
Труды ИСП РАН, том 26, вып. 6, 2014 г.

31

Model-Based Testing for MANETs

S. Maag <Stephane.Maag@telecom-sudparis.eu>

 Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157,

9 rue Charles Fourier, 91011 Evry Cedex, France

Abstract. Conformance testing in network engineering is a crucial phase in the development

of complex communicating systems. Model-based testing allows to automatize the testing

process by generating test suites from a formal specification and to execute them on a real

IUT. While many techniques have been developed, their application to test wireless routing

ad-hoc protocols still raises many issues. The paper objective paper is to present the node

self-similarity reducing the number of inconclusive verdicts often met in traditional MBT.

Keywords: model based testing; manet; nodes self-similarity; routing protocols

1. Introduction

Conformance testing in network engineering is a crucial phase in the development

of complex communicating systems. Among the different testing steps, the

development and execution of test cases based on a formal model is an important

issue for testing communication protocols and other reactive systems. The purpose

of these tests is to determine whether a protocol implementation conforms to its

specification. Usually a conforming implementation is required to have the same

input/output behavior as defined by the specification. In various application

domains, such as telecommunication systems, communication protocols and other

reactive systems, the specification can be represented in the form of an extended

finite state machine (EFSM). In particular, EFSMs are the underlying models for

formal description techniques, such as SDL and SysML. Several model based

testing (MBT) techniques have been proposed to generate and execute test cases

from formal specification [21]. While most of these specification techniques allow

to efficiently design these above mentioned systems, there are currently new

environments that bring their own inherent constraints. This is notably the case

when considering wireless Mobile ad-hoc Networks (MANET).

In Wireless Mobile Ad Hoc Networks (MANETs) there are no predefined

infrastructures, no administrative node and each node participates in the provision

of reliable operations in the network. The nodes may move continuously leading to

a volatile network topology with interconnections between nodes that are often

modified. As a consequence of this infrastructureless environment, each node

communicates using their radio range with open transmission medium and some of

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

32

them behave as routers to establish multi-hop connections. Besides, conformance

testing for ad hoc routing protocols is crucial to the reliability of those networks.

The major techniques used by the ad hoc network experts to design and ensure the

quality of their routing protocols essentially rely on descriptions for simulations

and/or emulations. Andel et al. [5] tries to illustrate some comparisons between NS-

2 [1], OpNet [2] and Glomosim [4]. Results providing by the simulation testing is

sometimes far from the one obtained in a real case study.

Formal description techniques and their testing tools are rarely applied in such kind

of networks. The main reasons are the difficulty to take into account the inherent

MANET protocol characteristics and the mobility of nodes in the test sequences

generation and their execution. Our work focuses on a testing technique based on

algorithms to check the conformance of ad hoc routing protocols. Nevertheless, the

execution of these test sequences is currently an issue. Indeed there is often a gap

between the dynamic topology designed in a specification and the one of a real case

study. We illustrate the concept of node self similarity in order to generate test

sequences and execute them on a real wireless ad hoc routing protocol taking into

account the network topologies.

The remainder of the paper is as it follows. In Section 2, we present some related

works. In Section 3, basics on MBT are presented. Then, we describe the node self-

similarity and its application on an emulated testbed in Section 4 and 5 respectively.

2. Related work

Verisim [6] is a model combining NS-2 and the trace verification component

provided by the Monitoring and Checking system namely MAC [7]. The goal is to

generate a NS-2 trace T and to verify if the expected properties are included in the

implementation I according to a scenario S. The authors have shown that the AODV

implementation in NS-2 was false regarding some properties. This first work was

very interesting, disturbing and raised several issues regarding the

efficiency/reliability of the simulation/emulation. These works have known recently

a certain resonance by the publication of [23] in which MANET simulations results

still reveal pitfalls. The authors describe "design space" of MANET routing in terms

of its basic dimensions and corresponding parameters.

While Verisim performs a validation through invariants in a simulator, [8] proposes

a formal methodology to specify and analyze a MANET routing protocol. It is based

on the Relay Node Set (RNS) concept. A RNS is a set allowing to reach all nodes in

the network. However, it does not allow studying functional properties neither the

nodes’ interactions.

From a need of specification, it came another work. In order to study the interest

and the performances of their new routing protocols (LTLS, Logical Topology

based Location Service), the authors [9] developed a formal model namely

Distribued Abstract State Machines (DASM). While this model allows verifying the

behavior of a node in a functional way, unfortunately the model is non-executable

and does not allow to observe the nodes’ interoperability.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

33

[10] is another approach to formalize the routing in a MANET by applying game

theory concepts. The game theory is based on the ‘‘income’’ calculus. In our case,

the income means for instance the convergence when the topology is modified or

the induced overhead. Despite an innovative approach, many issues like the required

knowledge of the network, are still present.

In our work, we propose a new testing approach relying on well-known formal

methods, especially a nodes self similarity concept by considering the eventual

topology modifications. Our main goal is to facilitate the execution of generated test

sequences and to reduce the inconclusive verdicts when checking the conformity of

an implementation in relation with its specification.

corresponding context variables.

3. Conformance testing and formal models

3.1 Basics

The conformance testing usually relies on the comparison between the behavior of

an implementation and the formal specification of a given protocol. The

conformance testing procedure follows these steps:

Step 1. Define a testing architecture with respect to the characteristics of the system

under test and its possible implementations. This step could impact on each

following step and has to be defined according to the context.

Step 2. Make some assumptions that are sometimes required to enable the test.

Step 3. Design a precise formal specification of the system to be tested. This

specification takes into account the system functionalities as well as the data

specific to the test environment (test architecture, test interface, etc.).

Step 4. Select the appropriate tests. This step is the definition of the test purposes.

Step 5. Generate the test sequences. The test purposes are used as a guide by an

algorithm based on simulation to produce the test sequences from the specification.

Step 6. Format the test sequences i.e. to produce test sequences in some accepted

formalism as Test Description Language (TDL) [13] or in Testing and Test Control

Notation (TTCN3), the ITU-TS standard language used for test specification.

As above mentioned, our approach is based on formal model. In our work we define

and use as a formal specification the Extended Finite State Machine (EFSM).

Definition 1. An EFSM M is defined as: M = (I, O, S, x, T) with I, O, S, x and T,

respectively, a set of input symbols, a set of output symbols, a set of states, a vector

of variables and a set of transitions. Each transition t  T is a 6-tuple defined as:

t = (st, qt, it, ot, Pt, At) where st is the current state, qt is the next state, it is an input

symbol, ot is an output symbol, Pt(x) a predicate on the values of the variables, At(x)

an action on the variables.

Our protocols are specified using an EFSM based language, named Specification

Description Language (SDL) standardized by ITU-T [22]. This is a widely used

language to specify communicating systems and protocols, based on the semantic

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

34

model of EFSM. Its goal is to specify the behavior of a system from the

representation of its functional aspects. It allows describing the architecture of the

system i.e. the connection and organization of the elements (blocks, processes, etc.)

with the environment and between them.

3.2 Test case generation

There exist several techniques to generate test suites from a formal specification and

especially from an EFSM [3]. In this work, we used the TESTGEN-SDL approach.

For a given EFSM, M = (I, O, S, x, T), each combination of a state in S and variable

values of x consists of a configuration. The initial state s(0) with the initial variable

values x(0) forms an initial configuration. On the other hand, we are only interested

in the configurations that are reachable from the initial configuration, and they can

be represented by a reachability graph as follows. It is costly to take the system to

the initial configuration, whereas the test sequence length makes little difference.

Specifically, a test is a path from s(0) in the reachability graph. Assume that we are

given a desired fault coverage, i.e., a set of system entities that we want to cover,

such as transitions and variable values. We assign a distinct color to each such entity

and we have a set C of k=|C| distinct colors. Each state and transition is associated

with a subset of colors from C, denoted by c(v)  C and c(u, v)  C, respectively.

The function c(.) designates the required coverage associated with a state or

transition. For instance, if a transition t is assigned a distinct color ct, which is to be

covered. Then each edge (u, v), which is from the transition t, has ct  c(u, v).

We are interested in a complete test set that covers all the colors. That is, the union

of the color sets of the nodes and edges on the paths (tests) is the set of all colors C.

Note that they are not necessarily the conventional covering paths that cover all the

edges. Further, more details on TESTGEN-SDL are provided in [11].

3.3 Test case execution

In order to verify the conformance of an implementation, active testing requires a

set of test sequences. A test sequence is a succession of inputs provoking outputs

obtaining from the formal model. Once we obtain these sequences, they are injected

into the Implementation Under Test (IUT) and the outputs are collected and

compared with the ones expected by the model to finally provide a verdict.

In order to interact with the IUT, a testing architecture is needed and is composed of

Points of Control and Observation (PCO) that are connected with the Upper and

Lower Testers (UT and LT) controlled by the Test Coordination Procedure (TCP).

Each time one of the testers observes a packet, the TCP checks if it is the one

expected regarding the specification.

The International Organization for Standardization proposes in one of its standard

[12] different conformance testing architectures. The main differences between the

presented architectures rely on the position, communication and synchronization of

the components.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

35

Fig. 1. Our testing architecture

In a wired environment, the choice of the testing architecture is not a difficulty

especially because of the fixed node, the reliable communications, as well the realist

assumption that all received packets will be processed. In the MANETs, these

problems have another dimension. The communications are not so reliable, subject

to distortion, multiple retransmissions, routes modifications, delays, collisions, etc.

These aspects raise several issues about the dynamicity/reactivity to the observed

events of the testing architecture depending on the radio interfaces.

Generated test suites from SDL models have been applied on several

implementations under test specifically in wired networks. However, interesting

results have also been obtained for wireless routing protocols rising at the same time

novel issues [14]. Indeed, we performed applications of these above model based

testing techniques for protocols in Mobile ad-hoc Networks (MANET). Many

inconclusive verdicts were obtained compared to the PASS ones. The reasons were

that the SDL specification was unable to consider topological changes due to packet

losses, radio disconnections, etc. We therefore defined a novel approach based on

nodes self similarity. This is what we describe in the next section.

4. Nodes Self Similarity

In opposition to wired and fixed networks, when a test sequence has been generated

and has to be executed on a MANET routing protocol, if the network is not

controlled (as mentioned before) it becomes very difficult to know how to execute it

and how to interpret the verdict provided by the testers. We therefore need to

provide test sequences enforceable on any real network topology. Nevertheless, due

to the volatility of these kind of networks, their topology may be quite different that

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

36

the one represented by the specification. In order to answer to those issues, we

present in the following the nodes’ self similarity concept.

4.1 Self similarity notions

The self similarity notion is presented and applied in [17] especially to lead a real

wired network topology to another one that is smaller and equivalent regarding the

testing process. Indeed, two nodes in a network being self similar may be composed

to become a single node. This technique allows, under some conditions, to map

some topologies from the same equivalence class to a simpler topology from the

same class. In other words, the self similarity means that if a packet is received by a

node A and sent to B and forwarded to another one, then A and B has the same

behavior according to this packet and it is possible to compose A and B to A0 that

represents the two nodes with the encapsulated internal communications. Formally,

we define the combination of two nodes and then the self similarity notion.

Definition 2. Nodes combination.

Let {Ni}iE where E  [1…n] and n  N be a collection of models that can be

described as EFSMs. We note N1 …  Nn the combination of all Ni defined as:

O(N) = UiE O(Ni)

I(N) = UiE I(Ni) – UiE O(Ni)

S(N) = iE S(Ni)

x(N) = iE x(Ni)

T(N) = (s, s’, e, o, Pi(x), Ai(x))

if (si, s’i, e, o, Pi(x), Ai(x))  T(Ni) where Pi(x)  Pi(xi), Ai(x)  Ai(xi), (e, o) 

I(Ni)  O(Ni).

Let   O(N), we define ActHide(N) as the obtained EFSM from N where each

action of  becomes an internal one. This application transforms the

communications between the different components of N into non-observable

actions. Thus, we may define the self similarity of two nodes as:

Definition 3. Nodes self similarity.

Let two possible actions for a node be send(Message, n, m) and receive(Message,

n’, m’) where n (respectively m’) is the observed node, m (respectively n’) the

destination of the packet (respectively sender), and Message is the whole possible

contents of a packet. Let N be a node specification. We note Tr(N) the set of

observable traces, a trace being an input/output sequence. Besides, Tr(N) is a finite

set, indeed the variable domains of the EFSM are discrete and finite (as most of the

communication protocols).

Some NiI are self similar if:

Tr(ActHide(N1N2))  Tr(N), where  = {send(Message, N1, N2),

send(Message, N2, N1), receive(Message, N1, N2), receive(Message, N2, N1)}.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

37

Due to the inherent constraints, we use the self similarity considering:

1. The self similarity is applied from the viewpoint of a single node, the IUT.

2. The self similarity is applied each time a packet of the test sequences is received

or sent in order to simplify the possible topologies known by the IUT.

3. The self similarity is applied only for a specific communication on a defined

route between the IUT and another node.

4.2 Nodes self similarity through MANETs

As the links in those kinds of networks are unreliable and unpredictable, it is needed

to consider a communication failure. Therefore, a path from a source S to a

destination D is divided in two parts. The first one is composed by the nodes

following the source S that succeeded the packet forward, and the second one that

contains D and all nodes that did not receive the packet.

In the case of conformance testing where the network is perceived only from the

IUT viewpoint, three kinds of nodes are noted: the source, the destination and the

other path nodes Ni. We also assume that except S and D, all other Ni have the same

functional behavior. A route is defined as a succession of S, Ni, i  [1…n], and D.

We consider the nodes in the route from the viewpoint of S which is the IUT. Two

possible cases arise during a communication between nodes on a particular route:

either the communication between two successive nodes Ni and Ni+1 succeeds, or it

fails. We consider a communication as a success if a packet received by Ni is

forwarded to Ni+1 and forwarded after to Ni+2 without provoking a RteError

regardless of the meaning used for the acknowledgment.

The process of nodes self similarity may be illustrated as follows:

 Transmission success: If a transmission between Ni and Ni+1 succeeds, we

combine these two nodes in a new node N


. The communications between

Ni and Ni+1 are considered as N


 internal actions. If the communication

between N


 and Ni+2 succeeds, we iterate the process and so on. Thus, in

case that the packet from S reaches D without causing a RteError, we may

combine all the intermediate nodes as illustrated in Fig. 2.

Fig. 2. Combination by self similarity when all communications succeed.

 Transmission failure: If a communication fails between Ni and Ni+1, it

means that all the previous communications have succeeded. So the nodes

between N1 and Ni are combined. Finally, all the nodes after Ni+1, including

D have the same behavior for an observer placed on the IUT. We therefore

combine all the nodes from Ni+1 to D into a new node D (Fig. 3).

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

38

Fig. 3. Combination by self similarity when a communication fails.

With these definitions, the IUT behavior is not impacted by the path length when

the test sequences are executed (except for the test sequence selection). However,

even if the self similarity may reduce the specification from which test sequences

are generated, their executions on the implementation and the relationship with this

specification have to be defined. Due to the lack of space, we herein do not detail

this relationship but the interested reader may have a look to [15].

The node self-similarity enables to represent a large class of topologies with a small

number of nodes and to execute test sequences regardless of the number of

intermediate nodes. Thereby we can reduce the number of nodes used in our

specification in order to generate test scenarios.

5. An experimental study

In order to generate more accurate and shorter test scenario, we minimize our

specification. Due to node self-similarity, we can decide to keep only the smallest

number of nodes required to generate a test sequence according to specific test

objectives. To test functional properties of the DSR protocol (Dynamic Source

Routing), we did not find, from the requirements, test objectives requiring more

than 2 routes into the network. Then, our specification is reduced to 4 nodes, S, N0,

N1 and D which compose 2 routes [S,N0,D] and [S,N1,D] as represented in Fig. 4.

Fig. 4. Specification topology

This topology could represent a large class of real networks by node self-similarity

and using two sets of routes during the execution of the test. Our main idea here is

to create a relation between the specification and the implementation defined as:

Труды ИСП РАН, том 26, вып. 6, 2014 г.

39

All along the test execution, a Test Coordination Procedure (TCP) will preserve a

relation between P0spec and P0imp, and also between P1spec and P1imp assuming it as

an elected strategy. Both sets save the theoretical RouteCache in the TCP. With

respect to Spec, P0imp and P1imp match possible routes described in the specification.

For instance, if a test sequence implies that P0spec disappears: the TCP will detect

the RouteError packet as an input, will erase the first element of P0imp, p0(x) and

will select p1(y)  P1imp as the new route that IUT must use.

5.1. Dynamic Source Routing

Dynamic Source Routing (DSR) is a reactive protocol that discovers and maintains

routes between nodes on demand [16]. It relies on two main mechanisms, Route

Discovery and Route Maintenance. In order to discover a route between two nodes,

DSR floods the network with a Route Request packet. This packet is forwarded only

once by each node after concatenating its own address to the path. When the

targeted node receives the Route Request, it piggybacks a Route Reply to the sender

and a route is established. Each time a packet follows an established route, each

node has to ensure that the link is reliable between itself and the next node. DSR

provides three successive steps to perform this maintenance: link layer

acknowledgment, passive acknowledgment and network layer acknowledgment.

5.2. Experiments

Once the RouteDiscovery has been performed for S, the IUT has a representation of

the topology. From the viewpoint of S, the selected route can be simplified by self-

similarity for each subsequent I/O as above explained. In order to insert the test

scenario in the IUT, we use a UP and a LT linked to the TCP. In our example, a test

scenario containing two objectives is used:

 After having sent a RReq packet, the IUT waits for at least one RteRep

packet, before sending a SrcRte packet by the shortest route to the

destination in its cache.

 If a RteError is received, the IUT will use the next shortest route to the

destination in its cache to send a SrcRte containing the original message.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

40

We detail hereafter the different steps of the execution in the network shown in

Fig. 5. We decided to apply a direct emulation technique based on: (i) a simulator: it

manages the nodes’ mobility into the network and the communications with each

other. A great majority of simulators currently integrates an emulator process, (ii) a

focal machine: this machine hosts the network simulation whose the different

components may be simulated or emulated (according to the options available in the

simulators), and (iii) virtual machines: virtual nodes (simulated ones)

communicating with the focal machines.

Fig. 5. An example of network.

A discrete events simulator such as NS-2 is sufficient and we will thus use NS-2e

(NS-2 patched as emulator) [18]. Four virtual machines are executed on the focal

machine that also runs the simulation side. Our approach is applied on

experimentation through the DSR-UU implementation [19]. The test sequences are

provided by one of our tools TESTGEN-SDL and some test purposes. Direct

emulation is used. It allows using a real implementation of a protocol stack with a

simulator to represent the mobility and to manage the communications. The direct

emulation is performed on a focal machine with the following characteristics:

Pentium M 1,6 GHz, 512 Mo Ram, Fedora-2.6.15 kernel with skas patch,

TUN/TAP interfaces activated. We use User Mode Linux [20] to create virtual

machines with existing prepared kernel and file system. DSR-UU was added in the

kernel. NS-2 patched for emulation was performed to manage mobility and wireless

communication between the virtual machines. If we want a large collection of

nodes, it is necessary to distribute the virtual machines on more than one focal

computer. The proposed emulation and testing architecture are depicted in Fig. 6.

Fig. 6. Direct emulation and testing architecture.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

41

We give next an example of the application of our approach through a testbed. This

example illustrates the execution of a test scenario obtained from a formal

specification on a real network taking into account the dynamic topologies. While

we obtained ~95% of inconclusive testing verdicts without the nodes self similarity,

we here reduce this rate to 5%.

6. Conclusion

We have presented the node self similarity (NSS) approach adapted and applied in a

MANET. This approach allows to reduce the formal specification of the protocol by

considering functional similarity of the nodes in the network. By the same way, we

reduced the number of test cases but particularly, we did face to the changing

topologies and the dynamicity of certain nodes. This approach has been applied to

an implementation of the DSR protocol. Compared to experiments without our NSS

TCP strategy, we note that we reduced the number of inconclusive verdicts obtained

from the execution of test suites.

1- UT injects a Packet in the IUT to the destination node D – pass.

2- LT observes an output RReq(S,D) – pass.

3- LT observes an input RReq(S,D) identical as the one sent where N0 has added its

own address –pass.

4- LT observes an input RReq(S,D) identical as the one sent where N1 has added its

own address –pass.

5- LT observes an input RRep(S,1,D) and TCP stores this route – pass.

6- LT observes an input RRep(S,2,3,D) and TCP stores this route – pass.

7- LT observes an input RRep(S,3,4,5,D) and TCP stores this route – inconclusive this

packet is not expected but do not invalidate the conformance. TCP sorts the different

routes by generating p0(1) = (S, 1,D), p1(2) = (S, 2, 3,D) and p2(3) = (S,4,5,6,D) which

are put in the sets P0imp et P1imp as defined by the ‘‘shortest path’’ strategy. A route

pointer defines which route the TCP expects the IUT to use. This pointer indicates the

first element of P0imp, p0(1) = (S,1,D). The sets P0imp and P1imp in Imp are

equivalent to P0spec and P1spec for the test scenario.

8- LT observes an output SrcR(p0(1)) and p0(1)  P0imp – pass because the route

chosen in Imp is equivalent to the one chosen in Spec. From this step we can use Node

self similarity to represent the route from the point of view of the IUT. We assume the

link between node 1 and node D to be broken.

9- LT observes an inputRErr(1,D), TCP checks P0 et P1 and removes p0(1) from P0.

The pointer moves on P1(1) = p1(2) = (S, 2, 3,D) – pass.

10- LT observes an outputSrcR(p1(2)) and p1(2)  P1 – pass because the route chosen

in Imp is equivalent to the one chosen in Spec.

11- TCP, as the oracle, gives the final verdict PASS, each expected I/O has been

observed.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

42

References

[1]. NS2, The network simulator. Available from: <http://www.isi.edu/nsnam/ns>, 2004.

[2]. OPNet, The opnet modeler. <http://www.opnet.com/products/modeler/home.html>,

2005.

[3]. Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, Nina

Yevtushenko, FSM-based Conformance Testing Methods: a Survey annotated with

Experimental Evaluation, in Elsevier Information and Software Technology, Vol. 52,

p.1286-1297, 2010.

[4]. L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla, Glomosim: a scalable

network simulation environment, Technical Report 990027, UCLA Computer Science

Department, May 1999.

[5]. Andel, Todd R., and Alec Yasinsac. On the credibility of manet simulations.

Computer 39 (7) (2006): 48-54.

[6]. K. Bhargavan, C. Gunter, I. Lee, O. Sokolsky, M. Kim, D. Obradovic, M. Viswanathan,

Verisim: formal analysis of network simulations, IEEE Transactions on Software

Engineering, 28 (2) (2002) 129–145.

[7]. M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, O. Sokolsky, Formally

specified monitoring of temporal properties, in: Euromicro Conference on Real-Time

Systems, 1999.

[8]. T. Lin, S.F. Midkiff, J.S. Park, A framework for wireless ad hoc routing protocols,

Wireless Communications and Networking, 2, 2003 1162–1167.

[9]. U. Glasser, Q.-P. Gu, Formal description and analysis of a distributed location service

for mobile ad hoc networks, Theoretical Computer Science, 2003

[10]. I. Zakkuidin, T. Hawkins, N. Moffat, Towards a game theoretic understanding of ad hoc

routing, Electronic Notes in Theoretical Computer Science, 2005, 119.

[11]. Besse, Cédric, Ana Cavalli, and David Lee. An automatic and optimized test generation

technique applying to TCP/IP protocol. 14th IEEE International Conference on

Automated Software Engineering, 1999.

[12]. Willcock, Colin, et al. Multi Component TTCN-3. An Introduction to TTCN-3, Second

Edition, 77-98, 2011.

[13]. Yu, Wenjing, et al. TDL: a transformation description language from feature model to

use case for automated use case derivation. Proceedings of the 18th International

Software Product Line Conference-Volume 1. ACM, 2014.

[14]. Koceilah Merouane, Cyril Grepet, Stephane Maag, A Methodology for Interoperability

Testing of a MANET Routing Protocol , The Third IEEE International Conference on

Wireless and Mobile Communications ICWMC 2007.

[15]. S. Maag, C. Grepet and A. Cavalli, A formal validation methodology for MANET

routing protocols based on nodes' self similarity, Computer Communications Journal,

Vol.31:4, pp. 827-841, 2008

[16]. D. Johnson, D. Maltz, Y.-C. Hu, The Dynamic Source Routing Protocol for Mobile Ad

Hoc Networks (DSR) – Experimental RFC, IETF MANET Working Group. July 2004.

[17]. Djouvas, C., Griffeth, N. D., & Lynch, N. A. Testing Self-Similar Networks. Electronic

Notes in Theoretical Computer Science, 164 (4), 67-82, 2006.

[18]. NS-2 emulator. Available from: <http://www.isi.edu/nsnam/ns/ns-emulation.html>.

[19]. E. Nordstrom, Dsr-uu v0.1. Available from: <http://core.it.uu.se/core/index.php/DSR-

UU>, Uppsala University

[20]. J. Dike, user-mode-linux. Available from: <http://user-mode-linux.sourceforge.net/>.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

43

[21]. R.Hierons et al., Using formal specifications to support testing. ACM Computing

Surveys, page 41(2):176, 2009.

[22]. ITU-T, Recommendation Z.100: CCITT Specification and Description Language (SDL),

Technical Report ITU-T, 1999.

[23]. Daniel Hiranandani, Katia Obraczkaand J.J Garcia-Luna-Aceves, Manet protocol

simulations considered harmful: The case for benchmarking. IEEE Wireless

Communications, vol. 20, no 4, 2013.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

44

Тестирование в беспроводных
самоорганизующихся сетях на основе

формальных моделей
Стефан Мааг <Stephane.Maag@telecom-sudparis.eu>

 Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157,

9 rue Charles Fourier, 91011 Evry Cedex, France

Аннотация. Тестирование является одним из ключевых этапов разработки сложных

взаимодействующих систем. Использование формальных моделей при тестировании

позволяет автоматизировать процесс генерации тестовых последовательностей по

формальному описанию спецификации и дальнейшего тестирования реальной

системы. Несмотря на то, что тестирование на основе формальных моделей достаточно

хорошо развито, использование этого подхода при тестировании протоколов

маршрутизации в беспроводных самоорганизующихся сетях (ad-hoc) требует решения

ряда специальных возникающих проблем, поскольку отличительной чертой

беспроводных мобильных самоорганизующихся сетей (MANET) является отсутствие

предопределенной инфраструктуры и отсутствие управляющих узлов. В данной

работе, для формального описания спецификации используется модель расширенного

конечного автомата, описанная в терминах языка SDL. Для уменьшения числа

неопределенных вердиктов, часто возникающих в традиционном тестировании на

основе моделей, рассматривается самоподобие узлов сети. Практическая значимость

предложенного подхода иллюстрируется эмуляцией тестирования протокола DSR

(Dynamic Source Routing).

Ключевые слова: тестирование на основе формальных моделей; мобильные

самоорганизующиеся сети; самоподобие узлов; протоколы маршрутизации.

Список литературы

[1]. NS2, The network simulator. Available from: <http://www.isi.edu/nsnam/ns>, 2004.

[2]. OPNet, The opnet modeler. <http://www.opnet.com/products/modeler/home.html>,

2005.

[3]. Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, Nina

Yevtushenko, FSM-based Conformance Testing Methods: a Survey annotated with

Experimental Evaluation, in Elsevier Information and Software Technology, Vol. 52,

p.1286-1297, 2010.

[4]. L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla, Glomosim: a scalable

network simulation environment, Technical Report 990027, UCLA Computer Science

Department, May 1999.

[5]. Andel, Todd R., and Alec Yasinsac. On the credibility of manet simulations.

Computer 39 (7) (2006): 48-54.

[6]. K. Bhargavan, C. Gunter, I. Lee, O. Sokolsky, M. Kim, D. Obradovic, M. Viswanathan,

Verisim: formal analysis of network simulations, IEEE Transactions on Software

Engineering, 28 (2) (2002) 129–145.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

45

[7]. M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, O. Sokolsky, Formally

specified monitoring of temporal properties, in: Euromicro Conference on Real-Time

Systems, 1999.

[8]. T. Lin, S.F. Midkiff, J.S. Park, A framework for wireless ad hoc routing protocols,

Wireless Communications and Networking, 2, 2003 1162–1167.

[9]. U. Glasser, Q.-P. Gu, Formal description and analysis of a distributed location service

for mobile ad hoc networks, Theoretical Computer Science, 2003

[10]. I. Zakkuidin, T. Hawkins, N. Moffat, Towards a game theoretic understanding of ad hoc

routing, Electronic Notes in Theoretical Computer Science, 2005, 119.

[11]. Besse, Cédric, Ana Cavalli, and David Lee. An automatic and optimized test generation

technique applying to TCP/IP protocol. 14th IEEE International Conference on

Automated Software Engineering, 1999.

[12]. Willcock, Colin, et al. Multi Component TTCN-3. An Introduction to TTCN-3, Second

Edition, 77-98, 2011.

[13]. Yu, Wenjing, et al. TDL: a transformation description language from feature model to

use case for automated use case derivation. Proceedings of the 18th International

Software Product Line Conference-Volume 1. ACM, 2014.

[14]. Koceilah Merouane, Cyril Grepet, Stephane Maag, A Methodology for Interoperability

Testing of a MANET Routing Protocol , The Third IEEE International Conference on

Wireless and Mobile Communications ICWMC 2007.

[15]. S. Maag, C. Grepet and A. Cavalli, A formal validation methodology for MANET

routing protocols based on nodes' self similarity, Computer Communications Journal,

Vol.31:4, pp. 827-841, 2008

[16]. D. Johnson, D. Maltz, Y.-C. Hu, The Dynamic Source Routing Protocol for Mobile Ad

Hoc Networks (DSR) – Experimental RFC, IETF MANET Working Group. July 2004.

[17]. Djouvas, C., Griffeth, N. D., & Lynch, N. A. Testing Self-Similar Networks. Electronic

Notes in Theoretical Computer Science, 164 (4), 67-82, 2006.

[18]. NS-2 emulator. Available from: <http://www.isi.edu/nsnam/ns/ns-emulation.html>.

[19]. E. Nordstrom, Dsr-uu v0.1. Available from: <http://core.it.uu.se/core/index.php/DSR-

UU>, Uppsala University

[20]. J. Dike, user-mode-linux. Available from: <http://user-mode-linux.sourceforge.net/>.

[21]. [21] R.Hierons et al., Using formal specifications to support testing. ACM Computing

Surveys, page 41(2):176, 2009.

[22]. ITU-T, Recommendation Z.100: CCITT Specification and Description Language (SDL),

Technical Report ITU-T, 1999.

[23]. Daniel Hiranandani, Katia Obraczkaand J.J Garcia-Luna-Aceves, Manet protocol

simulations considered harmful: The case for benchmarking. IEEE Wireless

Communications, vol. 20, no 4, 2013

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

46

