
Труды ИСП РАН, том 26, вып. 6, 2014 г.

125

Scalable Evaluation of Distributed On-line
Network Monitoring for Behavioral

Feedback in Trust Management

1
Jorge López <jorge.eleazar.lopez_coronado@telecom-sudparis.eu>

1
Stephane Maag <stephane.maag@telecom-sudparis.eu>

2
Gerardo Morales <gmorales@galileo.edu>

1
Institut Mines Telecom, Telecom SudParis CNRS UMR 5157,

9 rue Charles Fourier, Évry, Île-de-France, 91000, France
2
RLICT Universidad Galileo,

7a. Av. Final, Calle Dr. Eduardo Suger Cofiño, Zona 10, Guatemala, Guatemala

Abstract. Collaborative systems are growing in use and popularity. The need to boost the

methods concerning the interoperability is growing as well; therefore, trustworthy

interactions of the different systems are a priority. The decision regarding with whom and

how to interact with other users or applications depends on each system. We focus on

providing trust verdicts by evaluating the behaviors of different agents, using distributed on-

line network monitoring. This will provide trust management systems information regarding

a trustee experience, for those trust management systems based on "soft trust". In this work,

we propose a scalable evaluation method for any on-line network monitoring system, by

using an auxiliary model, an extended finite state automaton (EFSA), and as well as other

known methods to reduce the time complexity of the evaluation algorithm.

Keywords: trust management; on-line network monitoring; scalable evaluation;

1. Introduction

Internet applications have become one of the most popular ways to socially interact,

make commerce, and create collaborative work; making them a daily part of our

living. With time, the collaborative aspects supported by Internet have evolved

bringing new tools, methodologies and concepts. These systems keep growing in

use and in popularity. The need to boost the interoperability methods related to them

is growing as well; making thus trustworthy interactions of the different systems a

priority.

These concepts of trust have been brought to computer science. The systems need to

interact with users and with other applications. The decision regarding with whom

and how to interact with other users or applications depend on each application or

system. There are many definitions of trust in the literature, but the one we adopt

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

126

here is the one commonly applied and defined in [1], “the firm belief in the

competence of an entity to act dependably, securely, and reliably within a specified

context”. From this definition different types of trust management engines have

been created.

Some trust management systems use security policies and authentication in order to

provide the concept of trust. In these types of systems, to determine the entity called

trustee, it implies there is a related authentication mechanism. The policy languages

are used to express the actions allowed for each trustee. This is called ``hard trust''

because the actions can only be permitted or denied. For example, pioneering

systems like PolicyMaker [2], KeyNote [3], REFEREE [4] and SD3 [5], have

presented trust management systems based on security policies. More flexible and

recent, hard trust management systems have been created, one among them is the

work tool TrustBuilder2 [6].

“Soft trust” management systems, on the other hand are trust management systems

that are based on concepts like experience, reputation and other dynamic evaluation

parameters. For this purpose, the observations of the trustee behaviors are added to

evaluate the trustee experience. Most of the works dedicated to trust estimations in

different kinds of systems are based on local observations through monitored

entities. One example of such systems can be found in [7].

One crucial point is that soft trust management engines assume the evaluation of the

behavior is always granted and available for them. Additionally, to the best of our

knowledge, no generic methods to check behaviors are found in the trust literature.

As well, no formal approaches have been defined considering several points of

observation. We propose to use distributed network monitoring techniques to

analyze the packets exchanged between entities, in order to prove the interactions

are trustworthy based on the observation of network messages in different points of

observation. One important characteristic, which is always desirable in trust

systems, is to have the trust information, as fast as possible. Using our proposed

mechanism, we are able to provide the behavioral feedback of the systems on-line.

Our aim is to provide trust information in a generic manner such that, any generic

framework can use the information about these behaviors and incorporate it into the

trust estimation algorithm. It is our point of view, that trust management systems

will benefit from different inputs using different techniques; that is the reason why

we do not aim to provide another approach how to assess trust, but rather providing

existing trust management systems with behavioral evaluation of interactions.

On-line network monitoring cannot be directly applied by performing formal

verification or model checking [8] techniques. The reason is that, a model of the

system under test has to be derived in advance, and furthermore a set of properties

can be verified for corresponding violations. Typically, the system description is

omitted when performing on-line monitoring/passive testing, and therefore, this

issue is left out of the scope of the paper. On the other hand, a formal specification

of the system under test can be obtained by observing input/output traces and

applying machine learning techniques [9]. However, when performing machine

Труды ИСП РАН, том 26, вып. 6, 2014 г.

127

learning techniques, well known problems are encountered, such as statistics

gathering, explosion problems (especially, for state transition models), etc.

Therefore, in this paper, we discuss how a number of properties can be still verified

for a system under test when the formal system specification is absent; and

especially how to perform this process in a scalable way.

2. Distributed On-line Monitoring for Behavioral Evaluation

2.1. Approach

Our main objectives are: i) to be able to detect untrustworthy behaviors of entities

where all other approaches fail to achieve it, providing feedback as fast as possible;

ii) to provide a generic method to describe these untrustworthy behaviors and

finally, iii) to test those described behaviors in a scalable manner.

To tackle the first point, the distributed network monitoring approach was proposed.

With the use of distributed network monitoring, we can see behaviors that cannot be

seen when using a single point of observation. Let us present a possible case

scenario, a client computer is sending request to perform operations to a server.

Both, the client and the server have a trust management engine, and they have

allowed actions and replies from each other. The client computer sends a message

of type “A” to the server and at the server and the server receives a type “B”

message. The message type “B” is an allowed message type and the server performs

the action. If the network traffic for both points of observation could be obtained

and compared, an untrustworthy behavior can be detected. This example is

illustrated in Fig. 1. Without correlating both points of observation, the

untrustworthy behavior cannot be detected, even if having trust management

engines incorporated, the systems will consider the interaction trustworthy.

Fig. 1. Different allowed actions at communication ends.

We do not consider this simply a security issue. In fact, due to the trust definition

we do not focus if the untrustworthy answer was due to an attack, a software failure

(bug), system failure, misconfiguration, etc. The relevant fact is that the interaction

was not proper and reporting the untrustworthy interaction as soon as possible is our

goal.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

128

2.2. Definitions and Assumptions

In order to accurately understand how our proposed approach solves the stated

issues, first we need to introduce some preliminary concepts. A network packet

(packet for short) is the abstraction of the transmitted bit-streams in a computer

network; this abstraction allows us to interpret a packet as a formatted data unit. A

packet is interpreted as a “Message” from a telecommunication protocol, for

example a DNS query, a DNS response, etc. Analyzing a packet is to access the data

inside that packet to search for particular values; these values have a defined

meaning depending on the network protocol. Finally, network monitoring is the

technique of analyzing the packets transmitted over a computer network. Several

works like, [10], [11] and [12], proposed monitoring approaches considering local

observations.

In our paper, we assume that the network packets are being forwarded from the

different sources of interest to a monitoring server. Each of these sources contains

network entities monitored through network interfaces called points of observation

(P.O). We also assume that if the network entity has many interfaces, all the

forwarded packets from the same network entity will be considered at the same

point of observation.

The sequence of packets from a point of observation is called a network trace. A

network trace (trace for short) is potentially infinite. When we have different traces

from the points of observation, we can analyze the packets from one trace and create

a relationship to another trace, defining the concept of distributed network

monitoring.

In order to provide evaluation about behaviors, relationships between packets from

different POs are created. The relationships are created with the packets’ fields and

conditions that hold over those fields in regards of other packets. Basically, the

relationships are made performing comparisons. We can compare the values of

these observations with constant values or variable values. The variable values are

extracted from other packets (previously observed packets). These comparisons are

defined formally in our work [13], by the definition of atoms and we also note that

for the time relationships, we assume the network traces are synchronized using the

NTP protocol [14]. Since there are multiple network traces from multiple POs, the

comparisons can be done from: i) a specific network trace, that is using a specific

point of observation, ii) any network trace, except a specific one or iii) any network

trace, that is, at any point of observation, i.e., not specifying a point of observation.

The packet relationships and comparing the values will result in a composition. This

composition is formally defined as a conjunction of atoms, which we call a

prototype. A prototype is an abstract model of all the necessary and sufficient

conditions a network packet should meet, including all its dependencies. For

example, to describe a DNS query for an IP address, a packet prototype will be

expressed in the formal language as: p.flags.response = 0 ^ p.queries.type = ‘A’.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

129

A prototype is a part of the formal definition of formulae. One formula is a formal

representation of what we will call a trust property. Many trust properties can be

described and formalized in order to describe trust on an environment or context.

Once the desired trust properties are checked on the network traces, we can give a

verdict regarding the checked trust property. The possible verdicts are pass and fail

if the statement is present. If the trust property does not reach a verdict, the result

will be temporarily assigned as an inconclusive verdict. If many trust properties are

described, then, different trust verdicts can be obtained.

The motivation and a method behind our approach were presented previously. Now,

in order to test the proposed trust properties using distributed network monitoring

we need to be able to express those properties. It is not sufficient to express the trust

properties, in fact, we need to accurately express them, not leaving room for any

ambiguity. Considering that, we need to employ a formalism. A formalism is not

only useful to unambiguously express the properties, but, also for the software tools

to be able to provide accurate verdicts. Without a doubt, our approach has a higher

value, when verdicts can be automatized with a software program. Further, when

providing a formalism, more researchers related to the field can generate trust

properties to test. Because of those reasons we have created the necessary formal

approach.

We decided to use our own approach rather than using other existing ones, the

reason is that with the use of our formalization, we can describe the packets finely

parameterized and at a granular level. Thus, we can make more complex and

detailed relationships between packets. Another reason is that new application

protocols rely heavily on the data parts and their semantics, for this reason they

require a more data-oriented checking which the other approaches are not able to

provide. Even old protocols have semantics that if the packets are treated as bit-

streams some data values can be inaccurately obtained. For example, in the DNS

protocol, the DNS notation and data compression method allow to specify a pointer

to previously used data in the packet to avoid duplication of data (see [15]).

The formalism basic and most important principles are: the representation of a

protocol message (packet) and the formal language lexical, syntactical and

semantical properties; nevertheless, for the scope of this paper, only knowing the

concepts regarding the language, namely, atoms and prototypes in particular are

enough, and that is the reason why the interested reader might look for the formal

language definition in our previous work [13]. Therefore, we present only the basic

concepts regarding the packet hierarchical representation next.

A communication protocol message can be represented as a hierarchical set of label-

value pairs. The representation of the packet will have the form defined by a

message representation:

Definition 1: A message representation ℳ is defined by the set of pairs ℳ =
{(𝑙, 𝑣)|𝑙 ∈ ℒ ∧ 𝑣 ∈ 𝒮 ∪ ℜ ∪ ℳ′}, where ℒ is a predefined set of string labels, 𝒮

represents the set of string values, ℜ represents the set of real numbers, and ℳ′ is a

message representation sub-set.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

130

For a given network protocol 𝑃, an associated message representation ℳ can

generally be defined by the set of labels and data values derived from the message

format defined in the protocol specification. A message of a protocol 𝑃 is any

element 𝑚 ∈ ℳ. For each 𝑚 ∈ ℳ, we add two fields: a real number 𝑡𝑚 ∈ ℜ+,

which represents the time when the message 𝑚 is received or sent by the monitored

entity, and a PO string label which represents the point of observation from which

the message m is collected.

Example of a message representation: a possible message for the DNS protocol

[15]; specified using the previous definition could be:

ℳ={(time,154.576889000),(PO,“ADS”),(query_id,58921),(flags,{(response,0),(op

code,std_query),(truncated,0),

(recursion_desired,1),(reserved,0),(non_auth_data_acceptable,0)}),(questions,1),(a

nswers,0),(authorityRRs,0),

(additionalRRs,0),(queries,{(name,”telecom-

sudparis.eu”),(type,”A”),(class,”IN”)})}

Representing a DNS query for the IP address of the associated domain name

telecom-sudparis.eu.

For any given network protocol we have a mapping function between the bit-stream

and the message representation.

Definition 2: The mapping function is the function ℱ: ℬ ↦ ℳ, where ℬ is the bit-

stream of the network protocol and ℳ is a message hierarchical representation as

presented in Definition 1.

Once having the representation of the network messages, and the concepts of

prototypes and atoms, some important constrains of on-line network monitoring

systems need to be mentioned: i) a prototype has a set of conditions which can

involve the packet itself or previously stored packets (dependencies); ii) for each

packet, all prototypes must be tested, since, each packet could be observed at any

given state during the execution time.

3. Scalable Evaluation of On-line Network Monitoring Systems

The evaluation process in an on-line monitoring system consists in evaluating if

each packet satisfies the desired trust properties we need to check. Therefore, a

scalable way for the evaluation algorithm is perhaps the biggest requirement. The

trust properties have a set of conditions (atoms) that packet's data need to match

against constant values or against the values of previously stored packets, as

explained before. After matching the packet's conditions, checking if the matched

packet completed a trust property is necessary. In order to provide verdicts

Труды ИСП РАН, том 26, вып. 6, 2014 г.

131

regarding the trust properties we developed a first approach using the algorithm

presented in our work in [16]. The worst-case analysis of the time work performed

by the previously mentioned algorithm is expressed by the following equation:

𝑇(𝑒𝑣𝑎𝑙_𝑝𝑟𝑜𝑡𝑠) = 3𝑁𝑝 + ∑ 𝑁𝑃𝐴𝑖

𝑁𝑝

𝑖=1

+ ∑ 2𝑁𝑃𝐷𝑖

𝑁𝑝

𝑖=1

+ ∑(𝑁𝑝 − 𝑖)𝑄𝐿𝑖

𝑁𝑝

𝑖=1

+ ∑(𝑁𝑝 − 𝑖)(𝑄𝐿𝑖 ∗ 𝑁𝐷𝐴𝑖

𝑁𝑝

𝑖=1

)

Where Np is the number of prototypes in the formulae, NPAi is number of atoms

that require no dependencies of the ith prototype, NPDi is the number of

dependencies of the ith prototype, QLi is the length of the queue of stored packets of

the ith prototype, and NDAi is the number of atoms that require dependencies of the

ith prototype.

The experimental results achieved with the first algorithm are good. However, due

to the on-line monitoring constraints, we are required to create the most scalable

algorithm for the evaluation of trust properties. Based on the time complexity

analysis of our algorithm, we note that the term that dominates the equation is the

term, ∑ (𝑁𝑝 − 𝑖)(𝑄𝐿𝑖 ∗ 𝑁𝐷𝐴𝑖
𝑁𝑝

𝑖=1
); from this term we can observe that atoms

(conditions) need to be checked against the stored packet queues and this is being

repeated up to (𝑁𝑝 − 𝑖) times. In order to create a scalable algorithm, we need to

avoid repeating any checks for all packets.

In order to improve the algorithm, known techniques are applied. First, we propose

to make use of a data structure that will aid avoiding repeated checks. In addition to

that, we propose to keep a track of previously visited packets in the stored queue to

avoid re-visiting packets, which did not match previous tests, and therefore, not to

check stored packets that do not meet all the necessary conditions.

We have chosen to use a tree-structured (single rooted) extended finite state

automaton (EFSA) as the structure for the scalable evaluation. The reason is that,

this structure fits the desired purpose of the algorithm. We propose evaluating the

packets by doing the atomic test once and to keep track of the already tested atoms

(a transition model based on predicates) and then, when a packet is found to match a

prototype (at some accept state), execute some actions (updating functions), for

instance, storing the packet on a queue or reporting a property verdict. These types

of models have become popular to achieve scalable algorithms, for example, several

works like, [17,18] use different types of automata, finite, non-deterministic, hybrid

and extended to evaluate a regular expression language to achieve a scalable deep

packet inspection.

Our target is to generate the EFSA from the necessary prototypes. The strategy in

order to avoid repeating atomic tests is to generate transitions from the root state,

adding predicates of the atomic tests which are more common at the beginning and

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

132

creating related atomic tests (atomic tests which are part of the same prototype)

along the same path; for the next prototypes, uncommon atoms will be branches

added at the current state after following the common transitions. Therefore, our

algorithm to generate the EFSA relies on three principal actions: i) comparing each

atom and add a count of how many times it appears in the formulae; ii) sort the

prototypes putting first the ones containing the most common atoms, then, do a

nested-sorting according the second most common atom, and so on; iii) finally,

going along the path of the EFSA creating new nodes branching with its respective

transitions based on the atoms or just following the already existing ones (starting

from the root) and adding the proper updating functions. The algorithm to generate

our EFSA based on the formulae prototypes can be found in the Algorithm 1.

Algorithm 1. EFSA generation algorithm.

Example of an EFSA generation: Let us consider the trust property: "For all

responses from an authoritative DNS server, all future responses from other points

of observation are the same replies from the authoritative DNS server if the queries

are the same".

Using our approach we express this trust property by having the following

prototypes:

𝑝1 ← 𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ∧ 𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′

𝑝2 ← 𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ∧ 𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝1. 𝑑𝑛𝑠. 𝐼𝐷

𝑝3 ← 𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ∧ 𝑝. 𝑃𝑂 ≠ ′𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑝1. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

Труды ИСП РАН, том 26, вып. 6, 2014 г.

133

𝑝4 ← 𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ∧ 𝑝. 𝑃𝑂 ≠′ 𝐴𝐷𝑆′ ∧ 𝑝. 𝑑𝑛𝑠. 𝐼𝐷
= 𝑝3. 𝑑𝑛𝑠. 𝐼𝐷 ∧ 𝑝. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 𝑝2. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

The atom count for these prototypes is:

𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 0 ← 2

𝑝. 𝑃𝑂 = ′𝐴𝐷𝑆′ ← 2

𝑝. 𝑑𝑛𝑠. 𝑓𝑙𝑎𝑔𝑠. 𝑅 = 1 ← 2

𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝1. 𝑑𝑛𝑠. 𝐼𝐷 ← 1

𝑝. 𝑃𝑂 ≠′ 𝐴𝐷𝑆′ ← 2

𝑝. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑝1. 𝑑𝑛𝑠. 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 1

𝑝. 𝑑𝑛𝑠. 𝐼𝐷 = 𝑝3. 𝑑𝑛𝑠. 𝐼𝐷 ← 1

𝑝. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 𝑝2. 𝑑𝑛𝑠. 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 ← 1

For this particular example, the order of the prototypes is not altered when sorting

them. Finally, the generated EFSA by our algorithm (Algorithm 1) is represented in

the Fig. 2.

Fig. 2. Generated EFSA example

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

134

Once having the generated EFSA, we can introduce the proposed algorithm that is

used to evaluate the packets using the auxiliary data structure we generated. The

algorithm is shown as Algorithm 2:

Algorithm 2. Evaluation algorithm using EFSA.

Finally, we can proceed to calculate the complexity of the evaluation algorithm

using the auxiliary EFSA (as shown in Algorithm 2). The work of the algorithm can

be expressed by:

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = ∑(𝛩(1) + 𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖))

|𝑆|

𝑖=1

,

where |𝑆| is the cardinality of the set of states in the EFSA. Respectively, the work

of 𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖):

Труды ИСП РАН, том 26, вып. 6, 2014 г.

135

𝑇(𝑒𝑣𝑎𝑙_𝑡𝑟𝑎𝑛𝑠𝑖) = ∑ (𝛩(1) + 𝛩(1) + 𝛩(1) + 𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗) + 𝛩(1) + 𝛩(1))

|𝑇𝐴𝑖|

𝑗=1

+ 𝛩(1) + ∑(𝛩(1)) + 𝛩(1),

|𝑈𝑖|

𝑗=1

where |𝑇𝐴𝑖| is the cardinality of the set of transitions of the ith element of the state

set, |𝑈𝑖| is the cardinality of the set of updating functions for the ith state executed

transition. Subsequently, The work of 𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗):

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑝𝑗) = ∑(𝛩(1) + 𝛩(1) + 𝛩(1)),

|𝑄𝑗|

𝑘=1

where |𝑄𝑗| is the length of the queue of the ith prototype stored packets queue.

Substituting and simplifying the equations we get that (we omit the algebraic

operations):

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = 3|𝑆| + 5 ∑|𝑇𝐴𝑖|

|𝑆|

𝑖=1

+ ∑|𝑈𝑖|

|𝑆|

𝑖=1

+ 3 ∑ ∑ |𝑄𝑖|

|𝑇𝐴𝑖|

𝑗=1

|𝑆|

𝑖=1

We note that counting from all states each transition is the equivalent to count all

transitions, i.e., |𝑇|, the cardinality of all transitions. Similarly, counting from all

states each updating function is the equivalent to count all updating functions, i.e.,
|𝑈| is the cardinality of all updating functions. After this substitution in the previous

equation we get:

𝑇(𝑒𝑣𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑠) = 3|𝑆| + 5|𝑇| + |𝑈| + 3 ∑|𝑄𝑖|

|𝑇|

𝑖=1

The complexity of our algorithm results in an improved linear complexity, 𝑂(|𝑇|) =

∑ |𝑄𝑖||𝑇|
𝑖=1 . We also note that any algorithm that runs in linear time can only modify a

linear amount of memory cells and therefore, the space complexity of the algorithm

yields a linear space complexity. It is also important to remark that the complexity

of the algorithm (both in time and space) highly depends on the length of the stored

queues of packets. In our previous works we have proposed having a continuous

parallel process that given a timeout threshold, will remove from the packet queues

unused packets. We do this in order to avoid resource starvation in the monitoring

system.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

136

4. Conclusions

In this paper, we have presented a scalable approach to evaluate on-line network

monitoring systems. Furthermore, we have introduced an algorithm that regardless

of the language used to express the monitoring properties is capable of generating

an auxiliary model to evaluate them; the only requirements are the basic concepts

and constraints that any on-line network monitoring system has. The proposed

method after creating the data-structure uses a second algorithm that we presented

in order to evaluate the packets and provide verdicts regarding them in a linear time.

Our contribution focuses on providing verdicts in a scalable manner and as stated in

Section 3, the algorithm highly depends on the length of the queues of previously

stored packets. Therefore, our future work includes proposing a complete model that

takes timeouts into account and also to extend our current language to be able to

express variable timeouts for each prototype individually. Naturally, developing a

tool that incorporates the proposed approach is included into our perspectives.

References

[1]. T. Grandison, M. Sloman. A survey of trust in internet applications. IEEE

Communications Surveys and Tutorials, 2000, vol. 3, no. 4, pp. 2-16.

[2]. M. Blaze, J. Feigenbaum, J. Lacy. Decentralized trust management. Proc. the IEEE

Symposium on Security and Privacy, 1996. pp. 164–173. Oakland, CA, USA.

[3]. M. Blaze, J. Feigenbaum, A.D. Keromytis. Keynote: Trust management for public-key

infrastructures. Proc. the Springer 6th International Workshop of Security Protocols,

1999. pp. 59–63. Cambridge, UK.

[4]. Y.-H. Chu, J. Feigenbaum, B. Lamacchia, P. Resnick, M. Strauss. Referee: Trust

management for web applications. O’Reilly World Wide Web Journal, 1997, vol. 2, no.

3, pp. 127-139.

[5]. T. Jim. Sd3: A trust management system with certified evaluation. Proc the IEEE

Symposium on Security and Privacy, 2001. pp. 106–115. Oakland, California, USA.

[6]. A. J. Lee, M. Winslett, K. J. Perano. Trustbuilder2: A reconfigurable framework for trust

negotiation. Proc. the Third IFIP WG 11.11 International Conference, 2009. pp. 176–

195. West Lafayette, IN, USA.

[7]. Z. Movahedi, M. Nogueira, G. Pujolle. An autonomic knowledge monitoring scheme for

trust management on mobile ad hoc networks. Proc. the IEEE Wireless Communications

and Networking Conference, 2012. pp. 1898–1903. Paris, France.

[8]. G. Holzmann. The spin model checker : primer and reference manual. Addison-Wesley

Professional. 2003, pp. 1-596.

[9]. M.-N. Irfan, C. Oriat, R. Groz. Model inference and testing. Elsevier Advances in

Computers, 2013, vol. 89, pp. 89-139.

[10]. D. Lee, R. Miller. Network protocol system monitoring-a formal approach with passive

testing. IEEE/ACM Transactions on Networking, 2006, vol. 14, no. 2, pp. 424-437.

[11]. A. R. Cavalli, S. Maag, E. M. de Oca. A passive conformance testing approach for a

manet routing protocol. Proc. the ACM Symposium on Applied Computing (SAC),

2009. pp. 207–2011. Honolulu, Hawaii, USA.

[12]. X. Che, F. Lalanne, S. Maag. A logic-based passive testing approach for the validation

of communicating protocols. Proc. the 7th International Conference on Evaluation of

Труды ИСП РАН, том 26, вып. 6, 2014 г.

137

Novel Approaches to Software Engineering (ENASE), 2012. pp. 53–64. Wroclaw,

Poland.

[13]. X. Che, J. Lopez, S. Maag, G. Morales. Testing trust properties using a formal

distributed network monitoring approach. Springer Annals of telecommunications -

Annales des télécommunications, 2014. pp. 1-11. doi: 10.1007/s12243-014-0454-3.

[14]. D. L. Mills. Internet time synchronization: the network time protocol. IEEE Transactions

on Communications, 1991, vol. 39, no. 10, pp. 1482-1493.

[15]. P. V. Mockapetris, RFC 1035 Domain names — implementation and specification.

Internet Engineering Task Force, 1987.

[16]. J. López, X. Che, S. Maag. An online passive testing approach for communication

protocols. Proc. the 9th International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE), 2014. pp. 136–143. Lisbon, Portugal.

[17]. R. Smith, C. Estan, S. Jha, S. Kong .Deflating the big bang: Fast and scalable deep

packet inspection with extended finite automata. Proc. Conference on Data

Communication, SIGCOMM ’08, 2008. pp. 207–218. New York, NY, USA.

[18]. M. Becchi, C. Wiseman, P. Crowley. Evaluating regular expression matching engines on

network and general purpose processors. Proc. The 5th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems (ANCS), 2009. pp. 30–39.

New York, NY, USA.

Trudy ISP RАN [The Proceedings of ISP RAS], vol. 26, issue 6, 2014.

138

Масштабируемый метод оценки
управления доверием на основе
распределенных систем онлайн

мониторинга

1
Х. Лопез <jorge.eleazar.lopez_coronado@telecom-sudparis.eu>

1
С. Мааг <stephane.maag@telecom-sudparis.eu>

2
Ж. Моралес <gmorales@galileo.edu>

1
Institut Mines Telecom, Telecom SudParis CNRS UMR 5157,

9 rue Charles Fourier, Évry, Île-de-France, 91000, France
2
RLICT Universidad Galileo,

7a. Av. Final, Calle Dr. Eduardo Suger Cofiño, Zona 10, Guatemala, Guatemala

Аннотация. Корпоративные системы для организации и поддержания совместной

работы становятся все более популярными. В условиях роста использования таких

систем разработка методов, обеспечивающих надежное доверительное взаимодействие

вовлеченных агентов, становится одной из приоритетных задач. Решение о том, с

какими агентами (другими пользователями или приложениями) и каким образом

осуществлять взаимодействие, может быть различным для различных систем. В данной

работе мы акцентируем внимание на предоставлении вердикта о степени доверия на

основе оценки поведения различных агентов с использованием распределенного

сетевого он-лайн мониторинга. Предложенная оценка предоставляет системам

управления, основанным на «мягком доверии» информацию об опыте доверителя. В

данной работе мы предлагаем масштабируемый метод оценки для любого он-лайн

мониторинга с использованием вспомогательной модели расширенного конечного

полуавтомата и известных методов для уменьшения временной сложности алгоритма

оценки.

Ключевые слова: управление доверием; онлайн сетевой мониторинг; масштабируемая

оценка.

Список литературы

[1]. T. Grandison, M. Sloman. A survey of trust in internet applications. IEEE

Communications Surveys and Tutorials, 2000, vol. 3, no. 4, pp. 2-16.

[2]. M. Blaze, J. Feigenbaum, J. Lacy. Decentralized trust management. Proc. the IEEE

Symposium on Security and Privacy, 1996. pp. 164–173. Oakland, CA, USA.

[3]. M. Blaze, J. Feigenbaum, A.D. Keromytis. Keynote: Trust management for public-key

infrastructures. Proc. the Springer 6th International Workshop of Security Protocols,

1999. pp. 59–63. Cambridge, UK.

[4]. Y.-H. Chu, J. Feigenbaum, B. Lamacchia, P. Resnick, M. Strauss. Referee: Trust

management for web applications. O’Reilly World Wide Web Journal, 1997, vol. 2, no.

3, pp. 127-139.

Труды ИСП РАН, том 26, вып. 6, 2014 г.

139

[5]. T. Jim. Sd3: A trust management system with certified evaluation. Proc the IEEE

Symposium on Security and Privacy, 2001. pp. 106–115. Oakland, California, USA.

[6]. A. J. Lee, M. Winslett, K. J. Perano. Trustbuilder2: A reconfigurable framework for trust

negotiation. Proc. the Third IFIP WG 11.11 International Conference, 2009. pp. 176–

195. West Lafayette, IN, USA.

[7]. Z. Movahedi, M. Nogueira, G. Pujolle. An autonomic knowledge monitoring scheme for

trust management on mobile ad hoc networks. Proc. the IEEE Wireless Communications

and Networking Conference, 2012. pp. 1898–1903. Paris, France.

[8]. G. Holzmann. The spin model checker : primer and reference manual. Addison-Wesley

Professional. 2003, pp. 1-596.

[9]. M.-N. Irfan, C. Oriat, R. Groz. Model inference and testing. Elsevier Advances in

Computers, 2013, vol. 89, pp. 89-139.

[10]. D. Lee, R. Miller. Network protocol system monitoring-a formal approach with passive

testing. IEEE/ACM Transactions on Networking, 2006, vol. 14, no. 2, pp. 424-437.

[11]. A. R. Cavalli, S. Maag, E. M. de Oca. A passive conformance testing approach for a

manet routing protocol. Proc. the ACM Symposium on Applied Computing (SAC),

2009. pp. 207–2011. Honolulu, Hawaii, USA.

[12]. X. Che, F. Lalanne, S. Maag. A logic-based passive testing approach for the validation

of communicating protocols. Proc. the 7th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE), 2012. pp. 53–64. Wroclaw,

Poland.

[13]. X. Che, J. Lopez, S. Maag, G. Morales. Testing trust properties using a formal

distributed network monitoring approach. Springer Annals of telecommunications -

Annales des télécommunications, 2014. pp. 1-11. doi: 10.1007/s12243-014-0454-3.

[14]. D. L. Mills. Internet time synchronization: the network time protocol. IEEE Transactions

on Communications, 1991, vol. 39, no. 10, pp. 1482-1493.

[15]. P. V. Mockapetris, RFC 1035 Domain names — implementation and specification.

Internet Engineering Task Force, 1987.

[16]. J. López, X. Che, S. Maag. An online passive testing approach for communication

protocols. Proc. the 9th International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE), 2014. pp. 136–143. Lisbon, Portugal.

[17]. R. Smith, C. Estan, S. Jha, S. Kong .Deflating the big bang: Fast and scalable deep

packet inspection with extended finite automata. Proc. Conference on Data

Communication, SIGCOMM ’08, 2008. pp. 207–218. New York, NY, USA.

[18]. M. Becchi, C. Wiseman, P. Crowley. Evaluating regular expression matching engines on

network and general purpose processors. Proc. The 5th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems (ANCS), 2009. pp. 30–39.

New York, NY, USA.

