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Abstract. Collaborative systems are growing in use and popularity. The need to boost the 

methods concerning the interoperability is growing as well; therefore, trustworthy 

interactions of the different systems are a priority. The decision regarding with whom and 

how to interact with other users or applications depends on each system. We focus on 

providing trust verdicts by evaluating the behaviors of different agents, using distributed on-

line network monitoring. This will provide trust management systems information regarding 

a trustee experience, for those trust management systems based on "soft trust". In this work, 

we propose a scalable evaluation method for any on-line network monitoring system, by 

using an auxiliary model, an extended finite state automaton (EFSA), and as well as other 

known methods to reduce the time complexity of the evaluation algorithm. 

Keywords: trust management; on-line network monitoring; scalable evaluation; 

1. Introduction 

Internet applications have become one of the most popular ways to socially interact, 

make commerce, and create collaborative work; making them a daily part of our 

living. With time, the collaborative aspects supported by Internet have evolved 

bringing new tools, methodologies and concepts. These systems keep growing in 

use and in popularity. The need to boost the interoperability methods related to them 

is growing as well; making thus trustworthy interactions of the different systems a 

priority. 

These concepts of trust have been brought to computer science. The systems need to 

interact with users and with other applications. The decision regarding with whom 

and how to interact with other users or applications depend on each application or 

system. There are many definitions of trust in the literature, but the one we adopt 
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here is the one commonly applied and defined in [1], “the firm belief in the 

competence of an entity to act dependably, securely, and reliably within a specified 

context”. From this definition different types of trust management engines have 

been created.  

Some trust management systems use security policies and authentication in order to 

provide the concept of trust. In these types of systems, to determine the entity called 

trustee, it implies there is a related authentication mechanism. The policy languages 

are used to express the actions allowed for each trustee. This is called ``hard trust'' 

because the actions can only be permitted or denied. For example, pioneering 

systems like PolicyMaker [2], KeyNote [3], REFEREE [4] and SD3 [5], have 

presented trust management systems based on security policies. More flexible and 

recent, hard trust management systems have been created, one among them is the 

work tool TrustBuilder2 [6]. 

“Soft trust” management systems, on the other hand are trust management systems 

that are based on concepts like experience, reputation and other dynamic evaluation 

parameters. For this purpose, the observations of the trustee behaviors are added to 

evaluate the trustee experience. Most of the works dedicated to trust estimations in 

different kinds of systems are based on local observations through monitored 

entities. One example of such systems can be found in [7]. 

One crucial point is that soft trust management engines assume the evaluation of the 

behavior is always granted and available for them. Additionally, to the best of our 

knowledge, no generic methods to check behaviors are found in the trust literature. 

As well, no formal approaches have been defined considering several points of 

observation. We propose to use distributed network monitoring techniques to 

analyze the packets exchanged between entities, in order to prove the interactions 

are trustworthy based on the observation of network messages in different points of 

observation. One important characteristic, which is always desirable in trust 

systems, is to have the trust information, as fast as possible. Using our proposed 

mechanism, we are able to provide the behavioral feedback of the systems on-line. 

Our aim is to provide trust information in a generic manner such that, any generic 

framework can use the information about these behaviors and incorporate it into the 

trust estimation algorithm. It is our point of view, that trust management systems 

will benefit from different inputs using different techniques; that is the reason why 

we do not aim to provide another approach how to assess trust, but rather providing 

existing trust management systems with behavioral evaluation of interactions. 

On-line network monitoring cannot be directly applied by performing formal 

verification or model checking [8] techniques. The reason is that, a model of the 

system under test has to be derived in advance, and furthermore a set of properties 

can be verified for corresponding violations. Typically, the system description is 

omitted when performing on-line monitoring/passive testing, and therefore, this 

issue is left out of the scope of the paper. On the other hand, a formal specification 

of the system under test can be obtained by observing input/output traces and 

applying machine learning techniques [9]. However, when performing machine 
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learning techniques, well known problems are encountered, such as statistics 

gathering, explosion problems (especially, for state transition models), etc. 

Therefore, in this paper, we discuss how a number of properties can be still verified 

for a system under test when the formal system specification is absent; and 

especially how to perform this process in a scalable way. 

2. Distributed On-line Monitoring for Behavioral Evaluation 

2.1. Approach 

Our main objectives are: i) to be able to detect untrustworthy behaviors of entities 

where all other approaches fail to achieve it, providing feedback as fast as possible; 

ii) to provide a generic method to describe these untrustworthy behaviors and 

finally, iii) to test those described behaviors in a scalable manner. 

To tackle the first point, the distributed network monitoring approach was proposed. 

With the use of distributed network monitoring, we can see behaviors that cannot be 

seen when using a single point of observation. Let us present a possible case 

scenario, a client computer is sending request to perform operations to a server. 

Both, the client and the server have a trust management engine, and they have 

allowed actions and replies from each other. The client computer sends a message 

of type “A” to the server and at the server and the server receives a type “B” 

message. The message type “B” is an allowed message type and the server performs 

the action. If the network traffic for both points of observation could be obtained 

and compared, an untrustworthy behavior can be detected. This example is 

illustrated in Fig. 1. Without correlating both points of observation, the 

untrustworthy behavior cannot be detected, even if having trust management 

engines incorporated, the systems will consider the interaction trustworthy. 

  

Fig. 1. Different allowed actions at communication ends. 

We do not consider this simply a security issue. In fact, due to the trust definition 

we do not focus if the untrustworthy answer was due to an attack, a software failure 

(bug), system failure, misconfiguration, etc. The relevant fact is that the interaction 

was not proper and reporting the untrustworthy interaction as soon as possible is our 

goal. 
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2.2. Definitions and Assumptions 

In order to accurately understand how our proposed approach solves the stated 

issues, first we need to introduce some preliminary concepts. A network packet 

(packet for short) is the abstraction of the transmitted bit-streams in a computer 

network; this abstraction allows us to interpret a packet as a formatted data unit. A 

packet is interpreted as a “Message” from a telecommunication protocol, for 

example a DNS query, a DNS response, etc. Analyzing a packet is to access the data 

inside that packet to search for particular values; these values have a defined 

meaning depending on the network protocol. Finally, network monitoring is the 

technique of analyzing the packets transmitted over a computer network. Several 

works like, [10], [11] and [12], proposed monitoring approaches considering local 

observations. 

In our paper, we assume that the network packets are being forwarded from the 

different sources of interest to a monitoring server. Each of these sources contains 

network entities monitored through network interfaces called points of observation 

(P.O). We also assume that if the network entity has many interfaces, all the 

forwarded packets from the same network entity will be considered at the same 

point of observation. 

The sequence of packets from a point of observation is called a network trace. A 

network trace (trace for short) is potentially infinite. When we have different traces 

from the points of observation, we can analyze the packets from one trace and create 

a relationship to another trace, defining the concept of distributed network 

monitoring. 

In order to provide evaluation about behaviors, relationships between packets from 

different POs are created. The relationships are created with the packets’ fields and 

conditions that hold over those fields in regards of other packets. Basically, the 

relationships are made performing comparisons. We can compare the values of 

these observations with constant values or variable values. The variable values are 

extracted from other packets (previously observed packets). These comparisons are 

defined formally in our work [13], by the definition of atoms and we also note that 

for the time relationships, we assume the network traces are synchronized using the 

NTP protocol [14]. Since there are multiple network traces from multiple POs, the 

comparisons can be done from: i) a specific network trace, that is using a specific 

point of observation, ii) any network trace, except a specific one or iii) any network 

trace, that is, at any point of observation, i.e., not specifying a point of observation. 

The packet relationships and comparing the values will result in a composition. This 

composition is formally defined as a conjunction of atoms, which we call a 

prototype. A prototype is an abstract model of all the necessary and sufficient 

conditions a network packet should meet, including all its dependencies. For 

example, to describe a DNS query for an IP address, a packet prototype will be 

expressed in the formal language as:  p.flags.response = 0 ^ p.queries.type = ‘A’.  



Труды ИСП РАН, том 26, вып. 6, 2014 г. 

 

129 

A prototype is a part of the formal definition of formulae. One formula is a formal 

representation of what we will call a trust property. Many trust properties can be 

described and formalized in order to describe trust on an environment or context. 

Once the desired trust properties are checked on the network traces, we can give a 

verdict regarding the checked trust property. The possible verdicts are pass and fail 

if the statement is present. If the trust property does not reach a verdict, the result 

will be temporarily assigned as an inconclusive verdict. If many trust properties are 

described, then, different trust verdicts can be obtained. 

The motivation and a method behind our approach were presented previously. Now, 

in order to test the proposed trust properties using distributed network monitoring 

we need to be able to express those properties. It is not sufficient to express the trust 

properties, in fact, we need to accurately express them, not leaving room for any 

ambiguity. Considering that, we need to employ a formalism. A formalism is not 

only useful to unambiguously express the properties, but, also for the software tools 

to be able to provide accurate verdicts. Without a doubt, our approach has a higher 

value, when verdicts can be automatized with a software program. Further, when 

providing a formalism, more researchers related to the field can generate trust 

properties to test. Because of those reasons we have created the necessary formal 

approach.  

We decided to use our own approach rather than using other existing ones, the 

reason is that with the use of our formalization, we can describe the packets finely 

parameterized and at a granular level. Thus, we can make more complex and 

detailed relationships between packets. Another reason is that new application 

protocols rely heavily on the data parts and their semantics, for this reason they 

require a more data-oriented checking which the other approaches are not able to 

provide. Even old protocols have semantics that if the packets are treated as bit-

streams some data values can be inaccurately obtained. For example, in the DNS 

protocol, the DNS notation and data compression method allow to specify a pointer 

to previously used data in the packet to avoid duplication of data (see [15]). 

The formalism basic and most important principles are: the representation of a 

protocol message (packet) and the formal language lexical, syntactical and 

semantical properties; nevertheless, for the scope of this paper, only knowing the 

concepts regarding the language, namely, atoms and prototypes in particular are 

enough, and that is the reason why the interested reader might look for the formal 

language definition in our previous work [13]. Therefore, we present only the basic 

concepts regarding the packet hierarchical representation next. 

A communication protocol message can be represented as a hierarchical set of label-

value pairs. The representation of the packet will have the form defined by a 

message representation: 

Definition 1: A message representation ℳ is defined by the set of pairs ℳ =
{(𝑙, 𝑣)|𝑙 ∈ ℒ ∧ 𝑣 ∈ 𝒮 ∪ ℜ ∪ ℳ′}, where ℒ is a predefined set of string labels, 𝒮 

represents the set of string values, ℜ represents the set of real numbers, and ℳ′ is a 

message representation sub-set. 
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For a given network protocol 𝑃, an associated message representation ℳ can 

generally be defined by the set of labels and data values derived from the message 

format defined in the protocol specification. A message of a protocol 𝑃 is any 

element 𝑚 ∈ ℳ. For each 𝑚 ∈ ℳ, we add two fields: a real number 𝑡𝑚 ∈ ℜ+, 

which represents the time when the message 𝑚 is received or sent by the monitored 

entity, and a PO string label which represents the point of observation from which 

the message m is collected. 

Example of a message representation: a possible message for the DNS protocol 

[15]; specified using the previous definition could be: 

ℳ={(time,154.576889000),(PO,“ADS”),(query_id,58921),(flags,{(response,0),(op

code,std_query),(truncated,0), 

(recursion_desired,1),(reserved,0),(non_auth_data_acceptable,0)}),(questions,1),(a

nswers,0),(authorityRRs,0), 

(additionalRRs,0),(queries,{(name,”telecom-

sudparis.eu”),(type,”A”),(class,”IN”)})} 

Representing a DNS query for the IP address of the associated domain name 

telecom-sudparis.eu. 

For any given network protocol we have a mapping function between the bit-stream 

and the message representation.  

Definition 2: The mapping function is the function ℱ: ℬ ↦ ℳ, where ℬ is the bit-

stream of the network protocol and ℳ is a message hierarchical representation as 

presented in Definition 1. 

Once having the representation of the network messages, and the concepts of 

prototypes and atoms, some important constrains of on-line network monitoring 

systems need to be mentioned: i) a prototype has a set of conditions which can 

involve the packet itself or previously stored packets (dependencies); ii) for each 

packet, all prototypes must be tested, since, each packet could be observed at any 

given state during the execution time. 

3. Scalable Evaluation of On-line Network Monitoring Systems 

The evaluation process in an on-line monitoring system consists in evaluating if 

each packet satisfies the desired trust properties we need to check. Therefore, a 

scalable way for the evaluation algorithm is perhaps the biggest requirement. The 

trust properties have a set of conditions (atoms) that packet's data need to match 

against constant values or against the values of previously stored packets, as 

explained before. After matching the packet's conditions, checking if the matched 

packet completed a trust property is necessary. In order to provide verdicts 
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regarding the trust properties we developed a first approach using the algorithm 

presented in our work in [16]. The worst-case analysis of the time work performed 

by the previously mentioned algorithm is expressed by the following equation: 

𝑇(𝑒𝑣𝑎𝑙_𝑝𝑟𝑜𝑡𝑠) = 3𝑁𝑝 + ∑ 𝑁𝑃𝐴𝑖

𝑁𝑝

𝑖=1

+ ∑ 2𝑁𝑃𝐷𝑖

𝑁𝑝

𝑖=1

+ ∑(𝑁𝑝  −  𝑖)𝑄𝐿𝑖

𝑁𝑝

𝑖=1

+ ∑(𝑁𝑝  −  𝑖)(𝑄𝐿𝑖 ∗  𝑁𝐷𝐴𝑖  

𝑁𝑝

𝑖=1

) 

Where Np is the number of prototypes in the formulae, NPAi is number of atoms 

that require no dependencies of the ith prototype, NPDi is the number of 

dependencies of the ith prototype, QLi is the length of the queue of stored packets of 

the ith prototype, and NDAi is the number of atoms that require dependencies of the 

ith prototype. 

The experimental results achieved with the first algorithm are good. However, due 

to the on-line monitoring constraints, we are required to create the most scalable 

algorithm for the evaluation of trust properties. Based on the time complexity 

analysis of our algorithm, we note that the term that dominates the equation is the 

term, ∑ (𝑁𝑝  −  𝑖)(𝑄𝐿𝑖 ∗  𝑁𝐷𝐴𝑖  
𝑁𝑝

𝑖=1
); from this term we can observe that atoms 

(conditions) need to be checked against the stored packet queues and this is being 

repeated up to (𝑁𝑝  −  𝑖) times. In order to create a scalable algorithm, we need to 

avoid repeating any checks for all packets. 

In order to improve the algorithm, known techniques are applied. First, we propose 

to make use of a data structure that will aid avoiding repeated checks. In addition to 

that, we propose to keep a track of previously visited packets in the stored queue to 

avoid re-visiting packets, which did not match previous tests, and therefore, not to 

check stored packets that do not meet all the necessary conditions. 

We have chosen to use a tree-structured (single rooted) extended finite state 

automaton (EFSA) as the structure for the scalable evaluation. The reason is that, 

this structure fits the desired purpose of the algorithm. We propose evaluating the 

packets by doing the atomic test once and to keep track of the already tested atoms 

(a transition model based on predicates) and then, when a packet is found to match a 

prototype (at some accept state), execute some actions (updating functions), for 

instance, storing the packet on a queue or reporting a property verdict. These types 

of models have become popular to achieve scalable algorithms, for example, several 

works like, [17,18] use different types of automata, finite, non-deterministic, hybrid 

and extended to evaluate a regular expression language to achieve a scalable deep 

packet inspection. 

Our target is to generate the EFSA from the necessary prototypes. The strategy in 

order to avoid repeating atomic tests is to generate transitions from the root state, 

adding predicates of the atomic tests which are more common at the beginning and 
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creating related atomic tests (atomic tests which are part of the same prototype) 

along the same path; for the next prototypes, uncommon atoms will be branches 

added at the current state after following the common transitions. Therefore, our 

algorithm to generate the EFSA relies on three principal actions: i) comparing each 

atom and add a count of how many times it appears in the formulae; ii) sort the 

prototypes putting first the ones containing the most common atoms, then, do a 

nested-sorting according the second most common atom, and so on; iii) finally, 

going along the path of the EFSA creating new nodes branching with its respective 

transitions based on the atoms or just following the already existing ones (starting 

from the root) and adding the proper updating functions. The algorithm to generate 

our EFSA based on the formulae prototypes can be found in the Algorithm 1. 

 

Algorithm 1. EFSA generation algorithm. 

Example of an EFSA generation: Let us consider the trust property: "For all 

responses from an authoritative DNS server, all future responses from other points 

of observation are the same replies from the authoritative DNS server if the queries 

are the same". 

Using our approach we express this trust property by having the following 

prototypes: 

𝑝1 ←  𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ∧ 𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′ 

𝑝2 ←  𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ∧ 𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝1. 𝑑𝑛𝑠. 𝐼𝐷 

𝑝3 ←  𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ∧ 𝑝. 𝑃𝑂 ≠ ′𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑝1. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 
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𝑝4 ←  𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ∧ 𝑝. 𝑃𝑂 ≠′ 𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝐼𝐷
= 𝑝3. 𝑑𝑛𝑠. 𝐼𝐷 ∧ 𝑝. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 𝑝2. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 

The atom count for these prototypes is: 

𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ← 2 

𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′ ← 2 

𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ← 2 

𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝1. 𝑑𝑛𝑠. 𝐼𝐷 ← 1 

𝑝. 𝑃𝑂 ≠′ 𝐴𝐷𝑆′ ← 2 

𝑝. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑝1. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 1 

𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝3. 𝑑𝑛𝑠. 𝐼𝐷 ← 1 

𝑝. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 𝑝2. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 ← 1 

For this particular example, the order of the prototypes is not altered when sorting 

them. Finally, the generated EFSA by our algorithm (Algorithm 1) is represented in 

the Fig. 2. 

 

Fig. 2. Generated EFSA example 
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Once having the generated EFSA, we can introduce the proposed algorithm that is 

used to evaluate the packets using the auxiliary data structure we generated. The 

algorithm is shown as Algorithm 2: 

 

Algorithm 2. Evaluation algorithm using EFSA. 

Finally, we can proceed to calculate the complexity of the evaluation algorithm 

using the auxiliary EFSA (as shown in Algorithm 2). The work of the algorithm can 

be expressed by: 

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = ∑(𝛩(1) +  𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖))

|𝑆|

𝑖=1

, 

where |𝑆| is the cardinality of the set of states in the EFSA. Respectively, the work 

of 𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖):  
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𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖) = ∑ (𝛩(1) + 𝛩(1) + 𝛩(1) + 𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗) + 𝛩(1) + 𝛩(1))

|𝑇𝐴𝑖|

𝑗=1

+ 𝛩(1) + ∑(𝛩(1)) + 𝛩(1),

|𝑈𝑖|

𝑗=1

 

where |𝑇𝐴𝑖| is the cardinality of the set of transitions of the ith element of the state 

set, |𝑈𝑖| is the cardinality of the set of updating functions for the ith state executed 

transition. Subsequently, The work of 𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗): 

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗) =  ∑(𝛩(1) + 𝛩(1) + 𝛩(1)),

|𝑄𝑗|

𝑘=1

 

where |𝑄𝑗| is the length of the queue of the ith prototype stored packets queue.  

Substituting and simplifying the equations we get that (we omit the algebraic 

operations): 

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = 3|𝑆| + 5 ∑|𝑇𝐴𝑖|

|𝑆|

𝑖=1

+ ∑|𝑈𝑖|

|𝑆|

𝑖=1

+ 3 ∑ ∑ |𝑄𝑖|

|𝑇𝐴𝑖|

𝑗=1

|𝑆|

𝑖=1

 

We note that counting from all states each transition is the equivalent to count all 

transitions, i.e., |𝑇|, the cardinality of all transitions. Similarly, counting from all 

states each updating function is the equivalent to count all updating functions, i.e., 
|𝑈| is the cardinality of all updating functions. After this substitution in the previous 

equation we get: 

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = 3|𝑆| + 5|𝑇| + |𝑈| + 3 ∑|𝑄𝑖|

|𝑇|

𝑖=1

 

The complexity of our algorithm results in an improved linear complexity, 𝑂(|𝑇|) =

∑ |𝑄𝑖||𝑇|
𝑖=1 . We also note that any algorithm that runs in linear time can only modify a 

linear amount of memory cells and therefore, the space complexity of the algorithm 

yields a linear space complexity. It is also important to remark that the complexity 

of the algorithm (both in time and space) highly depends on the length of the stored 

queues of packets. In our previous works we have proposed having a continuous 

parallel process that given a timeout threshold, will remove from the packet queues 

unused packets. We do this in order to avoid resource starvation in the monitoring 

system. 
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4. Conclusions 

In this paper, we have presented a scalable approach to evaluate on-line network 

monitoring systems. Furthermore, we have introduced an algorithm that regardless 

of the language used to express the monitoring properties is capable of generating 

an auxiliary model to evaluate them; the only requirements are the basic concepts 

and constraints that any on-line network monitoring system has. The proposed 

method after creating the data-structure uses a second algorithm that we presented 

in order to evaluate the packets and provide verdicts regarding them in a linear time. 

Our contribution focuses on providing verdicts in a scalable manner and as stated in 

Section 3, the algorithm highly depends on the length of the queues of previously 

stored packets. Therefore, our future work includes proposing a complete model that 

takes timeouts into account and also to extend our current language to be able to 

express variable timeouts for each prototype individually. Naturally, developing a 

tool that incorporates the proposed approach is included into our perspectives. 

References 

[1]. T. Grandison, M. Sloman. A survey of trust in internet applications. IEEE 

Communications Surveys and Tutorials, 2000, vol. 3, no. 4, pp. 2-16. 

[2]. M. Blaze, J. Feigenbaum, J. Lacy. Decentralized trust management. Proc. the IEEE 

Symposium on Security and Privacy, 1996. pp. 164–173. Oakland, CA, USA. 

[3]. M. Blaze, J. Feigenbaum, A.D. Keromytis. Keynote: Trust management for public-key 

infrastructures. Proc. the Springer 6th International Workshop of Security Protocols, 

1999. pp. 59–63. Cambridge, UK. 

[4]. Y.-H. Chu, J. Feigenbaum, B. Lamacchia, P. Resnick, M. Strauss. Referee: Trust 

management for web applications. O’Reilly World Wide Web Journal, 1997, vol. 2, no. 

3, pp. 127-139. 

[5]. T. Jim. Sd3: A trust management system with certified evaluation. Proc the IEEE 

Symposium on Security and Privacy, 2001. pp. 106–115. Oakland, California, USA. 

[6]. A. J. Lee, M. Winslett, K. J. Perano. Trustbuilder2: A reconfigurable framework for trust 

negotiation. Proc. the Third IFIP WG 11.11 International Conference, 2009. pp. 176–

195. West Lafayette, IN, USA. 

[7]. Z. Movahedi, M. Nogueira, G. Pujolle. An autonomic knowledge monitoring scheme for 

trust management on mobile ad hoc networks. Proc. the IEEE Wireless Communications 

and Networking Conference, 2012. pp. 1898–1903. Paris, France. 

[8]. G. Holzmann. The spin model checker : primer and reference manual. Addison-Wesley 

Professional. 2003, pp. 1-596. 

[9]. M.-N. Irfan, C. Oriat, R. Groz. Model inference and testing. Elsevier Advances in 

Computers, 2013, vol. 89, pp. 89-139. 

[10]. D. Lee, R. Miller. Network protocol system monitoring-a formal approach with passive 

testing. IEEE/ACM Transactions on Networking, 2006, vol. 14, no. 2, pp. 424-437. 

[11]. A. R. Cavalli, S. Maag, E. M. de Oca. A passive conformance testing approach for a 

manet routing protocol. Proc. the ACM Symposium on Applied Computing (SAC), 

2009. pp. 207–2011. Honolulu, Hawaii, USA. 

[12]. X. Che, F. Lalanne, S. Maag. A logic-based passive testing approach for the validation 

of communicating protocols. Proc. the 7th International Conference on Evaluation of 



Труды ИСП РАН, том 26, вып. 6, 2014 г. 

 

137 

Novel Approaches to Software Engineering (ENASE), 2012. pp. 53–64. Wroclaw, 

Poland. 

[13]. X. Che, J. Lopez, S. Maag, G. Morales. Testing trust properties using a formal 

distributed network monitoring approach. Springer Annals of telecommunications - 

Annales des télécommunications, 2014. pp. 1-11. doi: 10.1007/s12243-014-0454-3. 

[14]. D. L. Mills. Internet time synchronization: the network time protocol. IEEE Transactions 

on Communications, 1991, vol. 39, no. 10, pp. 1482-1493. 

[15]. P. V. Mockapetris, RFC 1035 Domain names — implementation and specification. 

Internet Engineering Task Force, 1987. 

[16]. J. López, X. Che, S. Maag. An online passive testing approach for communication 

protocols. Proc. the 9th International Conference on Evaluation of Novel Approaches to 

Software Engineering (ENASE), 2014. pp. 136–143. Lisbon, Portugal. 

[17]. R. Smith, C. Estan, S. Jha, S. Kong .Deflating the big bang: Fast and scalable deep 

packet inspection with extended finite automata. Proc. Conference on Data 

Communication, SIGCOMM ’08, 2008. pp. 207–218. New York, NY, USA. 

[18]. M. Becchi, C. Wiseman, P. Crowley. Evaluating regular expression matching engines on 

network and general purpose processors. Proc. The 5th ACM/IEEE Symposium on 

Architectures for Networking and Communications Systems (ANCS), 2009. pp. 30–39. 

New York, NY, USA. 

  



Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014. 

 

138 

Масштабируемый метод оценки 
управления доверием на основе 
распределенных систем онлайн 

мониторинга 

1 
Х. Лопез <jorge.eleazar.lopez_coronado@telecom-sudparis.eu>  

1 
С. Мааг <stephane.maag@telecom-sudparis.eu> 

2 
Ж. Моралес <gmorales@galileo.edu> 

1 
Institut Mines Telecom, Telecom SudParis CNRS UMR 5157, 

9 rue Charles Fourier, Évry, Île-de-France, 91000, France  
2 
RLICT Universidad Galileo, 

7a. Av. Final, Calle Dr. Eduardo Suger Cofiño, Zona 10, Guatemala, Guatemala 

Аннотация. Корпоративные системы для организации и поддержания совместной 

работы становятся все более популярными. В условиях роста использования таких 

систем разработка методов, обеспечивающих надежное доверительное взаимодействие 

вовлеченных агентов, становится одной из приоритетных задач. Решение о том, с 

какими агентами (другими пользователями или приложениями) и каким образом 

осуществлять взаимодействие, может быть различным для различных систем. В данной 

работе мы акцентируем внимание на предоставлении вердикта о степени доверия на 

основе оценки поведения различных агентов с использованием распределенного 

сетевого он-лайн мониторинга. Предложенная оценка предоставляет системам 

управления, основанным на «мягком доверии» информацию об опыте доверителя. В 

данной работе мы предлагаем масштабируемый метод оценки для любого он-лайн 

мониторинга с использованием вспомогательной модели расширенного конечного 

полуавтомата и известных методов для уменьшения временной сложности алгоритма 

оценки.  

Ключевые слова: управление доверием; онлайн сетевой мониторинг; масштабируемая 

оценка. 
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