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Abstract. JavaScript is one of the most popular programming languages in the world. Started
as a simple scripting language for web browsers it now becomes language of choice for
millions of engineers in the web, mobile and server-side development. However its
interpretational nature doesn’t always provide adequate performance. To speed up execution
of JavaScript programs there were developed several optimization techniques in recent years.
One example of modern high-performing JavaScript engine is a V8 engine used in Google
Chrome browser and node.js web server among others. This is an open source project which
implemented some advanced optimization methods including Just-in-Time compilation,
Polymorphic Inline Caches, optimized recompilation of hot code regions, On Stack
Replacement &c. In previous year we were involved in project of optimizing performance of
V8 JavaScript engine on major benchmark suites including Octane, SunSpider and Kraken.
The project was quite time limited, however we achieved about 10% total performance
improvement compared to open source version. We have decided to focus on following
approaches to achieve the project’s goal: optimized build of V8 itself, because total running
time is shared between compilation and execution; tuning of V8 runtime options which
default values may not be always optimal; implementation of additional scalar optimizations.
All of these approaches have made contribution to final result.
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1. Introduction

JavaScript is one of the most popular programming languages in the world [1].
Started as a simple scripting language for web browsers it now becomes language of
choice for millions of engineers in the web, mobile and server-side development.
However its interpretational nature doesn’t always provide adequate performance.
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To speed up execution of JavaScript programs there were developed several
optimization techniques in recent years. One example of modern high-performing
JavaScript engine is a V8 engine [2] used in Google Chrome browser and node.js
web server among others. This is an open source project which implemented some
advanced optimization methods including Just-in-Time compilation [3],
Polymorphic Inline Caches [4], optimized recompilation of hot code regions, On
Stack Replacement [5] &c.

In previous year we were involved in project of optimizing performance of V8
JavaScript engine on major benchmark suites including Octane [6], SunSpider [7]
and Kraken [8]. The project was quite time limited, however we achieved about
10% total performance improvement compared to open source version.

The rest of paper is organized as follow: in Section 2 there is an architectural
overview of V8, in Section 3 we enumerate and reason our approaches with more
detailed discussion in Sections 4, 5, and 6. We conclude in Section 7.

2. V8 engine architecture

In contrast to other JavaScript engines V8 implements compilation to native code
from the beginning. It consists of two JIT compilers: the first (called Full code
generator) performs fast non-optimized compilation for every encountered
JavaScript function, while the second one (called Crankshaft) compiles and
optimizes only those functions (and loops) which already ran some amount of time
and are likely to run further.

JavaScript [ 2 ('Y Hydrogen
Native Dptimized

Code PRy Lithium

Full

Fig. 1 V8 Engine Architecture

The overall work of V8 engine is as follows (Fig.1):

e Every new script is preliminary scanned to separate each individual
function.

e The function that should run is compiled into Abstract Syntax Tree (AST)
form.

e AST is compiled into native machine code instrumented with counters for
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function calls and loop back edges.

e Also on method call sites V8 inserts special dispatch structure called
Polymorphic Inline Cache (PIC). This cache is initialized with call to
generic dispatch routine. After each invocation PIC is populated with direct
call to type specific receiver up to some predefined limit. In such way PICs
collect runtime type information of objects.

e The result code then runs.

¢ When instrumentation counters reach some predefined threshold, “hot”
function or loop is selected for optimized recompilation.

o For this purpose V8 one more time recompiles selected function in AST
form. But in this case it also performs optimizations.

o |t compiles AST into Static Single Assignment (SSA) form (called
Hydrogen) and propagates type information collected by PICs along SSA
edges.

e Then it performs several optimizations on this SSA form using type
information.

o After that it generates low level representation (called Lithium), does
Register Allocation and generates optimized native code which then runs.

Note that V8 optimizing compiler performs much less transformational passes than
common ahead-of-time compilers (e.g. gcc, clang/llvm). The reasons behind this we
further discuss in Section 6.

3. Approaches to speed up V8 engine

To investigate possible areas of V8 optimization we have performed V8 engine
profiling on ARM platform with three different profiling tools: Perf [9], ARM
Streamline [10] and Gprof [11]. Each of those has advantages and disadvantages
over others but results are very close: V8 JavaScript engine has no ‘hot” functions in
itself that need to be optimized. Different methods show different functions in order
of share to total execution time. This is clear evidence that individual function’s
contribution is very small compared to precision of measurement. Thus optimization
of individual functions can’t achieve much increase in performance.

In following table object identified as perf-2549.map is a code generated by V8
engine.

Overhe | Shared Object Symbol
ad
65.11% | perf-2549.map 0x5aba4000
0.76% | d8 v8::internal::Scanner::ScanldentifierOrKeyword()
0.75% | d8 v8::internal::IncrementalMarking::Step
(int,v8::internal::IncrementalMarking::CompletionA

23




Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue
6, 2015, pp. 21-32

ction)

0.66%

[kernel.kallsyms]

_raw_spin_unlock _irgrestore

0.65%

libc-2.17.50

memchr

0.52%

ds

v8::internal::Heap::DoScavenge(v8::internal::Object
Visitor*, unsigned char*)

0.51%

libc-2.17.50

0x0004f3ac

0.50%

ds

int
v8::internal::FlexibleBodyVisitor<v8::internal::New
SpaceScavenger,
v8::internal::JSObject::BodyDescriptor,
int>::VisitSpecialized<20>

(v8::internal::Map*, v8::internal::HeapObject*)

0.44%

a8

void
v8::internal::ScavengingVisitor<(v8::internal::Mark
sHandling)1,
(v8::internal::LoggingAndProfiling)0>::EvacuateOb
ject
<(v8::internal::ScavengingVisitor<(v8::internal::Ma
rksHandling)1,
(v8::internal::LoggingAndProfiling)0>::ObjectConte
nts)1, 4>(v8::internal::Map*,
v8:.internal::HeapObject**,
v8:.internal::HeapObject*, int)

0.43%

a8

v8::internal::ScavengeWeakObjectRetainer::Retain
As(v8::internal::Object*)

0.43%

as

v8::internal::Scanner::Scan()

0.37%

[kernel.kallsyms]

__memzero

Fig. 2 Several top entries from detailed profile of Octane benchmark by V8 on Linux.

We have decided to focus on following approaches to achieve the project’s goal:

Optimized build of V8 itself, because total running time is shared between
compilation and execution.

Tuning of V8 runtime options which default values may not be always
optimal.

Implementation of additional scalar optimizations.

All of these approaches have made contribution to final result.

4. Optimized build

We have decided to investigate Link Time Optimization [12] and platform options
tuning [13]. The latter gave us small outcome (~0.5%) while former have decreased
performance.
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We have made investigation on Arndale ARM (Samsung Exynos 5250 CPU)
development board running Linux with Linaro gcc 4.7 toolchain for the first
investigation and the same board running Android 4.4 with Android NDK 9 Linaro
toolchain for the second one.

We have specified the following platform options:

e -0O3 for highest optimization level
e -mcpu=cortex-al5 for target CPU.
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Fig. 3 Effect of LTO
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Fig. 4 Effect of platform options tuning
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5. Runtime parameters tuning

V8 engine has quite large set of parameters which guides JIT compilation and
execution of JavaScript programs. We have found that their default values are not
adequate in all cases, e.g. we have found that disabling lazy compilation can
substantially improve performance.

As noted in Section 2 V8 performs preliminary parsing of each new script source to
separate each individual function. However when we specify parameter ‘--no-lazy’,
it instead compiles all functions at once in given script.

Enabling this mode has various impacts on different benchmark. We can see big
degradation of CodelLoad test score by about 40% while in the same time huge
increase 2.5 times of MandreelLatency test score. The overall increase about 5%
was also reproduced on Galaxy Note 3 devices running Android 4.4.
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Fig. 5 Effect of eager compilation on Octane benchmarks.

6. Scalar optimizations

We have tried to implement several well-known scalar optimizations in V8 however
with varying success. In contrast to ahead of time compilers for classic imperative
languages such as C/C++, Pascal, Ada &c., just-in-time compiler has to share time
among analysis, optimization and execution. That’s why sophisticated optimizations
which require thorough analysis don’t necessarily lead to increasing performance in
such case.

As noted in Section 2 the V8 engine performs optimized compilation of ‘hot’
regions similar to off-line compiles did. At this stage PICs already collected type
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information so we can apply well-known scalar optimization techniques in AST and
SSA representations.

The platform used in benchmark was Samsung Galaxy Note 3 with Qualcomm
Snapdragon (N9005) CPU. Devices run Android 4.4.2 (KitKat). Octane benchmark
suite used in tests was Version 9 download from corresponding repository. For
development we use Android NDK r9c on Linux x86_64 Ububtu 12.04 TLS

6.1 Algebraic Simplification

The Algebraic Simplification uses algebraic identities like a - 0 = a to simplify
expressions. This transformation was implemented in V8 parser when it builds AST
representation for Crankshaft.

As was noted above at this point we have collected type information so we can
safely optimize algebraic expression given that operands are humeric.

Despite the large amount of optimized expressions in Octane benchmark suite the
final result was very small.
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Fig. 6 Effect of Algebraic Expression Simplification

6.2 Common Subexpression Elimination

V8 engine already has implemented Global Value Numbering optimization which
eliminates redundant code. However there are related but not identical optimizations
such as Constant Propagation and Common Subexpression Elimination. For their
differences see [14].

Because V8 already has some kind of Constant Propagation we decided to
implement Global Common Subexpression Elimination in SSA form.
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We have found that running this optimization before and after Global Value
Numbering gives net effect about 2% performance improvement.
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Fig. 7 Effect of Global Common Subexpression Elimination

6.3 Fast call frame for ARM
In our investigations we also have found interesting instruction sequence that speeds
up call frame management on original ARMv7 CPUs.
To support EABI [15] compiler typically generate the following prologue and
epilogue in each function.
Prologue:
func:
stmdb  sp!, {r4-r5, fp, Ir}
add fp, sp, #N

Epilogue:
mov sp, fp
Idmia sp!, {rd-r5, fp, Ir}
bx Ir

We have found however that the following sequences of instruction while provide
the same functionality are executed faster on ARMv7 CPUs:
Prologue:
func:
sub sp, sp, #16
stm sp, {r4,r5,fp, Ir}
add fp, sp, #N
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Epilogue:
mov sp, fp
Idm sp, {r4, r5, fp, Ir}
add sp, sp, #16
bx Ir
The results on synthetic benchmark (~2 million calls, sec):

2M calls

5.8
5.7
5.6 -
5.5 7
54 4
5.3 7
5.2 4
51 4

original fast frame

It is interesting however, that such results are not reproduced on Qualcomm
Snapdragon 800 CPU.

7. Conclusion

We have found that even in the presence of type information in V8 optimizing
compiler application of traditional scalar optimizations in JavaScript gives
diminishing returns.

On the other hand successful application of optimized build gives us evidence that
there is a space for optimizations in JavaScript engines.
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