Evolution of the PikeOS Microkernel, MIKES: 1st International
Workshop on Microkernels for Embedded Systems. 2007

[7]. LynxOS http:/mww.lynx.com/products/real-time-operating-systems/lynxos-rtos/

[8]. M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo, J.J. Metge, 2010. LithOS: a
ARINC-653 guest operating for XtratuM. In Proc. of the 12th Real-Time Linux
Workshop, Nairobi (Kenya).

[9]. M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. XtratuM: a Hypervisor for Safety
Critical Embedded Systems. 11th Real-Time Linux Workshop. Dresden. Germany.
http://www.xtratum.org/files/xm_rtlw09.pdf

[10]. S. H. VanderLeest. ARINC 653 hypervisor. In Proc. Of IEEE/AIAA DASC, Oct. 2010.

[11]. J. Delange, L. Lec, 2011. POK, an ARINC653-compliant operating system released under
the BSD license. In 13th Real-Time Linux Workshop (Vol. 10).
http://julien.gunnm.org/data/publications/articledl11-osadl11.pdf

190

Mainauues K.M., IMakynun H.B., Xopommmios.A.B. YcTpoiicTBO U apXUTEKTypa OnepanioHHOH CUCTEMBI PealibHOrO
Bpemenu. Tpyowst UCIT PAH, 2016, Tom 28, Beimyck 2, c. 181-192.

[12]. S. Han and H.-W. Jin. 2012. Kernel-level ARINC 653 partitioning for Linux. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12).
ACM, New York, NY, USA, 1632-1637.
DOl=http://dx.doi.org/10.1145/2245276.2232037

YCTpOMUCTBO U apX1UTeKTypa onepaLuoHHON CUCTEMbI
peanbHOro BpeMeHu

L2 K. M. Mannauues <mallachiev@ispras.ru=>
123 f B. Haxynun <npak@ispras.ru>
1234 4 B. Xopowunos <khoroshilov@ispras.ru>
Y Unemumym cucmemnozo npoepammuposanus PAH,
109004, Poccus, e. Mockea, yn. A. Comxcenuyvina, 0. 25.
2 Mockoeckuii 2ocyoapcmeennwiil ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opei, 0. 1.
SMockosckuii (husuxo-mexHusecKutl uHCIUnTym (20Cy0apCmeeHHblil YHUGepcumen,)
141701, Poccus, Mockosckas obnacme, 2. [Jonzonpyonstii, Uncmumymckuii nep., 9
4 Hayuonanvulii uccnedo6amenpckuii yuueepcumen «Bolculan wkona s3K0HOMUKUY
101000, Poccus, Mockesa, yn. Macuuykas, 0.20

Annortamusi. CoBpeMeHHbIC aBHalaiiHepwl, Takue Kak Airbus A320, Boeing 787,
MEPCIeKTUBHBI OTedecTBCHHBIH caMon€ér MC-21, HCHONB3YIOT HOBYIO apXUTEKTYypy
MOCTPOCHUsI ~ KOMIUIEKca OOpTOBOro O0OpyZOBaHMs, IOJYYHMBIIYIO Ha3BaHHE
WnrerpupoBanHas MoaynbHas aBuoHuka (IMA). B e€ ocHoBe nexuT 00beIiHeHNnE TPHOOpPOB
1 OOPTOBBIX BEIUUCIIHUTENEH B €JUHYIO CETh PEAbHOI'0 BPEMEHH, YTO M03BOJISIET CYIIECTBEHHO
CHH3UTB KOJIMUECTBO KabeJeil Ha OOpTy U, TeM CaMbIM, YMEHBIIHUTh B3JIETHBIN Bec naitHepa. B
HNMA pazgensrorcs dyHkuun cbopa mHGOpMaIuy (JAaTYMKH), BO3ACHCTBUS (aKTyaToOphl) U
JIOTUKH OKa3aHHS YIPABISIONINX BO3ACHCTBHH, KOTOpas peann3yeTcs CleNHaTn3POBaHHBIM
npuknagaeiM [I0 B OOPTOBBIX BBIYHCIMTENBHBIX MOIYISAX. MeXIyHapOIHBIH CTaHAAPT
ARINC 653 ommceiBaeT TpeOOBaHHS K ONEPAMOHHOW CHCTEME pPEalbHOTO BpPEMEHH,
YCTaHaBIMBAaeMOW Ha TaKMX MOAYJSIX, M MPOTPAMMHBIA HHTepelc MeXIy HPHKIaIHBIM
aBuaumoHHbIM I1O u omepaunoHHOW cuctemoi. JlaHHBI CTaHOApT perjJaMeHTHPYET
BPEMEHHOE U TPOCTPAHCTBEHHOE paszjeneHue npuknagHoro IO B cooTBercTBHM C
npuHuunaMd UMA. BonemmactBo OCPB cootBerctByromux cranmapry ARINC 653
aBisiroTess kommepueckuM [10. B nannoii cratse npeacrasisercs JetOS — OCPB ¢ oTkpbITEIM
HCXOIHBIM KOJIOM HOJHOCTBIO cOOTBeTCTBYIoNIyIo TpeboBanmsiM ARINC 653 gactu 1 Bepcun
3. JetOS Gbl1a OCHOBaHa Ha OTKPBHITOM NpoeKTe (paniy3ckux ucciaenonareneir POK. Hexorma
POK o6s1ma equacTBeHHO OCPB ¢ OTKPHITBIM HCXOJHBIM KOJIOM, KOTOpast XOTh CKOJIBKO-
HHOYZB cooTBeTcTBOBaNa TpeboBaHmsaM crangapra ARINC 653, oxgnako Obina HempurogHa
JUIsL TIpakThdeckoro ucnons3oBanusi: POK He ymoieTBopsuia psiny (yHAaMEHTalIbHBIX
tpeboBanuit ARINC 653 u paborana tonbko B amynsatope. [Ipu paspadorke JetOS xox POK
ObUI cymniecTBeHHO nepepaboTtaH. B cratbe Mbl 06cyxknaem Henoctatku POK u mokaseiBaem,
KaK HaM YZAaJoCh PEIIUTh 3TH NMPOOIEMbl U KaKHe H3MEHEHHs ObUIH BHECEHBI B aDXUTEKTYPY
n peammaruio POK u oTnensHbIM mojcucteM. B wactHOCTH, OBUI NMOJTHOCTBIO NEpenUcaH
IUIAHUPOBLIMK PEaIbHOTO BPEMEHH, CETEBOM CTEK U yIpaBieHUE MamAThio. Tawke B JetOS
Obum 100aBIEHBI HOBBIE BO3MOXHOCTH. Hambosiee WHTEpecHOH SBISETCS IOJJIEpPIKKa

191

Mallachiev K.M., Pakulin N.V, Khoroshilov A.V. Design and architecture of real-time operating system. Trudy ISP
RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 181-192.

CHCTEMHBIX paznenoB. CUCTEMHEBIH pa3jien — crenuaibHoe npukianHoe [10 ¢ pacmmpeHHBIM
Ha0OpOM BO3MOKHOCTEH, TAaKUX KaK MPSIMOIl JOCTYN K OTICIBHBIM allapaTHBIM CPEACTBAM
(cereBoii kapte, PCI xoHTposepy u T.11.). Hanuure cucTeMHbIX pa3iesioB MO3BOJISET BHIHECTH
KpyHnHbIe nmoacucteMsl u3 siapa OC 1 0CTaBUTH B SApe MUHUMAJIBHBIA HA00P 3a7a4, CBSI3aHHBIX
C MEPeKITIOYCHHEM KOHTEKCTOB, IUIAHHUPOBIIMKOM W OOMEHOM COOOLICHUSIMH MEXIY
kommnoHeHTamu [10. B gacTHOCTH, B CUCTEMHBIH pa3/ien BEIHECEHA TOCUCTEMA, OTBEYAIOIIAs
3a B3aUMOJICHCTBUE Yepe3 ceTh. JlaHHOe mepeMeleHrne Koa MO3BOJISIeT YMEHBIIUTh pa3Mep
snpa OC, 9TO TEOPETUYCCKH YMCHBIIIAET BEPOSATHOCTh HAIMYHUS ONIMOKH B SIPE M YIIPOIIACT
TpoIecc Bepr(pUKAIIH Spa.

Kuarwuessie ciioBa: ARINC 653; OCPB; onepanmonHas cuctemMa peaiibHOTO BpeMenn; UMA;
MHTETPUPOBAHHASI MOYJIbHAS aBUOHUKA

DOI: 10.15514/ISPRAS-2016-28(2)-12

Jas nurupoBanusi: Mamwtaunes K.M., [Nakymua H.B., Xopommno A.B. YcrpoiicTBO u
apXUTEKTypa OMEPalMOHHOM crcTeMbl peainbHoro Bpemenu. Tpyast UCIT PAH, Tom 28, BbImL.
2,2016 ., ctp. 181-192 (na anrmmiickom). DOI: 10.15514/ISPRAS-2016-28(2)-12

Cnucok nutepatypbl

[1]. Avionics application software standard interface part 0 overview of ARINC 653, ARINC
specification 653P0-1, August 3, 2015

[2]. Avionics application software standard interface part 1 — required services, ARINC
specification 653P1-3, November 15, 2010

[3]. G. Bloom, J. Sherrill. 2014. Scheduling and thread management with RTEMS. SIGBED
Rev. 11, 1 (February 2014), 20-25. DOI=http://dx.doi.org/10.1145/2597457.2597459

[4]. C. S. Stangaciu, M. V. Micea, V. I. Cretu; Hard real-time execution environment
extension for FreeRTOS Conference: IEEE International Symposium on RObotic and
SEnsors Environments (ROSE 2014), At Timisoara DOI: 10.1109/ROSE.2014.6953035

[5]. VxWorks 653 http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf

[6]. R. Kaiser, S. Wagner: Evolution of the PikeOS Microkernel, MIKES: 1st International
Workshop on Microkernels for Embedded Systems. 2007

[7]. LynxOS http://www.lynx.com/products/real-time-operating-systems/lynxos-rtos/

[8]. M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo, J.J. Metge, 2010. LithOS: a
ARINC-653 guest operating for XtratuM. In Proc. of the 12th Real-Time Linux
Workshop, Nairobi (Kenya).

[9]. M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge. XtratuM: a Hypervisor for Safety
Critical Embedded Systems. 11th Real-Time Linux Workshop. Dresden. Germany.
http://www.xtratum.org/files/xm_rtlw09.pdf

[10]. S. H. VanderLeest. ARINC 653 hypervisor. In Proc. Of IEEE/AIAA DASC, Oct. 2010.

[11]. J. Delange, L. Lec, 2011. POK, an ARINC653-compliant operating system released under
the BSD license. In 13th Real-Time Linux Workshop (Vol. 10).
http://julien.gunnm.org/data/publications/articledl11-osadl11.pdf

[12]. S. Han and H.-W. Jin. 2012. Kernel-level ARINC 653 partitioning for Linux. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12).
ACM, New York, NY, USA, 1632-1637.
DOl=http://dx.doi.org/10.1145/2245276.2232037

192

