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Abstract. This paper is devoted to known plaintexts cryptanalysis of homomorphic
cryptosystem proposed by Domingo-Ferrer. In previous works it was shown that at least
d +1 pairs (plaintext, ciphertext) are necessary to recover secret key, where d is a degree of
polynomials representing ciphertexts. Here we analyze existing known plaintext attack. And
also slightly modified attack on this cryptosystem is presented. It allows to reduce the
necessary number of pairs meaningfully. In particular interception only of two pairs may be
enough for successful key recovering with overwhelming probability. The running time of
our attack depends polynomially on d and logarithmically on plaintexts space size as well as
for previous attack. We provide the results of computer experiments.
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1. Introduction

Homomorphic encryption (HE) is a cryptographic primitive supporting the
additional property in comparison with ordinary encryption: HE allows computing
over encrypted data. Let's explain what this means. We assume that plaintexts space
P and ciphertexts space C are rings with operations +,,, and +.,-

correspondingly. And let E,D be encryption and decryption functions of
cryptosystem &. The last one is homomorphic if for Vx,yeP and
VE(x),E(y) €C the following properties are satisfied:

D(E(X) +c E(Y) =x+5 Yy, (1)

D(E(X) -« E(Y) =X+ Y. (2)

So the result of computations over ciphertexts will be an encryption of computations
result over underlying plaintexts.

! This work is supported by grant RFBR 15-07-00597-a
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Homomorphic cryptosystems (HC) are of key importance for protecting sensitive
data in clouds. Computationally weak clients may outsource computations over their
data while keeping this data in secret. This makes the development of new
homomorphic cryptosystems and cryptanalysis of existing a hot topic.

By the present moment a variety of homomorphic cryptosystems were proposed (for
example see [1-5]). RSA [1] is one of the most well known, because the product of
RSA ciphertexts is an encryption of corresponding plaintexts product. But
cryptosystems [1-5] are partially homomorphic, because they allow to compute over
ciphertexts only functions lying in some bounded class. In particular for [1] only
property (2) holds (multiplicatively homomorphic cryptosystems). Whereas for
instance for [2] only (1) holds (additively homomorphic).

The simplest example of HC holding both (1), (2) was introduced in the
fundamental paper [6] of Rivest, Adleman and Dertouzos. Encryption function
E:Z, —Z,xZ, works as follows xeZ_ — (xmod p,xmodq) . Unfortunately, in

[7] such encryption was shown to be unsecure against known plaintext attack
(KPA). Beginning with [6] lots of cryptosystems with properties (1), (2) were
suggested. Here two the most important groups may be highlighted. In the first
group there are cryptosystems [8-11] with unlimited ciphertexts sizes growth during
computing over them (their security analysis may be founded in [12,13]). Whereas
cryptosystems of second group have some polynomially bounds on ciphertexts sizes
growth. In this group for example there are cryptosystems [14-18] belonging to
direction initiated by innovative work [14] of IBM researcher Craig Gentry.

Second group obviously is more interesting for practice. But unfortunately existing
cryptosystems are not enough efficient for usage in real applications. The
development of Gentry-like HCs now has mostly theoretical character. And in
practice at the present moment HCs from the first group are used. For instance
cryptosystems [10, 11] proposed by Domingo-Ferrer are exploited in secure packet
forwarding in mobile ad hoc networks (see [19-24]). The main reason is a
conceptual simplicity of constructions from [10, 11].

In the light of this the analysis of Domingo-Ferrer HCs resistance to different
attacks is of value. Here we will concentrate on KPA. In [25] the authors described
KPA on [10] and showed that to recover secret key an adversary A should
intercept t >d +1 pairs (plaintext, ciphertext), where d is a degree of polynomials
representing ciphertext. The aim of the present work to demonstrate that [10] may
be broken using even two pairs (plaintext, ciphertext). We give some theoretical
reasoning to this fact. And also we provide an experimental confirmation.

2. Denotations

All logarithms are base-2. A probability of event M is denoted by Pr(M), ring of
integers — by Z , ring of integers modulo n —by Z_, the multiplicative subgroup of
Z, —by Z, . Anadversary trying to break cryptosystem will be denoted by A . For
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symmetric cryptosystem ¢ : P — plaintexts space, C — ciphertexts space, K — secret
keys space, D — probabilistic distribution over P .

We denote by Xx<>—R a random element sampled according to uniform
distribution over ring R and also by x<2—R — random ring element generated
according distribution D overR. Denotation f(x)«—=—R[x]means that all
coefficients of polynomial f are random values chosen uniformly and
independently from R .

3. Overview of Domingo-Ferrer cryptosystem

Let's briefly recall cryptosystem from [10]. The author setsP=2Z_,
CcZ,[XIxZ,[x]l, K=Z,xZ , where n=p-q, p,q- big primes, p<q,
logp~logq, i.e. n — RSA modulus. Its factorization is a secret. Secret key is a
pairk = (r,, r,) € K. Before encryption public parameter d € Z, is fixed.
Encryption(aeZ,,deZ , p,q,k=(r,, r,) eK):

p’ rq

d .
e aeZ —a'(x)eZ,[x], where a'(x) = Za'i -x' and for
i=1

d-1
a'y«>—Z \{0}and a':=(a—» a')modn.
i=1

i=2,d-l:a"«* 7

1 n?

e Ciphertext is a pair of polynomials ¢ = (¢, (x), ¢, (X)) , where
c,(X)=a'(r,-x)ymod p and c,(x)=a'(r,-x)modq .
d
One may see that a=a'(l)(modn) (or a= Za'i (modn)).
i=1
Decryption(c = (c,(x),¢,(x)), p, 4. k™ =(r,", ,")):
o a',(x):=c,(r,"-x)mod p a',(x) :=c,(r;" - x)modq (clear
a',(x)=a'(x)(mod p) and a’,(x) =a’(x)(modq) ).
e a,=a' (Ymodp, a,:=a',()modq (clear a=a,(mod p),
a=a,(modq)).
e a=CRT(a,,a,,p,q), where CRT(a,,a,, p,q) means the reconstruction
ofaeZ by a,eZ,, a, €Z, using Chinese reminder theorem.

In [10] the author suggested two regimes of cryptosystem working. In the first
variant modulus n is public and plaintexts and ciphertexts coefficients are treated
by untrusted party as elements of Z . In the second case n is hidden for providing

85



Trudy ISP RAN [The Proceedings of ISP RAS], vol. 26, issue 5, 2014.

higher level of security. And then plaintexts and ciphertexts coefficients are treated
as elements of Z . Here we will consider only the first case.

Homomorphic properties: Let's suppose there are plaintexts a,a, €Z, and
¢ =(c,,(x),c,; (X)), ¢, =(c,,(X),c,,(X)) — its encryptions made on the same key

k=(r,, r,) and for the same d . In [10] the author proves the following statements.

Statement 1. Ciphertext ¢, = ((c,,(x)+c,,(x))modn, (c,,(X) +c,,(x)) modn) is a
correct encryption of plaintext (a +a,)modneZ, for key k=(r,r,) and
parameter d .

Statement 2. Ciphertext c. =((c,,(X)-c,,(x))modn, (c,,(X)-c,,(x))modn) is a

correct encryption of plaintext (& -a,)modneZ, for key k=(r,r,) and

p
parameter 2-d .

One may see that multiplication of ciphertexts causes an unbounded growth of their
sizes (the size is doubled). So in general this HC isn't good for practice. But its
simplicity makes it good for applications requiring only computations of some
special functions (see [19-24]).

Remark 1. In practice for example logn ~ 2048 may be chosen. Then the size S
of ciphertext is 2048-d bits. This implies that d <500 should be chosen to obtain
S <10° bits. Such setting seems reasonable because in all latest HCs [14-18] S is

usually about 10° bits. Larger value of S will make homomorphic computations too
much expensive. But of course it is suitable only if additive homomorphism is
necessary. But if multiplicative homomorphism will be exploited then d should be
smaller.

4. Cryptanalysis of Domingo-Ferrer cryptosystem

4.1 Existing KPA

Here we briefly discuss existing results [25] concerning known plaintexts analysis
of Domingo-Ferrer cryptosystem [10]. Let's suppose A has t pairs

(a eP,c €C),i=1t , where ¢ isan encryption of a, and all c, are produced for
the same n, k=(r,,r,) and d. Ciphertexts ¢ are pairs

(c,;(¥)eZ,x], ¢,;(x) eZ[x]), where C,i (%) :icp‘i,j X3, Cq,i(x) :icq'i,j X3
j=1 =L

A needs to recover p, g, k™ =(r;*, r;") using n and (g €P,c €C),i =1t.
Remark 2. Here we consider the case of publicn. So before recovering p, q A
works with polynomialsc,;(x), c,;(x) modulon. In [25] the authors also propose
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c, .. are treated as

an attack for hiddenn. And in this case coefficients c,, ;, C,; ;

integers at the first step of KPA.
According to encryption procedure the following congruences holds:

¢, (r,")—a, =0(mod p), (3)

Coi ()~ =0(moda). (4)
So polynomials f,(x)=c,;(X)—a €Z [x],i =1t have a common root rp’1 modulo
p. Similarly g,(x)=c,;(X)—a € Z,[x], i =1t have a common root rq’l moduloq .
And please note that rp’l, rq’1 are not obligatory roots of f.(x), g,(x) modulo n.

So KPA should proceed in three steps:
e A recovers secret modulus p andsetsq=n/p.

e A computes rp‘1 as a common root of f,(x), i =1,t modulo p.
e A computes rq’l as a common root of g, (x), i =1t moduloq.
4.1.1 Recovering of modulus P

For computing p in [25] the authors propose to consider the following matrix
Aezbe:

—a Cpyy o Cpig
A| 7B Char - G
- Chyy - Cpug

According to (3) homogeneous system of linear equations (A]0) has a nontrivial
solution modulo p :

V=@t (nh (nh).
Therefore for t=d+1 A is a square matrix having zero determinant modulo p.
Then equality det(A)=p-seZ,,se{0,1...,q—1} holds. The last one means that if
s=#0 p may be recovered as follows:
p := GCD(det(A), n).
According to Chinese reminder theorem we have
det(A) = (det(A)modq)- p-(pmodq). So s=0 if and only if det(A)modq=0.
The authors of [25] prove that
Pr(det(A) mod q = 0) > e 220 (5),
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where for large p value e ¥*®™® ~1. Thus having d +1pairs (plaintext, ciphertext)

A may recover p with probability ~1. Asymptotical complexity of computing p
using this method is O(d* - log®(n)) .

Remark 3. Inequality (5) in [25] was proven using assumptions that c,; ; <—$—Zp
and a, modq<$;Zq . But of course this is correct only if probabilistic distribution

Dover P is uniform. For not uniform D (5) is not true. In the worst case D may
be such that Pr(0) ~1 and for moderate values of d Pr(det(A)modgq=0)>1/2,

because if the first column of A is a zero vector then det(A)modq =0 holds. So

for such D the probability of successful cryptanalysis is not so good. In general
additional study is necessary, because it is not immediately clear how to estimate
Pr(det(A)modq = 0) for arbitraryD.

4.1.2 Recovering of r*,r*

Now we suppose t=d+1 and p is recovered using (& €P,c, €C),i =1t. The
first way to compute rp‘1 is to solve the system of linear equations (A|0). The
second way is to compute:

f(X) = GCD( fp,l(x)’ ] fp,d+1(x))!

where f_;(X) = fi(x)mod p=c,;(X)-a,;, a,; =& mod p . Obviously

pi’
F(X) = (X=1,%)-GCD(F &, (X), -, £, (X))

holds, where £.00="1f,00/(x-r;)eZ [x], i=1d+1. If

GCD(f ), (X),.... g (X)) =1 then f(X)=x-r,* and therefore r,* is recovered.

Based on assumption that for all i=1d+1:
$ . - .
f;?,i (X)«<——2Z,[x], deg( f;i (x)) =d —1, the authors of [25] give an estimation

Pr(f (x) =x—r*) =Pr(GCD(f2,(X),..., f 24, (X)) =1) > 11/ p*)* . (6)
So for large p and moderate d the probability to recover r; ' becomes close to 1.
Remark 4. Both ways to compute rp’l have equivalent complexity O(d* - log®(p)) .

In [25] the authors didn’t give a proof that all fgi (x) are uniformly random. So here

we fill this gap.

Statement 3. Let distribution D is uniform and let there is a polynomial
f(xX)=c,(x)—aeZ,[x],deg(f)=d constructed using pair(a,c=(c,(x),c,(X)) .

88



Tpynst UCIT PAH, Tom 26, Bbin. 5, 2014 1.

Then f70=f,00/(x-r,")eZ[x] is uniformly  random  with
deg(f; (x))=d -1, where f (x):=f(x)mod p.

d .
Proof: Let’s look at f (x) = z f,; X €Z,[x]. According to encryption procedure
i=0

i - P d ) -
f,=@"%r)modp,i=1d and f = (—Za ;ymod p (= (-a)mod p) . Using
i=1
ordinary polynomial division it’s easy to verify that

d-1
fo()=f,00/(x-r,)=> f) -x, where fog, =Ty -a';(mod p),
i=0

fo,=rt(@,+a\,)modp), ..., f) =ri-(@,+a', +..+a’)(modp) and

fo,=r,-(@+a', +..+a')(modp)=r, -a(mod p) . Coefficients f°,i=0,d—-1

are independent random values, where f; -0 pi=1d-2,

fo 0 \{0}, f2«2—0,. So obviously if D is uniform then
0 $ 0 —

f, () «——Z,[x] and deg(f (x))=d-1.0

One may see that for not uniform D polynomials fgi(x),i =1d+1 are not

uniformly random . And in this case it is not clear whether estimation (6) is true.

Thus additional study should be carried out.

Let’s turn on to the uniformD . We would like to note that in this case instead of

estimation (6) one may obtain the exact value of Pr(GCD(f,(X),..., f54,,(X))=1).

In [26] the following result based on Euclidean algorithm was proved.

Corollary 1 ([26]). Let (d,,...,d ) be an ordered m -tuple of nonnegative integers

(not all zero) and for 1<i<m let a,.(x)<LZp[x] deg(a (x)) =d., where pisa
prime. Then the probability that a (x),...,a,, () are relatively prime is 1-1/ p™™*.
Based on this corollary we have Pr(GCD(f,(X)...., f,4,,(X)) =1) =1-1/ p° that is
~1for large p.

Similarly  g(xX) = GCD(y;(X),--s Gq g1 (X)) =X—1;*  with probabilityl-1/q°,
where g;(X)=¢,;(X)—a €Z,[x],i =1,d+1, 9, () =g (x)ymodg=c,;(X)-a,;,
a,; =amodq. And finally we obtain that the probability to recover rp‘l,rq‘1 is

equal to (1-1/p%)-(1-1/9"). It should be noted that the last one is true because
according to encryption procedure for uniform Dfor Vi polynomials f ;(x) and
d,:(X) may be considered as independent random polynomials.
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Summarizing all said above we see that KPA proposed in [25] requires t>d +1
pairs (plaintext, ciphertext) to recover secret key with probability Pr~1 . But
estimation Pr 1 is proved only for uniform D. The total asymptotical complexity

of KPAis O(d®-log?(n)) .

4.2 Our improvement of KPA

Now we discuss how to reduce the number of pairs t necessary for successful KPA
on cryptosystem [10]. First we recall the notion of resultant for two polynomials.

d _ d, _
Let there are f(x)=> f-X',g(X)=>g,-x €Z [x]. One may compose a
i=0 i=0

Sylvester matrix S ez %+%) for f(x),g(x):

fo o f, 0 0 .. O
o f, .. f, 0 .. 0
o .. 0 o0 f .. f
S= ° “m
9% - 9, 0 0 .. O
0 g, 9,
0 .. 0 0 g, .. 0

The resultant of polynomials f(x),g(x)eZ,[x] is defined as follows:
®=Res(f(x),g9(x)) =det(Symodn e Z,_ . It is well known result that ® =0if and
only if f(x)and g(x) have at least one common root or factor modulo n (for
details see [27]). For further discussion we need the following simple statements.
Statement 4 . If for n= p-qpolynomials f(x),g(x) eZ [x] have at least one
common root or factor modulo p(or q) then ©,6=0(or ©,=0), where
®,=0modp, O, =modq.

Statement 5. If n=p-q, where p=q,GCD(p,q)=1, then ®=0 if and only if
®,=0,0,=0.

We skip the proof because this statements may be immediately derived from
Chinese reminder theorem and congruences properties.

Let’s return to KPA on cryptosystem [10]. Now we will demonstrate that
interception only of two pairs (plaintext, ciphertext) may be enough to recover
factorization of n and k=(r,, r,).
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4.2.1 Recovering of modulus p

Let's suppose Adintercepted (a;, ¢ =(c,;(X) € Z,[X], ¢,;(X) € Z,[X])),i =12 ,
where  deg(c,;(x)) =d,deg(c,;(x)) =d. Let’s look at the resultant
®=Res(f(x), f,(x)) eZ, where f(x)=c,;(X)-a e€Z[x],i=12. As we've
already seen f (x), f,(x) have a common root rp‘1 modulo p. According to
statement 4 ®, =0 and hence ®=p-s,se{0L...,q-1. So for s=0 Acan
compute paccording formula:
p:=GCD(O,n).

Please note that the last one is true because here g is prime and GCD(s,q) =1 for
s#0,q.

As a result we obtain that to recover p it’s enough to have only two pairs
(a,c),i =1,2 with ®=0. So it’s necessary to find out how much the probability
Pr, = Pr(® = 0) for randomly intercepted pairs. To estimate Pr,we should note that
according to statement 5 ® =0 if and only if ®, =0 and then Pr, =Pr(®, #0).
Obviously ®,=0 if and only if GCD(f,,(x),f,,(x))=1, where
f i ()= fi(x)ymodqgel  [x],i=12. If f,(x),f,,(x) were uniformly random in
J,4[x] then Pr, =Pr(®, #0) would be equal to 1-1/q according to corollary 1.
But unfortunately in fact f;(x)= i foii -x1,i=1,2 are not strictly uniform even

j=0

if distribution D is uniform. Indeed for wuniform D there are
foi;«<~0L..p-1 j=1d-1, f ,«>{..p-% and f 7.
Estimation

Pr,=1-1/q (8)

we are not ready to prove now. But (8) correlates very good with computer
experiments. In tables 1,2 we present practical estimation of Pr, for uniform D for
different d .

Remark 5. Cryptosystem from [10] and presented KPA were implemented using Qt
1.3.1 and NTL library [28]. For practical estimation of Pr,two pairs (a;,c;) were

generated randomly 10° times. Then the number of cases with 0, # 0 was counted.

The case of not uniform D should be studied additionally. The only thing we can
say now that in the worst case D may be such that Pr(0) = £, where S =1 and then

Pr, =Pr(®, =0) > [ thatis ~1. So for such D this KPA fails with overwhelming
probability.
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Table 1. Estimations of Pr, for different p,qand d =10.

n p q Practical estimation | 1-1/q

of Pr,

6 2 3 0.67 0.67
35 5 7 0.86 0.86
91 7 13 0.922 0.923
253 11 | 23 0.956 0.957

1517 | 37 | 41 0.97 0.97
3599 | 59 | 61 0.98 0.99
9991 | 97 | 103 0.99 0.991

Table 2. Estimations of Pr, for different p,qgand d =50.

n p q Practical estimation | 1-1/q

of Pr,

15 3 5 0.8 0.8
221 13 17 0.92 0.94
1147 | 31 37 0.954 0.972
2173 | 41 53 0.999 0.999
13943 | 103 | 131 0.999 0.999

The asymptotical complexity of this method to recover pis O(d*®-log®(n)) .

Finally we would like to note that the idea to compute resultant of polynomials for
recovering p we borrow from [29]. In [29] the author presented KPA on another

Doming-Ferrer homomorphic cryptosystem [11]. Encryption in [11] works similar
to [10]. Plaintext aeZ . first is mapped into random polynomial a'(x) € Z.[X]

such that a'(l) =a(modn'’), deg(a'(x))=d, a'(0)=0. Ciphertext is a polynomial
c(x) € Z,[x] such that c(x):=a'(r-x)modn, where r e Z, — secret key, n — big
integer (log(n) ~1000) with many small divisors, n'|n and log(n’) ~100.
Modulus n' is hidden and n is public. It should be pointed out that in spite of
similarity construction from [10] is not a special case of [11] and vice versa.

To break cryptosystem [11] A first should compute n' and second
(r)*:=r"modn’ as a common root of polynomials
f,(x)=c,(X)—a, €Z,[x].i =1t modulon'. According to congruences properties
(r)™ may be used for decryption instead of r'. For recovering n' in [29] the
author proposes to compute n"=GCD(n,Res(f, f,),Res(f;, f,),....Res(f_,, f,)).

Obviously
Pr(n"=n")=Pr(GCD(n/n",Res(f, f,)/n,Res(f;, f;)/n'..,Res(f_,, f,)/n)=1

(/ is integer division) holds. Here in contrast to [10] it’s not enough to take t=2,
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because n has many small divisors. So to estimate
Pr, =Pr(GCD(n/n",Res(f,, f,)/n,Res(f,, f,)/n',..,Res(f_,, f)/n) =1 one
should involve a known result about the probability that randomly chosen integers
are coprime. According to this result Pr,=1/¢(t/2+1) holds (we suppose t is

even), where ¢ is Riemann’s zeta function. So for t=2 we have Pr, ~0,61. That
is not enough of course. To obtain Pr, ~1one should take t >100.

Summarizing all said above we would like to stress out that idea of computing
resultants doesn’t work so good for cryptosystem [11], because A must intercept
many pairs to recover secret modulus with overwhelming probability. But for [10]
computing resultant allows to decrease t meaningfully. Now the only case in which
we while don’t know how to find p is t=1.

4.2.2 Recovering of r*,r*

For recovering rp‘1 A may compute
F(X) =GCD(f,, (), f,,(0) € Z, [X],

where f_;(x) = f,(x)mod p, f,(X)=c,;(X)—a €Z,[x],i=12. For uniform D
according to corollary 1 we obtain Pr(f(x) =x-— rp‘l) =1-1/p thatis ~1 for large
p . Similarly rq’l may recovered with probability 1-1/q . So the total probability to
find r*,r,;* nowis Pr, =(1-1/ p)-(1-1/q). The lastone is ~1 for large p,q.

-1 -1 -

ST now isO(d? - log® (q)) -
To conclude we would like to present the total running time T of our KPA (time to
recover p,q and rp‘l,rq‘1 ). Time measurements were done using PC with the

The asymptotical complexity of computing r.

following characteristics: Quad Core Celerone 1,7 GHz with 4 GB memory.
Table 3. Running time of KPA.

d T forlogn =2 log p = 2° T for logn=2",log p = 2"
8 38 ms 112 ms
16 121 ms 387 ms
32 460 ms 15s
64 19s 6s
128 955 27s
256 52s 2 min
512 5 min 12 min
1024 22 min 50 min
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5. Conclusion

We have analysed the existing method [25] of known plaintext cryptanalysis of
Domingo-Ferrer homomorphic cryptosystem [10]. This analysis shows that it
provably works with overwhelming probability only for uniform probabilistic
distribution D over plaintexts space. The case of arbitrary D requires the further
study. Also based on results obtained in [29] we slightly modified KPA from [25].
The obtained KPA works successful even for the number t of intercepted pairs
(plaintext, ciphertext) equal to 2. This is in contrast to [25] where t >d +1must be
satisfied. But unfortunately our attack also provably recovers secret parameters with
probability ~1 only for uniform D. And the case of arbitrary Dalso should be
studied additionally. If Dis such that Pr(0)=~1 than both attack fails with

probability close to 1. In future we are planning to investigate the resistance of
Domingo-Ferrer homomorphic cryptosystem to ciphertext only attack.
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YnyJyweHHasi ataka no U3BeCTHbIM
OTKPbITbIM TEKCTaM Ha FOMOMOP(HYIO
Kpuntocuctemy [lommHro-deppepa

A.B. Tpenauesa <alinal989malina@ya.ru>
TOoicuwiil pedepanvhwviii ynusepcumem,
Poccus, 344006, 2. Pocmog-na-/{omny, yn. bonvwas Cadoeas 105/42.

AHHoTanus. JlanHas paboTa MOCBSAIIEHA KPUNITOAHAIN3Y 110 H3BECTHBIM OTKPBHITHIM TEKCTaM
TOMOMOP(HOH KPHNTOCUCTEMBI, TpemoxeHHod Jlomuaro-deppepom. B mpensimymunx
paborax OBLIO MMOKA3aHO, YTO IS PACKPBITUS CEKPETHOTO KIIF0Ya HEOOXOIMMO HEPEXBATUTh
no MeHbiied Mepe d+1 mapy (OTKpbITBIA TekcT, mudpreker), rae d — cremneHs
MOJMHOMOB, SIBITIOIINXCS MU(QPTEKCTaMH. 3/1eCh MBI NPOBOJMM aHAIHM3 CYIIECTBYIOLIECH
aTakd 110 U3BECTHBIM OTKPBITBIM TEKCTaM, a TakKe [OKa3plBaeM, KaK MOXHO e&
MOAMGHIMPOBATh  TAaK, UYTOOBl  3HAYUTENBHO  YMEHBIINTh HYXHOE  KOJIHMYECTBO
HepeXBaueHHBIX Map. A MMEHHO, OKa3bIBACTCs, YTO JJOCTATOYHO BCETO JIMIIB JIBYX Hap Uit
PacKpBITHS CEKPETHOTO KiFoya. Bpemst paGoThl Ipe/tosKeHHO aTaku Tak ke, Kak U Ul yxKe
CYLIECTBYIOLIEH, 3aBUCHT MOJMHOMHMANBHO OT O ¥ JorapudMudeckn OT pasMmepa
NPOCTPAHCTBA  OTKPBHITBIX ~ TEKCTOB.  [IpeAcTaBlieHBI  pe3yibTaThl  KOMIIBIOTEPHBIX
SKCTIEPUMEHTOB.

KnroueBble c10Ba: aTaka 10 U3BECTHBIM OTKPBITBIM TEKCTaM; TOMOMOp(hHOe Mu(ppPOBaHHUE;
00JIagHbIe BEIYHMCIICHHS.
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