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Abstract. In this paper, we compare three approaches of clustering partial ordered subsets of
a set of items. First approach was k-medoids clustering algorithm with distance function
based on Levenshtein distance. The second approach was k-means algorithm with cosine
distance as distance function after vectorization of partial orders. And the third one was k-
medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as
a measure of quality of clustering and find out that clustering with all three methods get
stable results when variance of number of items ranked is high. Vectorization of partial orders
get best results if number of items ranked is low.
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1. Introduction and Motivation

This investigation is a part of big project of developing clustering module for
weighted sequences. As an example of such data we can suggest log of WEB site
pages user opens with time, number clicks etc as characteristics of each state.
Another data example (less obvious, but it is a real data we use) is set of medical
treatments, provided in hospitals and polyclinics: sequence of medical treatments,
which were provided to patient with a diagnosis during some fixed period of time.
The main problem we try to solve is a development of system, which help
specialists to analyze such sequences. One of the tools we need to implement is
clustering module.

The main problem of research is a distance function between such complex-
structured data. We need to take into account:

o aset of objects (e.g. medical treatments);
e parameters of objects;

o order of objects;

We start to making our own distance based on Levenshtein (it can be easily
modified for our purpose), but decide to test new distance on each step to make
sure, that our new distance is good enough in comparison with other distances. This
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paper consider first step of our research: comparison Levenshtein distance with
another distances for partial orders. Partial order is simplest example of weighted
sequences: there are no repeated objects and no weights.

So this paper considers the problem of clustering partial orders as a part of problem
mentioned above. Since the problem of clustering orders does not differ much from
the problem of clustering any set of objects we focused on distance function
between objects of clustering. Comparison of partial orders obviously is quite
difficult problem because if we compare two of them we need to take into account
not only set of elements, but in addition an order of them. Despite complexity and
interest of this theme it has surprisingly little work has been done.

We decide to compare Levenshtein distance as a function of similarity between
partial orders and compare it with a recently presented approach proposed in [1] and
well-known Kendall tau rank distance [5] to find out their performance in different
circumstance.

2. Definitions and Problem Statement

According to [1] chain is a "totally ordered subsets of a set of items, meaning that
for all items that belong to a chain we know the order, and for items not belonging
to the chain the order is unknown". Hence every chain can't include one object more
than one time. As an example of such data we can suggest a rating of some objects
(films, music compositions etc). More precisely, when we talk about clustering
chains we assume, that full data set of chains was generated from some total orders.
We want to make such clusters, where all chains in one clusters were generated by
one total order.

For our analysis we use Lloyd's algorithm, also known as k-means, which is one of
the most common clustering algorithms and the k-medoids algorithm, which is a
medoidshift clustering algorithm related to the k-means. Both the k-means and k-
medoids algorithms are partional (breaking the dataset up into groups) and both
attempt to minimize the distance between points labeled to be in a cluster and a
point designated as the center of that cluster. In contrast to the k-means algorithm,
k-medoids chooses datapoints as centers (medoids or exemplars) and works with an
arbitrary matrix of distances between datapoints [2]. We use two different
algorithms in depend on distance function and ability to calculate mean value.

3. Distance Algorithms

As we mentioned above clustering algorithms themselves does not differ much for
different objects, but the distance function highly depends on data we want to
analyze. So we focused on distance function between partial orders and implement
Levenshtein distance function to calculate distance between them. We also try to
compare three distance functions: vectorizing algorithm presented in [1] (Ukkonen
distance), Kendall's tau rank distance and our implementation of Levenshtein
distance [3].
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3.1. Ukkonen Distance

There were a number of different distances between partial orders in [1]. For
analysis we choose planted partion model, which is very interesting first of all
because it help to vectorize partial orders. It doesn't compare two orders directly, but
firstly vectorize them and then use ordinary mathematical distances (Cosine,
Euclidian or any other). Additionally it is very simple from computational point of
view: it needs just O(nm) to compute vectors for n partial orders, when size of total
order is m.

The main idea of planted partion model is next. A function f that maps total orders
to R™ as follows: let T be a total order on M, and let t(u) denote the position of ueM
in . Consider the vector f, where

1
£, (u) = —% + 7(u)

If partial orders are shorter than total order we need to take into account cases, when
element from total order not exist in partial order (is not ranked). So if = is a partial
order and u - one of the elements of M:

It + 1l
F_.[{u:] S + mlu) iffuen

0 iffusm

And after normalization of function we get:
_&/
) ="/ )|

After this vectorization procedure we can use any of classical distances between
objects, for example, cosine distance which we use in this work. Using this distance
we can use k-means algorithm, because we can easily calculate mean value of
number of partial orders.

3.2 Levenshtein Distance

In information theory and computer science, the Levenshtein distance is a string
metric for measuring the difference between two sequences. Informally, the
Levenshtein distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change one word into
the other.

If we think about total orders as an alphabet, partial orders as a words and elements
of order as a letter we can draw full analogy from distance between partial orders to
distance between words:
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max(i i) ifmin(i.j) = 0

Lev,  (ij—1) +1

Lev, L(i.]) =
F 3 min Lev_ ( - 1,}] +1 ,else

Lev, (i — 1.j — 1) + 2[x(i) = = ()]

In this case we cannot use k-means algorithm, because mean value of partial orders
is not defined, so we need to use k-medoids clustering algorithm.

3.3 Kendall's Tau Rank Distance

The Kendall tau rank distance is a metric that counts the number of pairwise
disagreements between two ranking lists. The larger the distance, the more
dissimilar the two lists are. The main problem is that if the chains ; and 7, have no
items in common, we have to use a fixed distance between =; and n,. For example it
was made for Spearmen's rho by [4]. We can use the same approach also with the
Kendall distance by defining the distance between the chains m; and =, as the
(normalized) Kendall distance between the permutations that are induced by the
common items in wt; and m,. If there are no common items we set the distance to 0.5.

The Kendall tau ranking distance between two lists L; and L, is
K1) = {6 < (6@ < (A0 =) vinG > 6 An@ < ()
where 1, and 1, are the rankings of the elements in L; and L.

4. Experiments and Results

For testing these distance functions we produce a number of clusterizations and
evaluate results of clustering. We assume that quality of clusters is strongly
correlated to quality of distance functions. Data we use for clustering was artificial:
we generate a number of partial orders from three total orders. So we have an
opportunity to use Adjusted Rand Index as a measure of quality of clustering [6,7].
For testing we make Python program in which implement K-means clustering
algorithm with Ukkonen distance function, K-medoids algorithm with Kendall's tau
distance and K-medoids algorithm with Levenshtein distance.

First thing we want to test is how the quality of clustering depends on fraction of
items ranked. It was predictable that the bigger fraction is the easier it is to
distinguish them from each other, so we produce a number of test with different
fraction of items ranked. We assume that all partial orders are the same length.
Results of multiple clustering tests with different number of items ranked and
different number of items in total order are in fig.1
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Fig. 1. Quality of clustering in depending on fraction of items ranked (all partial orders
has the same length)

We can see, that if number of items ranked is equal to number of elements in total
order (in other words, all elements of total order are in partial order) all three
algorithms are quite good, but when partial orders are very little all of them cannot
perform well.

In previous test we assume that all partial orders are of equal length. Next test helps
us to define quality of distance functions in case of comparison of partial orders
with different length. We want to understand if distance function can correctly
compare partial orders with different number of elements. So the idea of experiment
was the next one. We assume that length of chain is a random value generated by
normal distribution with some mean value and some variance. The mean value is
not so important in this test, because the main idea is to understand dependency of
clustering quality on variance of partial orders length, so it was fixed for all
experiments. Accordingly to this assumption we generate partial orders with
different lengths (from normal distributions with same mean value and different
variance). For each variance we evaluate Adjusted Rand Index. Results are in fig.2.
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Fig. 2. Quality of clustering in depending on variance of number of items ranked.

All algorithms decreased their quality with increasing variance of number of items
ranked, but we want to emphasize, that variance of clustering quality with Kendall
distance significantly increase in comparison with Levenshtein and Ukkonen
distances.
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5. Conclusion

We find out that using Ukkonen distance help to achieve more stable results with
higher quality than Levenshtein and Kendall distances. Levenshtein distance is
relatively good when we take into account partial orders with the same number of
elements in them. But quality of clustering process decreased with increasing
variance of number of items ranked.

Kendall’s tau distance get stable result with quality close to Levenshtein distance,
but there is no reasonable way to modify this distance to compare weighted
sequences.

We do not consider that fact in paper, but we cannot to ignore that fact that
Ukkonen distance showing great promise property: we can vectorize (and in some
cases Vvizualize) partial orders using this algorithm while Levenshtein distance is
applied directly to partial orders and all problems of vizualization. Another good
property is the computational complexity of the algorithm: we can vectorize n
objects in O(nm), when the size of the total order is m and use after that simple
functions to get distances. The main problem of such approach is necessity to know
size of full order, while other distance functions has no need in such information.
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AHHoTaums. B cratee npeiaraeTcst CpaBHEHHE TPEX MOAXOIO0B K KIACTEPH3AlUK YaCTHIHO
YINOPSAAOYEHHBIX MHOXECTB. IIepBbIH MOAXOA 3aKIOYAaeTCss B NPUMEHCHHE aJlrOpuTMa
knacrepusanun  k-medoids ¢ wucmons3oBaHueM paccrosiHusi JleBeHiureiiHa. B kauecTBe
BTOPOTO IMOJAXO0Ja PACCMATPUBACTCS BEKTOPH3ALHUS YACTUYHO YIOPSAOYEHHBIX MHOXECTB C
JanbHeHIIeH KilacTepu3alyeii ¢ MOMOIIBIO alropuTMa K-means 1 KOCHHYCHOTO PaCCTOSIHUS B
KayecTBe (DYHKIHMH PpACCTOSHUS MEKAy oOObekramu. IlociefHUM —paccMaTpHBaCMbIM
MOAXO/IOM SIBISIETCS KiacTepu3alusi ¢ IoMolipio anroputMma k-medoids m ko ¢unuenta
paHroBoit koppemsiiun Kennamia B kadyecTBe QYHKIHM paccTOsHUS. J[Jisi OLEHKH KavecTBa
KJIacTepu3anuu Mel ucnois3oBann Adjusted Rand Index u ompenenmim, 94To KilacTepu3anus
C UCIIOJIL30BaHMEM BCEX TPEX MOAXOJOB IaeT CTaOMIIBHBIN PE3yNbTaT JaXe B TEX CIy4dasx,
KOT'J]a KOJIMYECTBO 3JIEMCHTOB B KJIACTEPH3YEMbIX MHOXKECTBAX CYIIECTBEHHO pa3inyaercs. B
cinydyasX, KOIZa JOJsl pPAHKUPOBAHHBIX 3JIEMEHTOB Maja, HAWIyYIIHEe pe3yJIbTaThl
MOKa3bIBaCT METOJ] BEKTOPHU3ALUH YACTUYHO YIIOPSIOYCHHBIX MHOXKECTB.

KinoueBbie cinoBa: Paccrosinue JleBeHITelHa; YacTUYHO YHOPSAOYEHHBIE MHOXECTBA;
KJIacTepu3anys; Mepbl OJIM30CTH; KoddduieHT xoppemsiuun Kenpamna.
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