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Abstract. In this paper, we report on the work in progress on the debugger project for real-time
operating system JetOS for civil airborne systems. It is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC 653 API specification. This
operating system is being developed in the Institute for System Programming of the Russian
Academy of Sciences and next step in developing this system is to create a tool to debug user-
space applications on it. We also discuss the major requirements to such a debugger and show
the difference between it and typical debugger, used by desktop developers. Moreover, we
review a number of debuggers for various embedded systems and study their functionality.
Finally, we present our solution that works both in emulator QEMU, which we use to emulate
environment for our system, and on the target hardware. The presented debugger is based on
GDB debugging framework but contains a number of extensions specific for debugging
embedded applications. However, the implementation of the debugger is not complete yet and
there is a number of features that can improve debugger usability, but it is already more
functional than common GDB debugger for QEMU and, in contrast to other systems and their
debuggers, where developers can use some functions to debug applications, but not all we need,
our debugger meets the majority of our requirements and restrictions.
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1. Introduction

Application debugger is an indispensable tool in developer’s hands. But debugger in
a real-time operating system is more than just plain debugger. In this paper we present
an on-going project on debugger development for JetOS, a real-time operating system
that is being developed in the Institute for System Programming of the Russian
Academy of Sciences.

JetOS is a prototype operating system for civil airborne avionics. It is designed to
work within Integrated Modular Avionics (IMA) architecture and implements
ARINC 653 API specification, the de-facto architecture for applied (functional)
software.

The primary objectives of ARINC 653 are deterministic behavior and reliable
execution of the functional software. To achieve this ARINC 653 imposes strict
requirements on time and space partitioning. For instance, all memory allocations and
execution schedules are pre-defined statically.

The unit of partitioning in ARINC 653 is called partition. Every partition has its own
memory space and is executed in user mode. Partitions consist of one or more
processes, operating concurrently, that share the same address space. Processes have
data and stack areas and they resemble well-known concept of threads.

Embedded applications might be run in two different environments: in an emulator
and on the target hardware. In our project we use QEMU system emulator. Although
QEMU has its own debugger support, its functionality proved to be insufficient for
debugging embedded applications. Therefore, we implemented a debugger not only
for the target hardware, but for the emulator as well.

2. Main Targets for Debugger

Debugger for an embedded operating system has a number of specific features
compared to typical debugger used by desktop developers.

Firstly, an embedded application runs under constrained conditions, such as limited
on-board resources and lack of interactive facilities — no keyboard and screen. This
makes it impossible to do debugging on the same device where application runs.
Therefore, the debugger for embedded applications has to be remote: the developer
interacts with workstation while the application runs on a target hardware.

Secondly, an embedded application typically consists of a number of interacting
processes that needs to be debugged simultaneously. This means that the debugger
must support dynamic and transparent switching between execution contexts during
debugging session.

Thirdly, the debugged should support developers of system software, mostly device
drivers and network stack. This requires switching between low-privilege code and
highly privileged kernel code in the same debugging.

It is also important to mention that embedded developers widely use emulators in
their work process. Typically most of development runs on top of emulators, therefore
the debugger must support corresponding emulators as well.
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The above mentioned features impose a number of restrictions on the design of the
debugger that we considered:

e There are many different applications compiled in OS, which can have
overlapping virtual address spaces.

e Typically target hardware board for embedded OS has only one port to
communicate with the external world — a single serial port. Since it is used
to stream console output of the running applications we need to share it
between debugger traffic and applications' output.

e  Multifunctional debugger is a complex program. It is very complicated to
develop it from scratch, so we decided to base our debugger on an existing
one.

e  Support debugging both on hardware and with emulator because this support
can expand developers' capabilities and improve their efficiency.

e  Support capabilities of debugging for kernel and for user mode code, as well
as capabilities of multiprocess mode.

e It must excel QEMU debugger, which we use to emulate environment for
our system.

e Since the OS in question is real-time, it is important to minimize debugger's
impact on system during debugging.

In order to meet these restrictions we selected the architecture of remote debugger
with server and client parts, that communicate over a serial port using multiplexer.
We have chosen GDB (GNU debugger) for the client part of our debugger.

3. Related Works

We are not the first to consider the problem of remote debugging. For example,
Pistachio microkernel uses kdebug for debugging [4]; besides, there is Fiasco
debugger [1] and many different debuggers for VxWorks, for example, RTOS
debugger [2].

Here we briefly consider some debuggers for embedded OSes and their primary
features.

3.1 Fiasco OS

Fiasco OS is a 3rd-generation microkernel, based on L4 microkernel [1]. The kernel
is simplistic, it misses most of the features available in “big” operating systems like
Linux or Windows: program loading, device drivers and file system. All these
features must be implemented in user-level programs on top of it (L4 Runtime
Environment provides a basic set such functions).

Fiasco OS has built-in support for debugger that:
e supports threads;
e provides stack backtrace
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e sets breakpoints;

e does single step;

e provides reading/writing in memory;

e provides reading hardware registers;

e support interprocess communication (IPC) monitoring.

The Fiasco Kernel Debugger (JDB) is a debugger for Fiasco. It has the following
special functionality:

e It always freezes the system when it is working. It means that JDB disables
all interrupts and halts clock. All processes and kernel don't work when JDB
is invoked.

e JDB doesn't use any part of Fiasco kernel, because it is a stand-alone
debugger with drivers for keyboard, display, etc.

In general, JDB is not a part of Fiasco p-kernel, and Fiasco p-kernel can run without
connection with JDB or another debugger.

The debugger operates remotely over the serial line.

3.2 VxWorks

VxWorks [5] is a real-time operating system (RTOS) developed as proprietary
software by Wind River of Alameda, California, US. It supports Intel (x86, including
the new Intel Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures.

RTOS debugger for VxWorks implements the following set of features:

e Task Stack Coverage

e Task Related Breakpoints

e Task Context Display

e Debugging Modules (for example, Kernel module)

e Debugging Real-Time Processes

e Debugging Protection Domains

e Collecting statistics for function and tasks
RTOS debugger displays all system states, tasks, message queues, memory
partitioning, modules and etc.
The key feature of the RTOS debugger is that is based on Lauterbach's TRACE32
debugger [3] that utilizes hardware interfaces like JTAG. It does not use serial port
for communication with the target hardware but rather requires specific debug
module.

3.3 L4Ka::Pistachio

L4Ka::Pistachio [4] is the latest L4 microkernel developed by the System
Architecture Group at the University of Karlsruhe. It is the first available kernel
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implementation of the L4 Version 4 kernel API, which provides support of both 32-
bit and 64-bit architectures, multiprocessor and super-fast local IPC. The current
release supports x86-x64 (AMD64/ EM64T, K9 / P4 and higher), x86-x32 (1A32,
Pentium and higher), PowerPC 32bit (IBM 440, AMCC Ebony / Blue Gene P).

The debugger for Pistachio kernel can direct its 1/O via the serial line or the
keyboard/screen. It is a local debugger and does not support remote debugging mode.

This debugger is also a low-level device with very limited amount of functions.
Debugger for Pistachio can:

Set breakpoints

Single step

e  Dump memory

Read registers

When the processor meets special instruction (for example, int3 instruction), it passes
control to interrupt handler, which is the part of Pistachio kernel. In turn, interrupt
handler checks instructions, which come next, and if they correspond to the special

layout, it prints special message before passing control to interrupt handler. This
feature is a simplistic implementation of a facility to trace execution.

4. Technical Description:

The primary goal of the debugger is Power PC platform, based on e500mc CPU core.
The debugger is based on GDB, it uses the GDB architecture to establish link to the
remote target.

The architecture includes three major components: front end, local client and remote
server. The front end provides user interface, it runs on the same workstation as the
client part. The latter translates the commands from the front end into GDB protocol
and communicates with the remote server. The server implements the actual
command embedded into protocol messages such as reading memory regions, setting
breakpoints, processing debug interrupts, etc. Remote server is sometimes called
“stub”.

Gdb-stub for i386 was taken as a basis for our debugger. This stub was totally
redesigned for e500mc processor, which belongs to PowerPC architecture family. We
left only the packet exchange and some of the packet processing mechanisms.

We use common gdb client, which was built for PowerPC with somewhat extended
functional, to connect to our stub. This functional was developed using special user
defines commands, so developers don't need to use special version of GDB. Instead,
they can use any version, but it needs to use gdb commands file by utilizing special
“source” command in GDB.

Accordingly, messaging mechanism between client and server doesn't change — the
client sends a special-type packet to the server and waits for the server's answer. The
server receives this message, checks control sum, which was sent in this packet, and
if it matches the message contents, informs the client that the message was accepted
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for processing. Then the server performs the action described in the packet and sends
its own packet to the client.
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Fig. 1. GDB messaging mechanism

Let us consider an example on Fig. 1. Here client sends to server packet
“$m8000acac,4#1d”. This means that client wants to read 4 bytes of memory from
virtual address 0x8000acac. In this packet “1d” is the control sum, that is, the sum of
all bytes in message modulo 256. If the server fully receives this message, it sends
“+”, and the client knows that the message was accepted. After that, server sends 4
bytes of memory from that address to the client in the same way, and message
exchange continues. All these types of packets are described in GDB manual.

4.1 Implementation of the server side

In general, debugger's work consists of packet exchange between client and server.
Client sends certain types of packets to perform the action, which the user needs. Our
goal is to develop server part because we use client part from common GDB.
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During the connection between server part of the debugger with client part our system
stands in frozen state where no interrupts are available and the clock is halted. This
opportunity allows us to work with partitions and debugger as if there is no debugger
in the system.

We implemented functions in our debugger in the following way:

Breakpoints setting was implemented using special PowerPC instruction 'trap’. When
the trap instruction occurs, server code in interrupt handler is called.

For Single step operation, we can use two different methods. The first one is when
the system stops on the next instruction of the current partition. The second one is to
stop the system stops on the next instruction wherever it is. The difference is how
system calls are handled; the first method skis all kernel code and traverses
application only. The second method allows entering kernel and stepping through
system call implementation. Furthermore, it is sensitive to interrupts: if an interrupt
occurs during the step, the debugger switched to the interrupt handler.

However, GDB structure requires interrupts to be disabled during single step. This
requirement imposes restrictions on partition's work, so we gave up the second
method. Because of the lack of debug registers in QEMU we need to disable interrupts
and set trap instruction on the next instruction.

Watchpoints were implemented using special capabilities of hardware, such as Debug
registers. Unfortunately, QEMU doesn't have such registers, so we need to use
another way to set watchpoints in emulator. This method isn't implemented yet, but
we are working in this direction.We also developed multiplexer to use one serial port
for both GDB and another application. Multiplexer allows message exchange for
debugger and for internal system service. The transformation of one serial port into
two serial ports with the help of our multiplexer is not so difficult.

There are two parts of multiplexer, local and remote. Local part is a superstructure
responsible for information input/output in the system. During the output it puts a
special symbol before every printable symbol, determining to which of the two virtual
serial ports the next symbol should be sent. Working with input symbols is very
similar: two symbols are read, with the first of them specifying the application to
which we want to send the second symbol. Remote part of multiplexer looks the same.
This solution is not the fastest, but it provides smooth debugger's work via one serial
port together with other applications. This connection between remote and local parts
of multiplexer is shown on Fig. 2.
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Fig. 2. Multiplexer work

5. Debugger's Capabilities
Our debugger supports all standard debugging features. Among them are:

5.1 Setting Breakpoints on Kernel and Partitions.

Setting breakpoints is the key feature of any debugger. Considering that client knows
only virtual addresses, the server part of the debugger must correctly translate this
address into physical address. Our debugger can do this, that's why users can debug
partitions with overlapping virtual address spaces and debugger stops only on the
partition that the user wants.

5.2 Single Step.

Stepping through code step by step is a convenient way of finding bugs. However,
there can be a situation in real-time OS, when the next instruction in code is not the
next executable instruction, for example, because of timer interrupt. That's why we
disable interrupts during the single step.

5.3 Showing Information about Processes and Threads,
Inspecting Memory, Instructions and Registers. Memory Reading
and Writing.

Memory view must correctly translate virtual addresses into physical as with

breakpoints. The capability to find out all information about threads in OS, their
states, registers and memory is very important too.
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Support of memory writes allows changing process state as user's discretion.

5.4 Setting Watchpoints.

Watchpoints are one of the most comfortable ways to control user's partition. They
give the opportunity to follow changes in memory sectors and stop\pause while trying
to read or record memory. This opportunity increases the number of ways to control
partitions' states.

5.5 Stack Inspection.

Stack inspection makes tracing possible: for example, tracing the queue of called
functions, which can help user to understand exactly what has happened in the system.

6. Future Work

Implementation of the debugger is not complete yet. There is a number of features
that can improve debugger usability:

e Enhance debugging capabilities to the level of standard GDB functionality.
e Accelerate debugger interaction time with the system through multiplexer.
e Improve hardware support on bare metal.

e Increase user convenience in multiplexer. Enhance its functionality for
working with more devices (now multiplexer supports only two devices).
This solution allows us to work on bare metal with as many ports as we need,
regardless of the actual amount of ports.

e Add watchpoints implementation to QEMU, which doesn't support debug
registers. This is the reason why we can't use debug registers for setting
watchpoints like we do on bare metal. In that case, we need to change code
handling in QEMU to develop instruction for watchpoints creation.

7. Conclusion

In this paper, we have presented our project on implementation of the debugger for
real-time operating system JetOS. In contrast to other systems and their debuggers,
where developers can use some functions to debug applications, but not all we need,
our debugger meets the majority of our requirements and restrictions. However, we
will able to update our debugger in near future and increase its functionality, but it is
already more functional than common GDB debugger for QEMU.
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AnHOTamms. B 3Toif cTatbe MBI paccka’keM O TPOEKTe MO pa3paboTKe OTIATYHKa IS
ONepaliOHHOW CHCTEMBI peanbHOro BpemeHu JetOS, co3maHHON Ui TpakIaHCKHX
ABUAIIMOHHBIX CHCTECM. Ona npe€aHasHady€Ha JJid pa60T1>1 B paMKaxX apXHUTEKTYpPbl
UnTerpupoBanHoit MonyneHoit ABnonuku (IMA) u peanmusyer ARINC 653 cnenudukanuio
API. Dta omnepaumoHHas cucrema pa3pabaTbiBaeTCsi B HMHCTHTYT€ CHCTEMHOTO
nporpammupoBanust PAH, um crmemylomuM maromM B ee pa3pabOTKe CTalo CO3IaHHe
HMHCTPYMEHTA I OTJIQJKHU IOJB30BAaTEIbCKUX NMpIIokeHHH. Takke B 3TOH cTaThe OymyT
paccMOTpPEHbI OCHOBHBIE TPeOOBaHMS K TAKOMY OTIIAUHMKY U MOKa3aHa Pa3HHUIA MEXY HUM H
OOBIYHBIM OTJIAJYUKOM, HCIIONB3yEMBIM Pa3pabdOoTIMKaMU HACTOJBHBIX IpHIIOKeHHH. boiee
TOTO, ObLTH PacCMOTPEHBI JAPYrue€ BCTPaUBAEMBIC OICPALIMOHHBIE CUCTEMBI, TAKHE KakK
WxWorks, Fiasco OS, L4Ka::Pistachio u OTnag4yuky A HHX, & TaKkKe ObUT M3yd4eH HX
¢yHnkunoHan. B 3akiroueHue, Mbl MPEACTaBUM HAIll OTJIaAYHK, KOTOPBIt MOXKET paboTaTh Kak
B amyssitope QEMU, ncnonb3yemMoM At sMyIsiuu okpykeHus 11 JetOS, Tak 1 Ha 11e1eBoi
MammHe. [IpeacTaBieHHbI OTIaaIMK SBISIETCS YAAICHHBIM U OCTPOCH C HCIIOJIb30BaHUEM
cTpykTypsl GDB, HO comepXuT psii paciIMpeHuid, crequUIHbIX IS OTJIAJKH BCTPOESHHBIX
npuwioxeHni. OHAKO peann3anys OTJIaJIMKa [I0Ka He 3aBepIIeHa U CYIIEeCTBYET LB s
3a1a4 10 YIydIIEHHIO yqo0CTBa M BO3MOXKHOCTEH OTJIIaquKKa, HO HAa TEKyIIMH MOMEHT OH
SBJIETCSL Yke Oosiee (YHKIMOHATIBHBIM, dYeM oObiuHbl oriaguuk GDB mmst QEMU wu, B
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OTJINYHE OT JPYIMX PAaCCMOTPEHHBIX CHCTEM M MX OTIAAUUKOB, TA€ pa3pabOTIMKH MOTYT
HCIIOIb30BaTh HEKOTOPBIe (DYHKIMH JUTS OTIIAAKU IPIIIOKEHNH, HO HE BCE, YTO HaM HYXHBI,
Halll OTJIAJYHMK YJOBJICTBOPSET OOJNBIIMHCTBY IOCTABICHHBIX TPEOOBaHUIl U OrpaHUYCHHI, a
TaKXkKe yXKe UCTIONB3yeTCs pa3paboTynKaMu npuioxeHuit s JetOS.
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