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Abstract. In this paper authors presents “mmdlab” library for the interpreted programming
language Python. This library allows to carry out reading, processing and visualization of the
results of numerical calculations in the tasks of molecular simulation. Considering the large
volume of data obtained from such simulations, there is a need in parallel realization of
algorithms for processing those volumes. Parallel processing should be performed on multicore
systems, such as common scientific workstation, and on super-computer systems and clusters,
where the MD simulations were held. During the development process we have study the
effectiveness of the Python language for such tasks, and we have examined the tools for it’s
acceleration. As well, we studied multiprocessing capabilities and tools for cluster computation
using this language. Also we have investigated the problems of receiving and processing the
data, located on multiple computational nodes. This was prompted by the need to process the
data, produced by parallel algorithm, that was executed on multiple computational nodes, and
saves its output on each of them. As a tool for scientific visualization was chosen an open-
source “Mayavi2” package. The developed "mmdlab” library was used in the analysis of the
results of MD simulation of the gas and metal plate interaction. As a result, we managed to
observe the effect of adsorption in details, which is important for many practical applications.
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1. Introduction

Advances in computer technology and the rapid growth of computational capabilities
significantly increased the possibilities of computational experiment (CE). In
particular, nowadays it is already possible to study the properties and processes in
complex systems on molecular and atomic levels, for example, using molecular
dynamics (MD) approach. Mathematical models, which describe such processes, may
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consider huge amounts of particles: up to billions of them, and even more. In addition,
each particle can be described by dozens of parameters and the volume of output data
in such CE can be estimated in terabytes.

Processing of such volumes of data in serial mode can potentially take years, and
optimization of computing code does not bring a significant acceleration of the
computations. Therefore, currently the most widely used approach to accelerate the
large-scale computing is it's paralleling, which means that a great number of compute
nodes would process a large amount of data each handling apart of it.

As a result of paralleling, each node receives only a small part of the data set which
is easy to manipulate with.

This technique significantly reduces the time required to complete data processing,
but leads to several problems concerning the data storage. Most often, after
performing calculations compute nodes exchange the results of computations, and
master process assembles them in RAM or in a storage device as one large array or a
file. However, in the large-scale computations the size of the result array (file) can
significantly exceed the resources of the master node. In this case, each compute node
stores the results in isolation. The last described method of storage has several
advantages. The first one is the lack of need to sequentially read all the results for
further processing (for example, for visualization purpose) because each
computational node only reads it's part of the data. The second advantage is that each
individual data file is typically not very large (compared to the full data set), and thus
it takes less processing time. Such data can be reached in various ways, for example
using a distributed file system, on-the-node-process reading, or using the applications
allowing to send data over the network, such as the SFTP.

The scientific programs that store data in the form described above, are considered in
this article. The results of the simulation based on the algorithm, described in the
article [1] were used as a data set for studying parallelization capabilities of the
developed "mmdlab" library.

One of the ways of CE data representation is a two- and three-dimensional
visualization.

In order to assemble a complete state of the simulation results, it is required to read
and process the data from each compute node, which in itself is a resource-intensive
task. In most cases, the calculated data formats and storage methods differ depending
on the calculation program. Therefore, such programs usually have their own
visualizer, and calculate all the necessary visualization data in the process of
computation, collecting them on the master node. In this case, the visualization is
provided by the means of such programs (LAMMPS, and others). Another way is to
save data in the well-known standardized containers (HDF5, VTK, and other), which
are supported by the majority of software for scientific visualization. The problems
of such methods of storage and rendering are the limited possibilities of the used
visualization software in regards to visualization and post-processing, and in the case
of well-known standards of data storage there occurs the problem of loading large
files.
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This paper presents an attempt to create a flexible tool that allows importing,
processing and visualization of data from different sources, regardless of it's structure:
whether the data is in known formats or distributed calculation results in a custom
format.

The results obtained using the computer program described in the article [1] were
considered as a test case.

In view of the parallel algorithms and storage features, this data can be a one big file
that describes the general state of the simulated system, as well as a distributed data,
processed by every computational process separately. The results obtained from the
simulation are the information about the interactions of the gas molecules with the
metal atoms near the surface. This process is characteristic for many technological
microsystems used in nanotechnology.

2. Problem Statement

The problem of collecting and processing the distributed data obtained as a result of
some calculation program has several key features.

Firstly, it is the specifics of the problem domain. As a result of searching among the
various simulation packages, there has not been found suitable means for parallel
loading of distributed data relating to the considered task. This problem drove us to
do this research.

Secondly, the scale of the input data can differ greatly. It can be a small one-
dimensional array or a large number of files distributed across the various
computational nodes and file systems. Such problems are usually solved by means of
a software system that generated this data, or by development of a specialized
"loader" tool, which understands input-output formats used by the calculation
program.

Thirdly, there is a need to process such results for convenient representation on charts
or in 3D visualization.

Due to the features described above, in this work we made an attempt to create a
framework for the software complex with the following features:

e Parallel reading of data from different sources;
e  User-defined data formats support;

e  Custom data filters and processors support;

e Data visualization solution;

It is important to emphasize that in the case of development of such library its
expandability has a significant role. It should be relatively easy to use the developed
framework for processing the data stored in any format, and to integrate it with the
other known solutions for visualization and data processing. As the initial stage of
development we chose the problem of post-processing and visualization of the results
obtained in work described in the article [1].
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This task involves the consideration of all the listed features of the selected
application, because of the distributed structure of the data in different computer
systems with remote access to it via SSH.

3. Development tools

There are many known solutions for task-based paralleling and data visualization.
Feature of these solutions is the difficulty of their use, setup and installation.

Among the known solutions for clustering can be noted Apache Hadoop. This is a
large and complex solution, which implements MapReduce model for task-based
parallel processing. However, for the considered problem, it has many unnecessary
features, such as a distributed file system (HDFS) and requirement of installation on
computational nodes.

For general scientific visualization, there is a variety of software packages, for
example, Paraview, VMD, Tecplot. Each of these software packages has its own
format of data storage, and is also able to read the standardized formats. However, in
the case of a custom data format or a complex data distribution all of these solutions
require implementation of a special data loader.

Taking all the above into account, we decided to add into the developed library the
support of the integration into such packages, and its own visualization and clustering
tools. Furthermore, "mmdlab™ library has a minimum set of dependency and does not
require installation on the compute nodes.

In view of the need for the above-mentioned integration into well-known solutions,
as well as the requirements posed by the expandability of developed framework, we
decided to use an interpreted programming language Python, due to the fact that
almost all of that packages use Python in their plug-in systems.

3.1 Python

Python [2] is a widely used in scientific community general-purpose high-level
programming language. Its design philosophy emphasizes code readability, and its
syntax allows programmers to express concepts in fewer lines of code than it would
be possible in languages such as C++ or Java. The syntax of kernel of Python is very
simple and short, at the same time a standard library gives the large volume of useful
functions and convenient data structures. It is also a cross-platform, so you can use it
(with some restrictions), both under the MS Windows and Linux operating systems.

Python supports multiple programming paradigms, including object-oriented,
imperative and functional programming or procedural styles. It features a dynamic
type system and automatic memory management, full introspection, exceptions and
multiprocessing.

The developers community created a lot of computer science libraries, that makes
Python one of the most commonly used languages for big data analysis and scientific
calculations.
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Though Python already has version 3, in this study we used Python version 2.7, in
view of the fact that some used libraries (for example, Mayavi2) were written in
Python 2.7, and Python 3 and Python 2.7 in some cases do not have backward
compatibility.

3.2 IPython

IPython [3] is an interactive shell for Python language, which adds an expanded
introspection, additional command syntax, code highlighting and autocomplition. The
main feature of this project is that it provides the core for Jupyter web-application,
which allows to write scripts in Python, R, and BASH directly in the browser, as well
as interact with the objects of visualization. In this work IPython notebook application
has been selected as the web-control system.

3.3 Accelerators of computations

Despite all the advantages of the main realization of the interpreter CPython, it is
necessary to remember that the Python is a high-level interpreted programming
language. It cannot provide high performance itself, due to the memory management
system and dynamic typification. It is very easy to use, but if performance is critical
it is necessary to implement CPU-critical code in C or C++, to avoid the overhead of
interpreter calls. However, there are several technologies allowing to evade the low-
level programming.

Another big disadvantage of the CPython interpreter is associated with the speed and
performance in multithreading. The last is caused by use of the GIL (Global
Interpreter Lock) mechanism representing mutex (the elementary binary semaphore)
which is not allowing different threads to process the same bytecode at the same time.
Unfortunately, this lock is necessary, since the memory management system in
CPython is not thread-safe. The following methods were considered to avoid this
limitations.

3.4 Numpy

Numpy [4] is an open source library for Python. It implements fast multi-dimensional
arrays and plenty of parallel (vectorized) algorithms for linear algebra, Fourier
transform and other applications. Since Numpy is written in C, the executable code
of the library is compiled into native code, and there is no need for its interpretation,
gaining significant speedups of the array-processing methods. The threads that run
inside Numpy do not depend on the GIL, present in the CPython, and therefore its use
accelerates the execution of algorithms by parallelization. Besides Numpy has
detailed documentation that facilitates the development and maintenance of the
software. All these features make Numpy reasonable choice for array processing in
Python.
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3.5 Numba

Numba [5] is optimizing Just-In-Time (JIT) compiler, which allows to accelerate the
time-critical code by compiling it into native code. Unlike Cython, Numba does not
require explicit type annotations (but supports it) and does not translates the code in
C language, which simplifies the use of this technology. In order to show Numba
which methods are needed to be optimized, the user must use the simplest means of
Python language, called a decorator.

Marked by the special decorator methods Numba optimizes and compiles to machine
code using LLVM (Low Level Virtual Machine) infrastructure. With the ability to
turn off the GIL, as well as the compilation to native code without using the Python
C API (for the methods that operates elementary types), Numba compiler can
generate more efficient and optimized bytecode. Numba also automatically vectorizes
all that it can handle, utilizing the capabilities of multiprocessor systems to the
maximum.

from numba import Jjit
@jit (nogil=True, nopython=True)
def numpy numba func(vx, vy, vz, multiplier=100, divider=3.0):

return multiplier* ((vx*vx) + (vy*vy) + (vz*vz)) / divider
def numpy func(vx, vy, vz, multiplier=100, divider=3.0):
return multiplier* ((vx*vx) + (vy*vy) + (vz*vz)) / divider

Listing 1. Numba and Numpy array multiplication.

Table 1. Numba and Numpy performance comparison.

N Numpy Numba Speedup
108 0.19 ms 0.07 ms 2.77
107 1.62 ms 0.74 ms 2.19
108 16.06 ms 7.4 ms 2.17

Table 1 compares the speed of execution of the same Python code (multiplication
arrays with multiplying and dividing by a constant, see Listing 1), in one case without
Numba, in the other using this technology. Testing was performed on a system with
the Intel Core 17-3630QM CPU.

It should be noted that the algorithm shown in Listing 1 is not parallel in the means
of code, and the vectorization is performed by Numpy.

The Table 1 shows that Numba allows to speed up the execution nearly twice due to
JIT compilation, without any special optimization, such as, most likely, would be
needed while using any other tools, such as Cython.
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4. Parallelization tools

Considering a GIL mechanism, presenting in CPython, the use of standard Python
threads is not an effective solution for parallel processing. GIL does not allow
multiple threads run simultaneously on different cores (within one interpreter process)
even on a multiprocessor system. However, running multiple processes of
interpreters, which can exchange data, completely solves this problem. The only
distinctive in this case is that the launch of the process is a much more prolonged
operation than starting threads, and usage of multi-process application on small data
is not rational. There are several tools for easy management of such tasks.

4.1 Multiprocessing

Multiprocessing [2] is a standard library module that provides an interface to create
and manage multiple interpreters processes. Its AP is similar to the threading module
of the standard library. It also adds some new features, such as the Pool class,
representing the abstraction and control mechanism for a set of parallel interpreter
processes. Multiprocessing also implements interprocess primitives, such as queue
and mutex. It is also worth noting that each process of the interpreter works in separate
memory space, therefore there is no need to worry about race conditions when writing
or reading variables, unless they are declared as an object in shared memory.
Communication between the processes of the interpreter within a given library is
through interprocess communication channel, based on pipes, using the pickle
module, allowing to "serialize" and "deserialize” the Python objects (serialization -
the process of transferring any data structure into a bit sequence; deserialization - the
restoration of the initial state of the data structure from a bit sequence). All the tasks
of synchronization and object transferring are carried out by the Multiprocessing
module. Therefore, the user does not need to solve the problem of confirming that all
data used in the calculation has been updated.

4.2 ParallelPython

ParallelPython (PP) [6] is a library used to solve the problem of clustering
applications. Its implementation has a client-server structure and it requires
installation of the server part on the compute nodes. However, the server program of
the PP is a simple one-file script, that can be transferred into the node in any possible
way. Because of the simplicity of PP interface, it allows to run a computational task
on a parallel cluster in few lines of code.

This library has its own load balancer, and it also monitors the status of nodes and
redistributes tasks in case of non availability of one of them. With Multiprocessing
module, ParallelPython allows simply and conveniently use all of the capabilities of
the cluster computing.

Listing 2 shows an example of summing up the plurality of arrays in parallel mode,
using ParallelPython and Multiprocessing.
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import pp
import numpy as np
ppservers = ("10.0.0.1","10.0.0.2","10.0.0.3","10.0.0.4")

serv = pp.Server (ncpus = 2, ppservers=ppservers)
def mpsum(array) :

pool multiprocessing.Pool (2)
half len(array) /2
s = sum(pool.map (sum, [array[:half], arraylhalf:]]))
return s
arrays = [np.ones(5000) for i in xrange(10) ]
imports = ("multiprocessing",)
depfuncs = tuple()
jobs = [serv.submit (mpsum, (a,), depfuncs, imports) for a in arrays]
s = sum([Jjob () for job in jobs])
print s

Listing 2. Parallel Python and multiprocessing usage for multiple arrays summation.

At every computational node, two processes start by ParallelPython and each of them
starts other two process by means of Multiprocessing. It is worth noting that this
library, as well as Multiprocessing, uses the "pickle” module to serialize data and tcp
/ ip network messaging.

5. Visualization tools

As it was already mentioned, there are many third-party tools for data visualization.
The "mmdlab” library presented in this work can be used as a tool for preparation of
data for the visualization in such packages, however it was also decided to add its
own visualization capabilities. During the research it has appeared that the listed
below libraries almost do not concede in options to the well-known packages for
scientific visualization.

5.1 Mayavi2

Mayavi2 [7] is a Python framework, which allows to build a general-purpose
scientific visualization. It gives user a possibility to load and render the data in a
separate GUI application and also has a convenient Python API for scene construction
and rendering. This library is built over the well-known in scientific community VTK
library.

Mayavi2 gives ample opportunities for the visualization of data, beginning from
hydrodynamic calculations and finishing with atomistic data. In the case of the
interactive GUI mode, tools for changing the rendering parameters, such as the size
of objects, color schemes, filter settings are also available. Mayavi2 also has a
possibility of the offscreen-rendering (without displaying image), that is extremely
important for the server, distributed and batch operation of a large number of data.
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import pp
import numpy as np
ppservers = ("10.0.0.1","10.0.0.2","10.0.0.3","10.0.0.4")

serv = pp.Server (ncpus = 2, ppservers=ppservers)
def mpsum(array) :

pool multiprocessing.Pool (2)
half len(array) /2
s = sum(pool.map (sum, [array[:half], arraylhalf:]]))
return s
arrays = [np.ones(5000) for i in xrange(10) ]
imports = ("multiprocessing",)
depfuncs = tuple()
jobs = [serv.submit (mpsum, (a,), depfuncs, imports) for a in arrays]
s = sum([Jjob () for job in jobs])
print s

Listing 3. KDE calculation and visualization script using SciPy and Mayavi.

4l

Y X

17,2143

Fig. 1. Listing 3 execution result: Kernel Density Estimation as volume visualization.

Listing 3 and the Fig. 1 show an example of the density distribution calculation of
points and its three-dimensional visualization using Mayavi2 and library for scientific
computing SciPy.

5.2 Matplotlib

Matplotlib [8] is a Python library for building high-quality two-dimensional graphs.
It is widely used in the scientific community. Usage of Matplotlib is very similar to
the usage of the plot methods in MATLAB, however, they are independent projects.
It is particularly convenient that the plots, which are drawn with the help of this library
can be easily integrated into applications written with different libraries for GUI
construction. Matplotlib can be integrated into applications written using the
wxPython, PyQt and PyGTK libraries.

Matplotlib module is not included in the standard library, but it is the de facto standard
for the visualization of numerical information.
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6. Distributed data access

The data obtained from the algorithm, described in the article [1] has distributed
structure, and is stored on the compute nodes, used for simulation.

Filel 1 FileM 1
Filel 2 FileN 2
Filel N FileN N
MNode 1 Mode N

Fig. 2. Data distribution structure.

Fig. 2 shows an example of such data arrangement. The composition of all the files is
a complete form of the system simulated by means of molecular dynamics. It happens
that the computational nodes use the shared disk space, for example, by means of the
NFS (Network File System). However, access to the data from the client-side which
needs to read and process the data is open only via SSH. Paramiko library can be used
to solve this problem.

6.1 Paramiko

Paramiko [9] is a library for the Python language, which provides implementation and
interface for interacting with remote systems via SSHv2 protocol. This library has
both client and server implementations. In addition, Paramiko provides a convenient
API, which implements objects of "file" type, which are representing files on the
remote filesystem. This functionality was used as a basis for the implementation of
SSH collector in the represented work.

7. Implementation details

Using the tools above, there was initiated the development of the software complex,
allowing to achieve the objectives, namely the parallel data reading and processing,
as well as their visualization. As an initial stage, "mmdlab" package was written
which implements a general purpose API for such tasks. Below are described the
implementation problems we have to handle, application and solutions with the means
of the developed library. There is also drawn further attention to the implementation
peculiarities in some parts of the package.

7.1 Parallel data access

A module for reading and partial processing of the input data was named "datareader".
In this module have been implemented the necessary objects for reading and
representation of the data, such as Container, Parser and means of access to the files
on the local file system and via SSH. In the terminology of "mmdlab" package,
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Container is a structure that stores the read data in a user-defined format. Parser is a
special object that reads binary data structure and parses them, thereby obtaining a
container. The Parser class receives the raw data from the Transport object that
provides an interface for the access to the local or remote file system.

Inheriting and combining objects from these classes, the user can easily make the
loader, that parse a custom data format, and accesses it using any protocol, such as
SSH or HTTP.

File=1 File2 File2

Fig. 3. MMDLAB components scheme.

On the Fig. 3 are shown the "mmdlab™ components interactions.

Let's consider the reading procedure of the MD system's particular state described the
article [1]. Given the distributed structure of input data, a single state of the system is
a set of files of the atomistic data. For each of them it is necessary to read, parse and
compile binary structure into a single container that contains the representation of the
simulated system. For the performance needs it is necessary to use a parallel algorithm
for the reading and processing of the data.

Master process launches N slave-processes that are able to load and parse the data.
Then it begins to give every data file address to a every free process. When the slave
process has finished the reading and parsing procedure, and assembled its part of the
container, the master process combines the loaded data with its master container, and
then assigns a new file to the slave process. After all the slave processes are
completed, and there are no more files for reading, master process provides the
necessary post-processing for the container, where all of the available data is stored,
and sends it to the next data processor in line. It should be noted that in some cases it
is not necessary to send all the data to the master host. For those cases, the "mmdlab"
supports a possibility to use the post-processing pipeline in the slave processes, so
they can make necessary calculations and send back only the result, but not all the
processed data set.

In order to enhance the ability of "mmdlab™ package for reading the custom-format
data, it is required to describe the new entity for storage and loading of such data.
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As an example, consider the implementation of such entities for reading a CSV
(Comma-Separated Values) format with three columns.

class CsvCtr(dr.containers.DummyContainer) :
def init (self):
self.cols = [[],[],[]]
def append data(self,data):
for i,d in enumerate(datal[:]):
self.cols[i] .extend(d)
class CsvParser (dr.parsers.DummyParser) :
def data(self):
cols = [[1,[]1,I[1]
for line in self.transport.readlines():
c = line.split(",")
for i in range(0,3):
cols[i].append(cli])
return cols
nodes = \
({"ip":"10.0.0.1","pwd":"123","login":"test"},
{"ip":"10.0.0.2","pwd":"123","login":"test"})

remotedirs = [(sys.argv[l], node) for node in nodes]
transport = dr.transport.RemoteDirs (remotedirs)
parser = CsvParser ()

rdr = dr.DistributedDataReader (file mask="1*.csv",
transport=transport, parser = parser,
container = CsvCtr)

container = mmdlab.run([rdr, ])

Listing 4. CSV Container and Parser implementation using “mmdlab™ package.

Listing 4 shows an example of such an extension to CSV reading from remote file
systems via SSH.

In practice the user will need to describe the new class inherited from the class
DummyContainer and to redefine the append_data method in it. Also it will be
required to describe the class for raw data parsing.

7.2 Pipeline

In this work, to run reading and processing tasks, it is proposed pipeline-type interface
(see Listing 5, the mmdlab.run part).

This method makes it possible to run an execution of a chain of actions in one line,
each of which is carried out over the result of the previous task. Also parallel
operations over the same result of the previous method are supported.

For example, the call of mmdlab.run([generate, [f1, f2, 3], sum]) first performs the
"generate" method, then in parallel mode it runs three processes: "f1", "f2", "f3" each
operating on the result of the "generate", and in the end it will summarize the obtained
values. Restrictions on objects in the pipeline are simple: the object has to be callable,
it should take the data for processing as an argument and it should return an object.
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from mmdlab.datareader.shortcuts import read distr gimm data

import mmdlab

import sys

reader = read distr gimm data(sys.argv[l],sys.argv([2])

filter reg =

mmdlab.dataprocessor.filters.RegionFilter([0,10,0,10,0,107)

parts descr = \

{ "Nickel"™ : { "id" : 0, "atom mass" : 97.474, "atom d" : 0.248}, \

"Nitrogen" : { "id" : 1, "atom mass" : 46.517,"atom d" : 0.296} }

filter split = mmdlab.dataprocessor.filters.SplitFilter (parts_descr)

container = mmdlab.run([reader, filter reg, filter split ])

met,gas = container["Nickel"], container["Nitrogen"]

mp = mmdlab.vis.Points3d(met, scalar=met.t, size=met.d,
colormap="black-white")

gp = mmdlab.vis.Points3d(gas, scalar=gas.t, size=gas.d,

colormap="cool")

mmdlab.vis.colorbar (gp, "Gas T")

mmdlab.vis.show (distance=20)

Listing 5. Reading, processing and visualization of the atomistic data using "mmdlab"
package.

Fig. 4. The result image produced by execution of Listing 5.

At the current stage of development, when you run a multithreaded processing over
the previous action the result will be copied to each of the child process.
In the future we plan to add some additional entities, allowing to manage the
execution workflow, such as a special object that allows to perform an action in the
master process, and to send the result's parts to the slave-processes. This may be
necessary, for example, for the separation of the array into a multiple parts, and
process each in a separate slave-process without sending the entire array to it.
Due to the fact that the pipeline is implemented by means of the interface module
Multiprocessing, consider some of the problems encountered.
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7.3 RAM leak in parallel processing
Let's consider the reading procedure of the DistributedDataReader class (see Listing 6).

class DistributedDataReader:
def read(self):

files = self.transport.list(self.file mask)

container = self.container ()
pool = Pool (processes=self.np, maxtasksperchild=self.mtpc)
results = [pool.apply async( rd, \

args=(f,self.transport.filer(),self.parser))\
for £ in files]
for ct in results:
container.append data(ct.get())
return container.finalize ()

Listing 6. A part of DistributedDataReader class.

During the testing it was found that a resources leak appears in the multiprocessing
mode. After starting the pool of processes, and performing a variety of tasks in it,
memory consumption increases dramatically. It became apparent that by default the
started by Multiprocessing library interpreter processes handle all the scheduled tasks
without restarting.

Each task which is carried out in such processes leaves the context, which becomes
bigger in the volumes of consumed memory as the more data the task returns. As a
result, after long-term execution of multiple tasks at the computational node the RAM
came to an end.

The proposed solution of this problem is as follows. The object of a processes pool
has a special parameter of the constructor named "maxtaskperchild”, allowing to set
the number of tasks that a single interpreter process can handle. When the counter of
finished jobs becomes more then this value, the master-process algorithm will restart
the interpreter. Changing this parameter allows to vary the maximum amount of
memory consumed. However, it should be noted that the smaller the value, the more
often the master process will restart child processes' interpreters. It can take noticeable
amount of time.

Within the considered task of processing large amounts of data, the time is not critical,
and installation of rather small value is quite justified because of memory limits.
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Fig. 5. Loading time of 256 files depending on a "maxtaskperchild" parameter, logarithmic
scale.

Fig. 5 shows the dependence of the loading time on the "maxtaskperchild" parameter.
The loader uses multiprocessing module, with the pool consisting of one process, and
loads 256 data files in serial mode.

Taking into the account the Fig. 5, the optimal behavior of the processes pool is to
restart the slave-workers every 16 tasks. It makes possible limiting the consumption
of RAM and at the same time keeps the overhead of the interpreter restart time
influence almost negligible.

7.4 Multiprocessing and Pool of Pools

Another problem encountered in the development process is the fact that the default
multiprocessing library does not allow to create "nested" pools for processes.

In particular, if there appears a necessity to run in parallel the processes of reading a
plurality of states of the studied system (this will start new slave-processes that should
start a lot of reading processes), for example, for the particles' trajectories
construction, so the Multiprocessing module will not allow to do it. The introspection
which is supported by the Python language fully helps with the solution of this
problem.

The "mmadlab" package developed in this work has a construction shown in Listing 7
included in it. It redefines the _get daemon and _set daemon methods at the
"multiprocessing.Process" class and provides a new object, inherited from the Pool
class. It should be used instead of the standard Pool class from Multiprocessing
module.
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import multiprocessing
import multiprocessing.pool
class NoDaemonProcess (multiprocessing.Process) :
def get daemon (self):
return False
def set daemon(self, value):
pass
daemon = property( get daemon, set daemon)
class MultiPool (multiprocessing.pool.Pool) :
Process = NoDaemonProcess

Listing 7. MultiPool class, allowing to run pool of processes inside child process, created by
multiprocessing module.

7.5 Data processing

For processing and filtering data in developed "mmdlab™ library the same
mechanisms as for the data reading are used. The so-called "pipeline" architecture is
used which implicates the container object passing through a chain of a great number
of data processors, that can change, supplement a container or create a new one. The
"run" method in the "mmdlab™ package passes the container obtained from the
previous task to the input of the next processing method. The implementation of these
processing methods can be both serial and parallel.

In the application to the analysis specific objective of molecular dynamics
simulations' results from the article [1], the objects for data post-processing have been
added to the developed library. For example, a filtration of particles by various
criteria, in particular for getting the particles only from specified area, for filtration
by indexes and division of particles according to physical materials.

All computationally intensive procedures were optimized by using Numpy and
Numba.

As a simple example, let's consider the task of visualizing of the particles' position
and temperature that are divided by criteria of physical material in the predetermined
area. Such problem can be solved using "mmdlab" library in the following way (see
Listing 5). First, the user creates an object of the data loader, setting their location in
the filesystem and a time mark.

Then they need to specify the description of particles, which the division filter will
work with, and create the corresponding objects of filters (the location filter and the
division filter). Lastly they need to pass these objects to the pipeline. Calculation of
temperature is performed during the container's post-processing stage.

Listing 5 and Fig. 4 show the listing of such task and the execution results.
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import sys
import mmdlab
from scipy.stats import *
from mmdlab import parallel
from mmdlab.datareader.shortcuts import *
from mmdlab.dataprocessor.filters import *
rdr = read distr gimm data(sys.argv[1l],0)
def calc kde(kde, data):
return kde (data.T)
parts_descr = { "Nickel"™ : { "id" : 0}, "Nitrogen" : { "id" : 1}}
filter split = SplitFilter (parts descr)
filter reg = RegionFilter ([0, 100, 0, 100, 0, 100])
cont = mmdlab.run([rdr, filter reg, filter split])

gas = cont["Nitrogen"]

kde = gaussian kde (np.vstack([gas.x,gas.y,gas.z]))

xi, yi, zi = np.mgrid[0O:gas.x.max():307,
O:gas.y.max () :3073,
O:gas.z.max () :30]

c = np.vstack([item.ravel () for item in ([xi,yi,zi]]

cores = sys.argv/[2]

nodes = ("192.168.6.15","192.168.6.20")

cluster = parallel.Cluster (nodes)

args = [(kde,a) for a in np.array split(c.T, cores)]

cluster.map (calc_kde, args)
density = np.concatenate (results) .reshape (xi.shape)

Listing 8. KDE Clustering example using "mmdlab" package.

7.6 Cluster processing

For testing of the cluster mode was used the combination of the master node with the
Intel Xeon E5-2650 (32 cores) and 6 compute nodes (Intel Xeon 5150 2.66 GHz, 24
cores) with shared file system over NFS. It gives certain freeness in respect of access
to the data: it is not required to associate the input and the node on which processing
is started, as any datafile is available from any of nodes.

However, such configuration has a bottleneck: the storage input-output performance.
As a result, it was decided to use the following strategy: a master node, which is a
physical data storage, in the multiprocess mode loads data into memory and sends it
to the cluster nodes in the form of internal representation, without the data processing.
In contrast to the strategy of "reading on each node" the described way allows to use
the computational capabilities of the subordinated nodes on maximum, with the
minimum input-output waiting, maximizing disk input-output utilization.

In case of difficult visualization for which processing and rendering takes more time
than reading one system state, such approach allows to reduce the average time of full
processing almost to the data reading time, which is the potential minimum time of
processing.

As an example of clustered task, consider the problem of constructing three-
dimensional field of the gas density in the computational domain using Kernel
Density Estimation (KDE) algorithm, implemented in SciPy library (see Listing 8).
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The graphs of execution time (see Fig. 6) and the acceleration (see Fig. 7) of such
calculations, depending on the number of processors for a variable number of
subtasks are shown below.
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Fig. 6. Processing time for parallel KDE algorithm with various number of subtasks,
depending on the number of used processors.
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Fig. 7. Speedups for parallel KDE algorithm with various number of subtasks, depending on
the number of used processors.

It should be noted that if the number of tasks is less than the number of master node
processes (which is up to 32), then the increasing of the process's count in this
calculation is not effective. Also, the acceleration increases with the number of nodes
involved in the computation, rather than with the number of actual processes. This is
due to the following two features:

e PP considers that the overhead of process start-up and data transfer is
significantly less on the master-node, than on the slave-nodes. Thus, it loads
the master node to the maximum, before it starts to send jobs to the slave-
nodes;

e Numpy already vectorizes array operations over all available cores, and the
addition of a new processor will not make a significant acceleration;

Also we need to note that the PP, which is used as a library for clustering,
automatically distributes the load across nodes, depending on the tasks execution
time. So it makes sense to divide the original problem into a number of subtasks more
than the number of available processes, if there are some "weak" nodes in the cluster.
In this case PP forms a queue and gives tasks to the nodes taking into account
efficiency of each node, thereby providing a load balancing.
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7.7 Visualization

For the visualization in this work Mayavi2 and Matplotlib library were used. For
convenient usage of the common rendering methods, the "mmdlab.vis" module was
included, which is a wrapper over the methods of these libraries, combining their
capabilities to achieve the desired result. Due to the single-threaded architecture of
Mayavi and Matplotlib, data visualization process is currently supported only in the
single-threaded mode within a single process. However, "mmdlab" allows to run a
hybrid task of reading and rendering on a set of nodes and in the multiprocess mode,
which significantly accelerates the rendering of frame-by-frame video animations.
For example, consider the task of rendering an animation, which consists of frames
representing the state of the studied system in consecutive timepoints. Basic data can
be distributed across the multiple nodes, thus the visualization can be run on each of
the nodes, and then the result can be collected on the master-node. The following
algorithm is proposed for the solution of such a problem:

e On each of the specified nodes run a sequence of reading and visualization;
e Collect all the frames that were drawn on the master node;
e Assemble an animation from collected frames;

To build an animated GIF format file "mmdlab" library uses the program "convert"
from the ImageMagick [10] utils.

8. Conclusion

This paper presents the experimental version of a high-level library "mmdlab" for the
Python language. Usage of such library makes it possible to perform a simple
clustering and paralleling for the various types of processing tasks, such as reading,
post-processing and visualization.

It can operate over the large-scale data, distributed over the computational nodes in
parallel mode.

The main tasks of the development of this library are the analysis and visualization
of the data obtained as the result of MD simulation of gas-metal microsystem
described in the article [1]. To achieve this goals it was necessary to process about
1.3 TB of data obtained from one simulation, and there were three simulations with
different materials temperatures. Usage of the "mmdlab” library allowed to closely
observe the effect of nitrogen adsorption on a nickel plate (see Fig. 8) including an
analysis of the individual particles' trajectories.
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Fig. 8. Adsorbtion of nitrogen on nickel plate and particle trajectory visualized using the

"mmdlab" package.

Special attention was paid to a possibility of extension of the library. It is possible
thanks to flexibility of the used tools. As a result, usage of the developed library can
be extended to reading and visualization of potentially any structures of data.

9. Acknowledgment

Work is performed with assistance of the Russian Foundation for Basic Research
(grants No. 15-07-06082-a, No. 15-29-07090-ofi_m).

10.
[1].

2.
[3]

[4].

[5].
[6].
[7].
[8l.

(€1
[10].

240

References

V.0. Podryga, S.V. Polyakov, D.V. Puzyrkov, “Supercomputer Molecular Modeling of
Thermodynamic Equilibrium in Gas—Metal Microsystems” (in Russian), in
Vychislitel'nye Metody i Programmirovanie [Numerical Methods and Programming],
vol. 16, no. 1, pp. 123-138, 2015 (in Russian).

Python official documentation. 04, Feb. 2016, https://www.python.org/

P. Fernando, E.G. Brian, “IPython: A System for Interactive Scientific Computing” (in
English), in Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, 2007.
(2015, Feb. 4), [Online]. Available: http://ipython.org

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The NumPy Array: A
Structure for Efficient Numerical Computation, Computing in Science & Engineering, 13,
22-30 (2011), DOI:10.1109/MCSE.2011.37

Numba official documentation, 04, Feb. 2016, http://www.numba.pydata.org/
Vanovschi V., Parallel Python Software, http://www.parallelpython.com

Ramachandran, P. and Varoquaux, G., "Mayavi: 3D Visualization of Scientific Data®
IEEE Computing in Science & Engineering, 13 (2), pp. 40-51 (2011)

John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science &
Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55

Paramiko official documentation, 04, Feb. 2016, http://www.paramiko.org/
ImageMagick official documentation, 04, Feb. 2016, http://www.imagemagick.org/



ITy3eipekoB /1.B., IToapeira B.O., ITonsiko C.B. INapamiensHas 06paboTka ¥ BU3yalu3alys Ui pe3y/ibTaToB
MOJIETTUPOBAHHS METOJIOM MONCKYIApHO# auHamuku. Tpyost UCIT PAH, 2016, Tom 28, Beimyck 2, ¢. 221-242.

MapannenbHas o6paboTka u BU3yanusauua ons
pe3ynbTaToB MOAENUPOBAHUA METOAOM MOJEKYNSApPHOMN
OUHAMMKKU

. B. Iyswiporos <dpuzyrkov@gmail.com>
B. O. Iloopwiea <pvictoria@list.ru>
C. B. Ilonaxos <polyakov@imamod.ru>
Hnemumym Ipuknaonoi Mamemamuxu um. M. B. Kenovuua Poccuiickoti
Axademuu Hayk
125047, Mockea, Muycckas na., 0.4

AuHoTtammsi. B 9r0if pabGore aBropamm mpencrasisercs Oubmuoreka "mmdlab" s
HUHTEPIPETHPYEMOTO s3bIKa TporpaMmupoBanust Python. Drta Oubnuoreka mo3BosseT
OCYILLECTBIIATH YTCHHE, 00PabOTKY M BU3YAIH3ALHIO PE3yJIbTaTOB YHCICHHBIX PAacUeTOB 3a1a4
MOJICKYJIIPHOTO MOJICIMPOBAHMS. YUHTHIBas OONbLION 00BEM NaHHBIX, MONyYaeMbIi B
pe3yabTaTe MpOBEICHHS TAKUX CUMYJLIIUH, CYyIIeCTBYeT HEOOXOIMMOCTh B MapauleIbHON
peanu3anuy aaropuTMOB T 00pabOTKH TakuX 00heMoB. [lapannenbHas 00paboTka T0KHA
BBIMOJIHATBCS KAK Ha MHOTOSICPHBIX CHCTEMaX, TAKUX KaK OOBIYHBIA COBPEMEHHbIN
KOMITIBIOTEP, TaK M Ha CYNEPKOMIBIOTEPHBIX CHCTEMaX M KJIacTepax, IJe MPOUCXOMIIO
YHCICHHOE MOJCIMPOBAaHUE METOJIOM MOJEKYJSApHOH AMHAaMHUKH. B mpouecce pa3paboTku
JaHHOM OMOIMOTEeKN Oblia M3ydeHa >QPeKTUBHOCTH s3bIKa Python mist rakux 3amad u GpuTH
PaccMOTPEHBI HHCTPYMEHTBI, TI03BOJISIONINE YBEIHMYUT MPOU3BOAUTEILHOCTh IPOTPaMM Ha
9TOM s3blKe. Takke OBUIM H3y4eHbl BO3MOXKHOCTH JIQHHOTO SI3bIKA B OTHOIICHUH
napasuIeJbHBIX BBIYUCICHUH 1 MHCTPYMEHTBI, ITO3BOJISTIONINE HCIIOIB30BaTh JUIS BHIYMCICHHI
CHCTeMBI KiacTepHoro tuma. Kpome Toro, ObUIM HCCIeOBaHBI MPOOJIEMBI 3arpy3kd U
00pabOTKHM JTaHHBIX, PACIOJIOKEHHBIX HAa MHOXKECTBE BBIYMCIUTEIBHBIX Y3JIOB. DTO OBUIO
BBI3BAaHO HEOOXOIMMOCTBIO 00pabaThIBaTh JaHHbIE, TIOJYYESHHBIE C OMOLIBIO ITapalIeIbHOTO
aNrOpUTMa, KOTOPBIl BBIMOJHSJICS Ha HECKOJBKHX BBIYHCIUTENBHBIX Y3JIaX M COXPaHSI
pe3yibTaThl Ha KaXIOM M3 HUX. B KauecTBe MHCTpyMEHTA /Ul HAy4YHOIl BU3yaJIH3alluH ObUT
BBIOpaH TAKET C OTKPBITBIM HCXOAHBIM KomoM "Mayavi2". Pa3spaGorannas OubnnoTexa
"mmdlab" Gbula wucmosb30BaHa IS aHANM3a  pe3yibTaToB  MJ]  MOJenMpoBaHHs
B3aMOJIEIICTBUS ra3a ¢ METAUIMYECKOM IUIacTMHOW. B pe3ynpTaTe mpuMEHEHus NaHHOU
O6UOIMOTEKH YAAIOCh B IeTallsIX HaOmoAaTh 3¢ GeKT ancopOIMu, KOTOPBIN BaKeH JUTsl MHOTHX
HPaKTUYECKUX MPUITOKEHUH.
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