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Abstract. It is known that if complexity class P is not equal to NP the sum coloring problem
cannot be approximated within 1+epsilon for some positive constant epsilon.

We consider finite, wundirected graphs without loops and multiple edges.
Let G=(V,E) be a graph. By a coloring of G we mean a mapping ¢ of V to the numbers 1,2,
..., V| . A coloring c is proper if c(v) is not equal to c(u) whenever the vertices u and v are
adjacent.

Let S(G,c) is the sum_of c(v) over all vertices v. By a chromatic sum of G we mean the
number S(G)=min S(G,c) where minimum is taken over all proper colorings ¢ of G.

The problem of finding S(G) is called the sum coloring problem.

It was shown that the sum coloring problem is NP-complete.

A graph G is called bipartite if the set of vertices of G can be partitioned into
two non-empty sets V1 and V2 such that every edge of G has one end in each of the sets.

For a number b, we say that an algorithm A approximates the chromatic sum within factor b
over graphs on n vertices, if for every such graph G the algorithm A outputs a proper coloring
¢, such that S(G,c) is not greater than b S(G).

It is known that there exists 27/26-approximation polynomial algorithm for the chromatic
SUM COLORING PROBLEM on any bipartite graph. On the other side, it was shown that
here exists epsilon>0, such that there is no (1+epsilon)-approximation polynomial algorithm
for the sum coloring problem on bipartite graphs, unless P is not equal to NP.

In this paper we consider the problem of developing an (1+epsilon)-approximation algorithm
for the sum coloring of bipartite graphs which is polynomial in the average case for arbitrary
small epsilon. We prove the existence of such algorithm.
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1. Introduction
Let G = (V,,V,, E) be a bipartite graph with N-+m vertices such that |V, |=m,
|V, |[=n, m<n.Byacoloring we mean a mapping:
c:V,uV, »>{12,...,n+m}.
A coloring is proper if ¢(v) # c(u) whenever (u,v) e E.
Let S(G,c) = ZVEVC(V) . By a chromatic sum we mean S(G) = min.S(G,c)

where minimum is taken over all proper colorings of G . The problem of finding
S(G) is called the SUM COLORING PROBLEM.

The notion of chromatic sum was first introduced in [6] where it was shown that the
SUM COLORING PROBLEM is NP-complete on arbitrary graphs. A few b -
approximation algorithms which find a coloring € with S(G,c) <b-S(G) were
presented. In [7] a 10/9 -approximation polynomial algorithm for the SUM
COLORING PROBLEM on any bipartite graph was described. This result was

improved in [8] where an 27/26 -approximation algorithm for the same problem
was constructed. On the other side, in [7] the authors have shown that there exists

& >0, such that there is no (1+ &) -approximation polynomial algorithm for the
SUM COLORING PROBLEM on bipartite graphs, unless P = NP .

In this paper we present for any positive € an (1+ &) -approximation algorithm for
this problem with expected polynomial time. The probabilistic distribution is

uniform over all bipartite graphs with N vertices;, N =n+m, m<n. Note that
the first example of approximation algorithm with expected polynomial time
guaranteeing approximation ratio better than inapproximability threshold in the
worst case was presented in [9]. Probabilistic analysis of algorithms for random
graphs is the focus of much research now [1-5, 9].

2. Approximation scheme with expected polynomial time

Let N =n-+m. We consider now a straightforward approach testing all possible
colorings of G and choosing the one with the best possible color sum.

Algorithm 1. Test all possible vertex colorings of a bipartite graph and choose a
proper coloring with minimum color sum.

Lemma 1. The time complexity of Algorithm 1is O(N™) = O((2n)*").
Let O be a positive number, 0 <6 <1 and

Vi ={veV,: (1—5)%£deg V< (1+5)%},
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Vv, ={veV, :(1—5)%£deg vs(1+5)2},

V=V, \V,,
V', =V, \V,.
2.1 Algorithm VERTEX-COLOR.
Input: A bipartite graph G = (V,,V,,E) suchthat |V, |=m, |[V,|=n, m<n,

and a parameter & > 0.
Output: A proper coloring € of G such that S(G) < S(G,c) <(1+¢)S(G).

If & <max{40n°°,n"°% 50n %%} then goto 7.
2. 1f m<n°? then goto 7.

[EEN

. .1 ¢
3.Set & = min{—,——n"},
° 5050 }

4. Count the number t, =|V",|, and t, =[V/",|.

5.1f t, > Jn or t, >n°* then goto 7.

6. Color V, by color 1 and color V; by color 2 and STOP.

7. Run Algorithm 1 and STOP.

Theorem 1. For any fixed & >0 Algorithm VERTEX-COLOR finds a proper
coloring within 1+ & of the optimum color sum in expected polynomial time.
Proof. Note that at step 2 and step 5 of the algorithm we get S(G,c) =n+2m
using very simple coloring strategy. The main idea of the proof is to extract

sufficiently large almost regular bipartite subgraph G’ = (V},V,,E’) of G such
that for any veV, (1-8)r<degv<(1+8’)r, and for any VeV,
(1-0")k <deg v<(1+ ")k . Such an almost regular subgraph can guarantee a
tight lower bound on S(G) close to the upper bound S(G) <n+2m. The main

difficulty is to estimate the probability that the size of such subgraph is large
enough.

We use M’ and n' for denoting |V,'| and |V, | respectively.

1 ! ’ !
Lemma 2. For any 0< ' < 5 and an induced subgraph G’ = (V/,V,,E’) as

above
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n'+2m’'—-106m < S(G") <n’+2m’.

Proof of Lemma 2. The upper bound is evident (we color V," by color 2 and color

V2' by color 1). To prove the lower bound we use the folowing inequalities
1+ W) +@A+5Nk D cv) = D (c(u)+c(v) =
veVl' veVZ' e=(u,v)eE’
>3|E'[=3r(1-o")m'".
This implies the inequality

D e(v)+ K > c(v) >3m’ L

, , 1+
VeVl VEVZ

O > am(1-25).
5

k
Adding to both parts of the inequality (1__)2\/ V,C(V) and taking into account
r 2

that c(v) >1 for any V we obtain that for any proper coloring C of G’

S(G',c) = > c(v)+ D c(v) =3m’ —65m’ + (1—5) D c(v) >

VeVi VeVz' VeVZ'

>2m'+ m'—65‘m'+(1—5)n’ =2m'+n'+ m'—65‘m'—5n’ >
r r
2m'+n'+m'—=66m' —m’'—46m’ =n"+2m’'-1056m’".

Here we used the inequality m'r(1+0")>nk(1—06") which for any
1
0<§'<§ implies

k 1+ 20’

—n'<m’ =m'(1+

r 1-6' 1-6'
The proof of Lemma 2 is complete.

Now we estimate the size of G'.

) <m'(1+45").

Lemma 3. There is C > 0 depending on & such that
Pr{|V"; |2 Vn}<exp{v/n log n—cn®?}.
Pr{IV',|> n°*} < exp{n®* log n—cn*?}.

Proof. We need the following lemma.
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Lemma ([5]). Let X,,..., X, be independent random variables such that X; takes
two values: 0 and 1,and Pr{x, =1}=p, Pr{x, =0}=1-p.
Let X = Zin:lxi and EX = np . Then the following inequalities hold:
forany 0 >0
Pr{X —EX < -0EX}<exp{—(5 12 EX},
forany 0< o <1
Pr{X —EX > EX}<exp{—(5 /3)EX}.
Using this Lemma we have for V€V, :
Pr{d(v) <n(1-5)2} < exp{—~(5°/2)n/2},
Pr{d (v) > n(1+5)2} < exp{—(5%/3)n/2}.

We give the proof for V_'z . The proof for V1 is similar.
To do this we estimate the following probability:

Pr{lV'z [2k}<n (Pr{fixed k,verticesvin V', haved (v) < (1- 8)n/2}-
k
Pr{fixed k,verticesvin V' haved(v) > (1+9)n/2}),

where K =K, +K, . Using the Lemma and taking into account independence of the
corresponding events we have

Pr{fixed k verticesvin V', haved (V) <(1-o)n2} <
exp{—~(5°/3)km/2} < exp{-cmk },
Pr{ fixed k,verticesvin V', haved(v) > (1+5)m/2} <
exp{—~(5°/3)k,m/2} < exp{-cmk,},
where C dependson O .
Letting in the last inequalities K = n%* we obtain
Pr{V: 2 k}<n exp{-cm(k, +k,)}<
k
exp{k log n—cmk} < exp{n®* log n—cn**}.
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To finish the proof of Theorem 1 it is necessary to estimate the approximation ratio
of the algorithm VERTEX-COLOR and its expected running time.

2.2 Approximation ratio

If the algorithm terminates at step 2 then we use the inequality
N+m<S(G)<n+2m.

This gives that for the proper coloring C obtained at step 2

n+2m

$(G.c)=n+2m<§(G)-- _S(G)(1+n+mm

)<

<S(G)(1+n?)< S(G)(1+ g),

because & > n°? (in the opposite case the algorithm always finds an optimal
solution at step 7).

Because at step 7 we always find an optimal solution it is sufficient to estimate
approximation ratio for step 6. To do this we use Lemma 2. If the algorithm

terminates at step 6 then t < Jn  and t,<n%. Thus we have
n'=n—t,>n—+/n, m =m—t, >m—+/n . Because the degree of a vertex in

G’ can decrease by at most \/ﬁ we can estimate 0" as follows:
deg > (1—5)m—f . (1—5’)%,
2n

which implies &' = 5+—
By Lemma 2

n+2m-106m—t, —t, <S(G') < S(G) <n+2m.
This implies the inequality

n+2m-108m—23J/n <S(G) <n+2m,
and then the inequality

(n+ 2m)(1—105—§) <S(G)<n+2m.

Jn

Thus, for the coloring C that the algorithm outputs at step 6 the following inequality
holds

S(G,c) <S(G)(1- 105 - 22

\/_
Now we use the following technical lemma.
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Lemma. Let 0 < & < min {i,i}, £>40n7%°, Then
50 50

25
1-106 - =)t <1+e.
( \/ﬁ)
Proof. We have

(1-105 - 22).(1+£) =1

)
\/_
This is equivalent to

e-105(1+¢)— (1+g) =
f

e—(1+&)(1056 + \/_) >0.

This implies
2
——2>100 + 25
l+¢ n
Taking into account the inequality 6 < &50 we have
S 12(;0 .
&

This inequality follows from the condition of the Lemma: & > 40n™°°.

2.3 Expected running time

Step 4 is performed in quadratic (in N) time. By Lemmas 1 and 3 the expected time
of step 7 is at most

O((2n)*") exp{~/n log n—cn'?} <
cexp{2nlog 2n++/nlog n—cn*?} —0

as N tends to infinity.
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