Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB  MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

Memristor-based Hardware Neural Networks
Modelling Review and Framework Concept

1D.D. Kozhevnikov < ddkozhevnikov@edu.hse.ru >
ZN.V. Krasilich < nadezhda.krasilich@mail.ru>
! National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia.
2 National Research University Higher School of Economics,
38, Studencheskaya st., Perm, 614070, Russia.

Abstract. This paper is a report of a study in progress that considers development of a
framework and environment for modelling hardware memristor-based neural networks. An
extensive review of the domain has been performed and partly reported in this work.
Fundamental papers on memristors and memristor related technologies have been given
attention. Various physical implementations of memristors have mentioned together with
several mathematical models of the metal-dioxide memristor group. One of the latter has been
given a closer look in the paper by briefly describing model’s mechanisms and some of the
important observations. The paper also considers a recently proposed architecture of
memristor-based neural networks and suggests enhancing it by replacing the utilized memristor
model with a more accurate one. Based on this review, a number of development requirements
was derived and formally specified. Ontological and functional models of the domain at hand
have been proposed to foster understanding of the corresponding field from different points of
view. Ontological model is supposed to shed light onto the object-oriented structure of
memristor-based neural network, whereas the functional model exposes the underlying
behavior of network’s components which is described in terms of mathematical equations.
Finally, the paper shortly speculates about the development platform for the framework and its
prospects.
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1. Introduction

Until 1970-s the world has been aware of only three passive elements of electrical
circuitry: resistors, capacitors and inductors. The three stated elements coupled with
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natural relationships provide five connections for four basic notions of electrical
circuit theory (voltage, charge, current and flux). Mathematics, however, claims that
four things can be mutually interconnected in six different ways. Indeed, the relation
between charge and flux was not present. It wasn’t until 1971 that the discordance
has been formulated and solved. A new element — memristor - has been proposed by
Leon Chua in his paper in IEEE Transactions on Circuit Theory completing the
mathematical symmetry of circuit theory. It took nearly 40 years for memristor to
transform from a purely theoretic concept into feasible implementation. In 2008 a
group of scientists from Hewlett-Packard Labs lead by Stan Williams has finally built
working memristors [1].

One of the most promising domains of memristor application, seem to be artificial
neural networks [2]. These often come in either software or hardware
implementations, sometimes in a combination of both. While digital neural networks
simulate the data processing mechanism of biological neural networks, hardware ones
strive to emulate it. It is worth mentioning that since most of computer architectures
conform to the von Neumann architecture, neural network simulation becomes a
challenging task because of the paradigm mismatch. Instead of simulating the ways
of nature, hardware neural networks try to directly replicate them, creating non-von-
Neumann architectures. In comparison with digitally simulated networks, hardware
ones can achieve better speed, less power consumption and chip space.

On the other hand, hardware networks often prove to be far less accurate that their
software counterparts, due to the nonuniformity of analog components [3]. Another
disadvantage of modern hardware neural networks, which they actually share with
the software ones, is the volatile storage of synaptic weights. There are ways to
achieve the nonvolatile weight storage within hardware networks, but usually such
weights are either static (cannot be changed once manufactured), quickly digress
(require frequent updating) or are rather hard to program [4]. The emergence of
memristor, however, seems to have opened new possibilities in addressing the stated
problems. Memristors seem to be a perfect match for synapses, making hardware
implementations of neural networks more reliable and greatly increasing productivity
of neural computations [5].

Nevertheless, memristors are still scarcely availably and lack industrial-grade
production. Being such a new technology, they are often hard and expensive to
acquire for experimentation, but a large variety of memristor models has already been
produced, making it possible to model memristor-based devices.

Thus, considering the domain of artificial intelligence, a need in profound and correct
model of artificial memristor-based feedforward neural network arises. Such model
would be of great help in assessing the qualities of modeled system: computation
performance, time and energy expenses, material costs, etc. Consequently, the goal
of the research is to develop a framework for modelling artificial memristor-based
neural networks.
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2. Theoretical Memristor

The concept of memristor has been recognized since 1971, when Leon Chua has
proposed for the first time in a well-organized and mathematically described way [6].
The 1971 Chua’s paper in IEEE Transactions on Circuit Theory is considered to be
the pioneer work in the corresponding field of research. Although, the concept of
memristor-like devices has been suggested earlier in 1960 by Bernard Widrow, Leon
Chua was the first one not only to provide a feasible foundation for memristor’s
existence, but also to estimate and mathematically describe its’ supposed behavior
and properties.

Memristor fulfills the mathematical symmetry of relationships between major circuit
notions. The relationship created by a memristor, according to Chua, is expressed as
follows:

v(t) = M(q())i(t),
where M(q(t)) is the memristance defined as

— de(q)
Mgy = ==
The definition of memristance may be represented in a more convenient form by
substituting flux and charge with their integral definitions:

de/dt d[f_toov(r)dr]/dt _v(®)

dg/at — qff iac]jar  i©)

M(q(®)) =
The similarity of memristor to the remainder of classical circuit elements can be better
reflected by expressing their definitions via differential equations as it is done in
fable 1.

Table 1. Differential equations of basic circuit elements

Device Electronic Symbol Unit Differential equation
Resistor —A\N\NN— R, ohm R= %
Capacitor _| |— C, farad C= ‘;—:
Inductor Y Y Y L L, “2 or henry L=%

A di
Memristor —@— M, W2 or ohm M =22
[ dq
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The first important property of memristors, which commonly is referred to as
memristance and stands for the ability to change its resistance gradually via a
controlled mechanism (e.g. memory of device’s history of charge).

The second significant attribute of memristors, figured out by Chua, is the non-
volatility property, which stands for the absence of internal power supply. In other
words, Chua proposed that memristor is able to store the value of own resistance
without the need to be connected to a power source.

In 1976, Leon Chua and his fellow colleague Sung Kang proceeded exploring the
mathematical and physical properties of the memristor [7].

They had come to an understanding, that since memristor is a dynamic device, one
equation is not enough to describe it, henceforth memristor’s behavior is represented
by following equations for current-controlled memristor

x = f(x,i,t)

v=R(x,it)i
and for voltage-controlled one

x = f(x,v,t)

v =R(x,v,t)i

Currert I(f)

-0.02+
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i
Voltage V(f) = i Sm[—)
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Fig. 1. Pinched hysteresis loop in the i-v curve
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where v and i denote the input voltage and current respectively and x stands for the
internal state of the device. In their paper, Chua and Kang also provided a more
generalized concept of memristive systems with no specific reference to particular
physical variables.

One noteworthy peculiarity derived from these equations is that regardless of the state
X (which implements the memory effect), the output voltage is equal to zero whenever
input voltage or current are equal to zero as well. This zero-crossing property, Chua
and Kang write, manifests itself vividly in the form of a Lissajous figure, which
always passes through the origin. Thus, they extended the definition of memristor that
is now to encompass any system able to demonstrate a Lissajous figure (later called
pinched hysteresis loop by Chua) in the i-v curve, which is presented on fig. 1.

3. Memristor Models

However, the true interest has been sparked by the notable work of Richard Stanley
Williams’ group of researchers at Hewlett-Packard laboratories. Despite this fact, the
idea of memristors not being a purely theoretical concept has captivated minds of
many researchers around the world, resulting in more than 120 publications about
memristors and memristive systems by 2011. [8].
After the concept of memristor was brought back to the public’s sight, several
implementations of memristors and memristive systems have been proposed.
Different implementations of memristor rely on various physical and chemical
reactions that give rise to both memristance and nonvolatility, properties essentially
constituting the definition of memristor. There have been reported polymeric [9,10],
spintronic [11], ferroelectric [12] and layered [13] implementations of memristor, but
titanium dioxide memristors remain the most well studied group. During this research
four models were closely considered, namely linear ion drift model[1], nonlinear ion
drift model[14], Simmons tunnel barrier mode[15], and threshold adaptive memristor
model (TEAM)[16]. Unfortunately, due to the paper size considerations only the last
one of them will be reported. This model, however, was decided to be further utilized
throughout the work.
TEAM model, proposed by Kvatinsky et al., incorporates advantages of ion drift
models’ explicitness and Simmons tunnel barrier accuracy, yet manages to preserve
relatively high computational performance and generalizability. TEAM model is
based on the same physical behavior as Simmons tunnel barrier model. But it manages
to convey it with simpler mathematical functions. The model introduces several
assumptions for the sake of analytical simplicity: state variable does not change below
a certain threshold and exponential dependence is replaced with a polynomial one.
Detailed mathematical foundation of the model may be found in the corresponding
paper.
A major advantage of such a relation is the explicitness of current and voltage
relationship as opposed to the Simmons tunnel barrier model. Nevertheless,
Kvatinsky et al. were able to perform a fitting procedure forcing TEAM model to
match the latter with reasonable and sufficient accuracy. In their paper, authors of
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TEAM model also report the results of comparison between the fitted TEAM and
Simmons tunnel barrier model. The feasible preciseness of TEAM model was proved
by the average discrepancy between models’ state variable difference of only 0.2%.
The maximum difference of this value constituted 12.77%, however the run time of
the model was nearly halfed (47.5%) Kvatinsky et al. had been also able to fit the
model with different types of physical memristor models, namely STT-MRAM and
Spintronic memristors.

4. Memristor Bridge Neural Network

This paper considers the neural network architecture proposed by Adhikari et al. in
2012 [4]. The architecture is based on the memristor-bridge synapse [17] and aims to
solve the issue of nonvolatile synaptic weight storage and implement a newly
proposed hardware learning method.

4.1 Memristor Bridge Synapse

Memristor bridge synapse architecture was first proposed in [17], it is a Wheatstone-
bridge-like circuit that consists of four identical memristors of opposite polarities.
When positive or negative strong pulse vin (t) is applied at the input, the memristance
of each memristor is increased or decreased depending upon its polarity.
Kim et al. write, that if input pulse voltage is equal to vin, voltages at memristors can
be calculated according to “voltage-divider formula”. Then given memristances My,
M2, M3, and My stand for the corresponding memristors at time t, the output voltage
is reported to be equal to the voltage difference between terminals A and B:

M, M,
M, +M, M+ M4) Vin:

vout=vA_vB=(

4.2 Memristor Bridge Neuron

In artificial neural networks neurons are required to sum a set of input postsynaptic
signal and, according to the activation function, propagate (or not propagate) the
signal further on to the next layer of the network. The neuron is then required to sum
the input postsynaptic signals. Kim et al. point out, that the signal summing operation
is easier to be performed in current mode: postsynaptic signals should be connected
to a single node, so that the following neuron would receive the sum of currents via
Kirchhoff’s current law. In order to achieve current summation, the memristor bridge
synapse has to be modified because it provides voltage output. Kim et al. suggest
combining the memristor bridge with differential amplifier. The latter converts post-
bridge negative and positive voltage into corresponding currents. Hence, for a set of
synapses there exist two nodes: one for positive postsynaptic current and one for
negative postsynaptic current. These nodes sum the output currents of each individual
synapse in the set. Neuron itself is then comprised of the summation nodes, but also
of the active load circuit that implements the activation function as in fig. 2. The sum
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of all postsynaptic currents is converted back to voltage (presynaptic signal for next
layer of neural network) by the active load circuit according to the activation function.
In their paper, Adhikari et al. also provide rigorous mathematical explanation of the
suggested architecture behavior.

Active Load

Fig. 2. Memristor Neural Network Circuit Fragment [4]

4.3 Neural Network Training

A composition of an arbitrary number of neurons connected via memristor-bridge
synapses therefore constitutes the artificial network. Adhikari et al. intend to use
Chip-in-the-Loop technique for training the network of proposed architecture. They,
however, suggest modifying this technique slightly in order to take into account
peculiar properties of memristor-based circuits. This technique is a viable choice
since it provides a way to deal with memristor bridge non-idealities without explicitly
modelling these nonidealities. According to this technique, the circuit performs the
forward computation of the network, whereas back-propagation and weight update is
done on the software side.

The hardware circuit network is reproduced by a software clone, which is used to
process the training data. After the computer network has processed all the training
data, synaptic weights of each individual synapse circuit are programmed by direct
application of strong voltage pulses in order to match with the weights from computer
network’s weight matrix. Hence, the whole of the hardware network is treated as it
consists of a set of simple single-layer networks. Each one of those single layer
networks is trained separately, according to the weight matrix. Because of the nature
of memristor bridge synapses, the need in additional circuitry is eliminated.
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5. Framework Concept

As one can see, plenty of research has been carried out in the field of memristors and
memristor-based neural networks. Multiple approaches to both creating and
modelling memristors have been mentioned in previous sections.

It is needed to create a reliable framework for simulating memristor-based neural
networks. So far, rather abundant overview of the domain has been presented. Despite
the vast variety of works mentioned, the domain at hand lacks general integrity and
is not formalized enough to start composing the framework at least in its basic form.
Hence, the domain must be formalized to a certain extent. In order to derive this
degree of formalization, the requirements for the stated framework are to be
determined. This will enable framework to be designed properly and will ensure it
complies with the needs and wants of its users. Requirements are decided to include
four major points: accuracy, performance, flexibility, and explicitness. Accuracy
stands for reliability of framework and if its output data can be trusted. Performance
reflects how quick does the simulation proceed. Flexibility corresponds to how easy
it is to swap components and models within framework. Finally, explicitness is
determined by the overall convenience of the framework and how well does it
represent results of the simulation. Insights into these requirements can be better
revealed according to the SMART criteria (a project management technique for
elaborating objectives), which is done in Table 2.

The requirements described above help determine what is to be expected from the
framework, what kind of formalization for the domain is required, and set guidelines
for further process of design and development. The domain may be formalized by
representing it as a graphical scheme, henceforward called ontological model. The
reason for such naming is that this model encompasses relevant entities of the domain
under discourse, as well as reflects their major properties and interrelations, which in
turn roughly corresponds to the definition of ontology. This model will limit the
complexity of the field of memristor-based neural networks and expose the intrinsic
connections between the notions at hand.

First, let us derive a set of entities to be found within this model. At the very core of
every network there are neurons and synapses. These three notions (neural network,
synapse and neuron) constitute the heart of designed model as well.

Multilayer network usually distinguishes between input layer neurons, output layer
neurons and hidden layer neurons, which may slightly differ. Input neurons should be
able to receive input signals, which may not necessarily coincide with how the signals
are conveyed within the network. Similarly, output neurons must provide output
signals. Consequently, input and output program modules should be introduced, in
order to convert electrical output signals into human-comprehensible format and vice
versa for the input signals.
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Table 2. Framework requirements according to SMART

corresponding

Criterion Accuracy Performance Flexibility Explicitness
Results of Simulation Frameworks Simulation results
simulation within processing must components must | should be clear

Specificity fra_me_work_must be performe_d ina | beeasytochange | and easy to
coincide with reasonable time. and replace, due observe.

to the domain’s

framework and
tuning it match

frameworks
algorithms and

experimental data. novelty.

Given the same Time taken to Framework’s Explicitness is the

input data the perform the flexibility can most subjective of

framework must simulation and measured in all requirements

produce the same calculate the regard with how and should be

output data as in results reflects many approaches | estimated by

either how well does the | to memristor direct responses of

experimental data | framework modelling and framework’s
Measurability | or in verified perform in terms network training users.

models. Thus, the | of performance. and architecture

discrepancy does it

between these implement.

results may be

used to measure

accuracy of the

framework.

Accuracy is Performance is If designed Various

achieved through achieved through correctly the parameters of

testing the optimization of architecture framework’s

(structure) of the
framework should

components must
be accessible and

Achievability with known data. architecture. provide sufficient | visualization
flexibility. methods (graphs,
visual models,
etc.) should be
provided.
Accuracy is Performance is Because the Visual
arguably the most | quite relevant domain is so new, | representation of
important since long runtime | it is extremely simulation results
requirement, may hinder the important to make | is very important
Relevance without sufficient research progress the framework for the end user.
accuracy, the when using able to adapt to
purpose of the framework. possible changes.
framework is
defeated.
Accuracy may be Performance Flexibility must Visualization may
achieved after should be taken be ensured from be introduced
tuning the initial into account the very after the basis of
L version of during the beginning of the the framework is
Timeliness
framework. development, but development. complete.
can be also
improved by later
optimization.

Both neurons and synapses of hardware neural networks are implemented through
Both neurons and synapses of hardware neural networks are implemented through
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circuits. Circuit design may vary from one implementation to another, therefore, the
general concept of neurons and synapses should be decoupled from its’ particular
hardware implementation to ensure flexibility. This will enable the framework to
safely switch between specific circuit implementations of neurons and synapses, but
will also ensure framework’s operability. The framework must as well be able to
switch between different realizations of memristor, namely, memristor models.
Hence, the latter should be considered a separate entity, which is contently used as a
component in synapse circuitry. For the time being only the metal dioxide class of
memristors is considered to limit already reasonable complexity of the framework.
Finally, the network must should be able to employ different learning techniques.
Despite the fact that this work considers only chip-in-the-loop method, the framework
should be designed being able to implement various ways of network training. Here
it is necessary to take into account not only the learning algorithm, but also how this
algorithm is applied to hardware circuit components of the network.

The ontological model is depicted on fig. 3. Solid border circles correspond to the
entities of the domain; dashed border circles stand for the properties (attributes) of
certain entities; filled arrows represent association relation between entities; empty
arrows reflect inheritance (or, possibly, interface implementation); finally, dashed
lines reflect attribution connections.

It must be noticed, that the ontological model is likely to be changed in the following
works and presented version is not final. Some of the anticipated issues include
particular implementations of learning techniques, for instance, chip-in-the-loop does
not require auxiliary circuitry, whereas spike timing-dependent plasticity usually
does. Another bottleneck to be expected relates to the circuit implementations of
neurons and synapses. The latter may consist of multiple circuits that should be
represented as separate entities in order to preserve flexibility of the system, yet
should conform to the same interface for the sake of integrity.

In this way we shed light onto the structural peculiarities of the future framework.
This model is to help composing the classes to be implemented as well as their
interrelations. Let us now consider the other side of the developed system, namely,
its functional requirements. In this paper, the latter refer to a certain number of
capabilities expected by users from the framework.

Framework under development strives to model memristor-based neural network
suggested by Adhikari et al., which is described in the previous section. It is also
expected to make possible modeling with better level of preciseness by enabling
swappable memristor models. For instance, employing TEAM memristor model may
significantly raise the relevance of proposed hardware neural network model through
fostering the accuracy of memristor’s physical model.

252



Kosxennkos JI.J1., Kpacuma H.B. O630p npeamMeTHO#H 061acTH 1 KOHIEHIHS (ppeMBOpKa [T pa3paboTKH Mojeneit
MEMPHCTOPOB  MEMPHUCTOPHBIX HEUPOHHBIX ceTeil. Tpyow UCIT PAH, 2016, Tom 28, Bimyck 2, ¢. 243-258.

O

Provides Da!a Receives Data
mpm module Output modme
Pruduces p rocesses

,’ Network \

\ Output Signal(s) /

~ ~_ _-7 Produces

,’ Network Input \‘
\ signalls)  /
N %

Neural Network
NS - /\

Receives

Learning

Technique
Cons\sts of Cnnslsts of Cor\s ists of

- Input Level Hidden Level Output Level
Chip-in-the- Neuron Neuron Neuron
Loop
Consists of

Spike Timing-
Dependent
Plasticity
Has presynaptic neuron-
Implements
Has postsynaptic neuron
Implement \5
Synapse Circuit
g
|1 / 3
| {/ Synapse \npul comple Neuron Ou(put N

P \ signal \ signal omm—s
N ® // N en // i

N ~ - ~ 4 e \\
Se - S~ Activation
I Synaptic Weight ! / ’\ Function }
, \ /
S -7 PN AT o~ -7
- R ~ - < ="
/ A
Employs / Synapse Output \ compte Neuron Input |
\ signal \ Signal(s) /
\ J \ /
~o 7 AN P
e N
/
Memristor / .
Resistance !
Model \ /
\ /
NG -

Simmons
Tunnel Barrier
Model

Threshold
Adaptive Model

v
Nonlinear
Model

Fig. 3. Domain’s Ontological Model
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The functional scope of the framework may be represented as a set of intertwined
mathematical equations that describe various parts of the network model. Each entity
of the framework can be characterized with equations that have adjustable parameters,
which are usually derived by the authors of corresponding models from experimental
data analysis. These equations are extracted from relevant models and are bound in
such way, that one equation’s output usually corresponds to input of the other
equation. This set of equations is depicted on fig. 4.
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Fig. 4. Functional Structure

Each separate square on the scheme reflects an entity of the framework, while arrows
denote the input-output connections between equations. One may notice that relations
of equations form a cycle, where one iteration of this cycle corresponds to one layer
of hardware memristor network. This figure depicts what set of functions is expected
to be provided by the future framework.
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6. Conclusion and Prospects

In this paper, a range of memristor models has been reviewed together with some of
the fundamental papers on memristor-related technologies. Based on this review, a
concept of framework for modeling memristor-based hardware neural networks has
been proposed. This framework represents an implementation of neural network
architecture considered in the paper, but implies ability to swap memristor models in
order to increase the overall flexibility and, possibly, relevance of models generated
with the help of proposed framework. The ability to switch between model is also
expected to help comparing suggested implementations. In the process of framework
structure discovery a set of criteria has been formulated to assess the future software
product, domain of memristor-based neural networks has been formalized to a certain
extent, and, finally, the framework has been given a functional structure strictly
defining its’ capabilities.

Specific platform for framework implementation is yet to be chosen. As of current
state of affairs, Unity engine is expected to be the most favorable candidate. Its
architecture perfectly fits the nature of soft simulation (which the framework
ultimately represents), providing some software patterns that greatly alleviate the
development. Considered engine is also able to realize extensive visualization of
models as well as equip them with user-friendly interface to further enhance model
explicitness and facilitate employment of the future framework for academic
purposes. Finally, implementing a circuit simulation framework in Unity also pursues
an exploration goal, since such attempts have not been previously well studied.
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O630p NpeagMeTHOM 06NacTU U KoHUeNUUAa cppenMBOpKa
Ana pa3paboTku moaenen MeMpucTopoB U MEMPUCTOPHbIX
HEUPOHHbIX CETEN
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AnHoTanus. B manHOl paboTe IpeACTaBICHBI NPEABAPUTENBHBIE PE3YNBTATHl TEKYIETO
HCCIICIOBaHUsl 1O pPa3paboTKe CpeAbl MOJCIUPOBAHMS  aNNapaTHbIX MEMPHCTOPHBIX
HEeWpOHHBIX ceTell. [IpoBeneH aHanM3 peJeBaHTHBIX TPYIOB, OMHMCAHBI (yHIAMEHTAbHBIC
paboThl MO MEMpPUCTOPAM M MEMPHCTOPHBIM TEXHOJOTHAM, PAacCMOTPEHBI pa3lMYHbIC
¢bu3nyueckue peanusalMd MEMPUCTOPOB, a TaKXKe HECKOJIBKO MaTeMaTHYECKMX Mopelel
MEMpPHCTOPOB M3 METaJUIO-ANOKCHIHON Tpynnbl. OnHa U3 Takux Mojeiei 6oree moapoOHO
NIpe/CTaBIeHa B paboTe, ONMMCAHBI €e OCHOBHBIC MEXAaHM3MBI M HauOoyee HHTEpPECHBIC
cBoifctBa. B pabore Tarke paccMaTpHBaeTCS HENABHO IIPEIJIOKEHHAsT apXUTEKTypa
MEMpPHCTOPHOH HEHPOHHOW CETH, ONMUCHIBACTCS METOANKa 00ydeHHMs MoAoOHOI anmapaTHOH
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HCHpPOHHOH ceTH, peanu3anus €y KOMIIOHEHT: HEHpOHOB U CHHAICOB Ha OCHOBE
MEMPHUCTOPHBIX MOCTOB. B aHHOIT paboTe Tarke BBIABHHYTO MPEUIOKEHNE 0 YIyIIICHHIO
3TOH apXUTEKTYpPHI IIyTEM HCIOIB30BaHUs O0Iee TOUHOH MOJIETM MEMPHCTOPA B PaMKax CETH.
OCHOBBIBasICH Ha NPOBEACHHOM aHalH3€ IMPEAMETHON 00JacTH, COCTABICHBI M (OPMAIBHO
omucaHbl TpeOOBaHUS K pPa3paboOTKe Cpembl MOASIUPOBAHUS MEMPUCTOPHBIX HEHPOHHBIX
cereii. Kpome Toro, ams Jiydmiero MOHMMaHMS PAacCMaTpUBAaeMOil mMpenMeTHOH oOmactu
COCTaBJICHBI OHTOJIOTHYECKas ¥ (hyHKIIMOHaTIbHAst Mojend. [lepBast Monens HeoOXxoauMa JUIs
(opmanm3anyy 00BEKTHOH CTPYKTYPHI IPEIMETHON 001aCTH, B TO BpeMsI Kak BTOpasi MOJIeNb
UCIIONB3YeTCs Ul SIBHOTO TIPEACTAaBICHHS MaTeMaTHYeCKHX (OPMYJ, OIMCHIBAIOIINX
¢du3nueckoe MOBEIECHHE COOTBETCTBYIOIIMX O0OBEKTOB. B  coBokymHoctn o06e Moxenn
MO3BOJITIOT COCTABUTH MOHOE, GOpMaNTN30BaHHOE U MHOTOCTOPOHHEE OIMCAHNUE IPEAMETHOM
001aCTH MEMPHUCTOPHBIX HEHPOHHBIX CeTell M MEepPeWTH K Ipoleccy NPOEKTHPOBAHHUS H
pa3paboTKH MPOrpaMMHOTO MPOIYKTa. B KoHIlEe pabOTHI KpaTKO MpeACTaBICHBI JadbHEHIINe
HEePCHEeKTUBBI Pa3pabOTKH CPebl MOAEIUPOBAHNS MEMPHCTOPHBIX HEHPOHHBIX CETEH.
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