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Abstract. JavaScript is one of the most popular programming languages in the world. Started 

as a simple scripting language for web browsers it now becomes language of choice for 

millions of engineers in the web, mobile and server-side development. However its 

interpretational nature doesn’t always provide adequate performance. To speed up execution 

of JavaScript programs there were developed several optimization techniques in recent years. 

One example of modern high-performing JavaScript engine is a V8 engine used in Google 

Chrome browser and node.js web server among others. This is an open source project which 

implemented some advanced optimization methods including Just-in-Time compilation, 

Polymorphic Inline Caches, optimized recompilation of hot code regions, On Stack 

Replacement &c. In previous year we were involved in project of optimizing performance of 

V8 JavaScript engine on major benchmark suites including Octane, SunSpider and Kraken. 

The project was quite time limited, however we achieved about 10% total performance 

improvement compared to open source version. We have decided to focus on following 

approaches to achieve the project’s goal: optimized build of V8 itself, because total running 

time is shared between compilation and execution; tuning of V8 runtime options which 

default values may not be always optimal; implementation of additional scalar optimizations. 

All of these approaches have made contribution to final result. 
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1. Introduction 

JavaScript is one of the most popular programming languages in the world [1]. 

Started as a simple scripting language for web browsers it now becomes language of 

choice for millions of engineers in the web, mobile and server-side development. 

However its interpretational nature doesn’t always provide adequate performance. 
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To speed up execution of JavaScript programs there were developed several 

optimization techniques in recent years. One example of modern high-performing 

JavaScript engine is a V8 engine [2] used in Google Chrome browser and node.js 

web server among others. This is an open source project which implemented some 

advanced optimization methods including Just-in-Time compilation [3], 

Polymorphic Inline Caches [4], optimized recompilation of hot code regions, On 

Stack Replacement [5] &c. 

In previous year we were involved in project of optimizing performance of V8 

JavaScript engine on major benchmark suites including Octane [6], SunSpider [7] 

and Kraken [8]. The project was quite time limited, however we achieved about 

10% total performance improvement compared to open source version. 

The rest of paper is organized as follow: in Section 2 there is an architectural 

overview of V8, in Section 3 we enumerate and reason our approaches with more 

detailed discussion in Sections 4, 5, and 6. We conclude in Section 7. 

2. V8 engine architecture 

In contrast to other JavaScript engines V8 implements compilation to native code 

from the beginning. It consists of two JIT compilers: the first (called Full code 

generator) performs fast non-optimized compilation for every encountered 

JavaScript function, while the second one (called Crankshaft) compiles and 

optimizes only those functions (and loops) which already ran some amount of time 

and are likely to run further. 

 

Fig. 1 V8 Engine Architecture 

The overall work of V8 engine is as follows (Fig.1): 

 Every new script is preliminary scanned to separate each individual 

function. 

 The function that should run is compiled into Abstract Syntax Tree (AST) 

form. 

 AST is compiled into native machine code instrumented with counters for 
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function calls and loop back edges. 

 Also on method call sites V8 inserts special dispatch structure called 

Polymorphic Inline Cache (PIC). This cache is initialized with call to 

generic dispatch routine. After each invocation PIC is populated with direct 

call to type specific receiver up to some predefined limit. In such way PICs 

collect runtime type information of objects. 

 The result code then runs. 

 When instrumentation counters reach some predefined threshold, “hot” 

function or loop is selected for optimized recompilation. 

 For this purpose V8 one more time recompiles selected function in AST 

form. But in this case it also performs optimizations. 

 It compiles AST into Static Single Assignment (SSA) form (called 

Hydrogen) and propagates type information collected by PICs along SSA 

edges. 

 Then it performs several optimizations on this SSA form using type 

information. 

 After that it generates low level representation (called Lithium), does 

Register Allocation and generates optimized native code which then runs. 

Note that V8 optimizing compiler performs much less transformational passes than 

common ahead-of-time compilers (e.g. gcc, clang/llvm). The reasons behind this we 

further discuss in Section 6. 

3. Approaches to speed up V8 engine 

To investigate possible areas of V8 optimization we have performed V8 engine 

profiling on ARM platform with three different profiling tools: Perf [9], ARM 

Streamline [10] and Gprof [11]. Each of those has advantages and disadvantages 

over others but results are very close: V8 JavaScript engine has no ‘hot’ functions in 

itself that need to be optimized. Different methods show different functions in order 

of share to total execution time. This is clear evidence that individual function’s 

contribution is very small compared to precision of measurement. Thus optimization 

of individual functions can’t achieve much increase in performance. 

In following table object identified as perf-2549.map is a code generated by V8 

engine. 

Overhe

ad 

Shared Object Symbol 

65.11% perf-2549.map   0x5aba4000  

0.76% d8   v8::internal::Scanner::ScanIdentifierOrKeyword()  

0.75% d8 v8::internal::IncrementalMarking::Step 

(int,v8::internal::IncrementalMarking::CompletionA
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ction)  

0.66%    [kernel.kallsyms] _raw_spin_unlock_irqrestore 

0.65% libc-2.17.so  memchr  

0.52%  d8 v8::internal::Heap::DoScavenge(v8::internal::Object

Visitor*, unsigned char*)  

0.51% libc-2.17.so  0x0004f3ac   

0.50% d8 int 

v8::internal::FlexibleBodyVisitor<v8::internal::New

SpaceScavenger,  

v8::internal::JSObject::BodyDescriptor, 

int>::VisitSpecialized<20> 

(v8::internal::Map*, v8::internal::HeapObject*)  

0.44% d8 void 

v8::internal::ScavengingVisitor<(v8::internal::Mark

sHandling)1, 

(v8::internal::LoggingAndProfiling)0>::EvacuateOb

ject 

<(v8::internal::ScavengingVisitor<(v8::internal::Ma

rksHandling)1, 

(v8::internal::LoggingAndProfiling)0>::ObjectConte

nts)1, 4>(v8::internal::Map*, 

v8::internal::HeapObject**, 

v8::internal::HeapObject*, int)  

0.43% d8 v8::internal::ScavengeWeakObjectRetainer::Retain

As(v8::internal::Object*)  

0.43% d8 v8::internal::Scanner::Scan()   

0.37% [kernel.kallsyms] __memzero  

Fig. 2 Several top entries from detailed profile of Octane benchmark by V8 on Linux. 

We have decided to focus on following approaches to achieve the project’s goal: 

 Optimized build of V8 itself, because total running time is shared between 

compilation and execution. 

 Tuning of V8 runtime options which default values may not be always 

optimal. 

 Implementation of additional scalar optimizations. 

All of these approaches have made contribution to final result. 

4. Optimized build 

We have decided to investigate Link Time Optimization [12] and platform options 

tuning [13]. The latter gave us small outcome (~0.5%) while former have decreased 

performance. 
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We have made investigation on Arndale ARM (Samsung Exynos 5250 CPU) 

development board running Linux with Linaro gcc 4.7 toolchain for the first 

investigation and the same board running Android 4.4 with Android NDK 9 Linaro 

toolchain for the second one. 

We have specified the following platform options: 

 -O3 for highest optimization level 

 -mcpu=cortex-a15 for target CPU. 

 
Fig. 3 Effect of LTO 

 
Fig. 4 Effect of platform options tuning 
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5. Runtime parameters tuning 

V8 engine has quite large set of parameters which guides JIT compilation and 

execution of JavaScript programs. We have found that their default values are not 

adequate in all cases, e.g. we have found that disabling lazy compilation can 

substantially improve performance. 

As noted in Section 2 V8 performs preliminary parsing of each new script source to 

separate each individual function. However when we specify parameter ‘--no-lazy’, 

it instead compiles all functions at once in given script. 

Enabling this mode has various impacts on different benchmark. We can see big 

degradation of CodeLoad test score by about 40% while in the same time huge 

increase 2.5 times of MandreelLatency test score. The overall increase about 5% 

was also reproduced on Galaxy Note 3 devices running Android 4.4. 

 

Fig. 5 Effect of eager compilation on Octane benchmarks. 

6. Scalar optimizations 

We have tried to implement several well-known scalar optimizations in V8 however 

with varying success. In contrast to ahead of time compilers for classic imperative 

languages such as C/C++, Pascal, Ada &c., just-in-time compiler has to share time 

among analysis, optimization and execution. That’s why sophisticated optimizations 

which require thorough analysis don’t necessarily lead to increasing performance in 

such case. 

As noted in Section 2 the V8 engine performs optimized compilation of ‘hot’ 

regions similar to off-line compiles did. At this stage PICs already collected type 
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information so we can apply well-known scalar optimization techniques in AST and 

SSA representations. 

The platform used in benchmark was Samsung Galaxy Note 3 with Qualcomm 

Snapdragon (N9005) CPU. Devices run Android 4.4.2 (KitKat). Octane benchmark 

suite used in tests was Version 9 download from corresponding repository. For 

development we use Android NDK r9c on Linux x86_64 Ububtu 12.04 TLS 

6.1 Algebraic Simplification 

The Algebraic Simplification uses algebraic identities like a - 0 = a to simplify 

expressions. This transformation was implemented in V8 parser when it builds AST 

representation for Crankshaft. 

As was noted above at this point we have collected type information so we can 

safely optimize algebraic expression given that operands are numeric. 

Despite the large amount of optimized expressions in Octane benchmark suite the 

final result was very small. 

 

Fig. 6 Effect of Algebraic Expression Simplification 

6.2 Common Subexpression Elimination 

V8 engine already has implemented Global Value Numbering optimization which 

eliminates redundant code. However there are related but not identical optimizations 

such as Constant Propagation and Common Subexpression Elimination. For their 

differences see [14]. 

Because V8 already has some kind of Constant Propagation we decided to 

implement Global Common Subexpression Elimination in SSA form. 
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We have found that running this optimization before and after Global Value 

Numbering gives net effect about 2% performance improvement. 

 

Fig. 7 Effect of Global Common Subexpression Elimination 

6.3 Fast call frame for ARM 

In our investigations we also have found interesting instruction sequence that speeds 

up call frame management on original ARMv7 CPUs. 

To support EABI [15] compiler typically generate the following prologue and 

epilogue in each function. 

Prologue: 

func: 
       stmdb     sp!, {r4-r5, fp, lr} 
       add         fp, sp, #N 

Epilogue: 

       mov         sp, fp 
       ldmia       sp!, {r4-r5, fp, lr} 
       bx            lr 

We have found however that the following sequences of instruction while provide 

the same functionality are executed faster on ARMv7 CPUs: 

Prologue: 

func: 
        sub sp, sp, #16 
        stm sp, {r4,r5,fp, lr} 
        add          fp, sp, #N 
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Epilogue: 

        mov         sp, fp 
        ldm sp, {r4, r5, fp, lr} 
        add sp, sp, #16 
        bx          lr 

The results on synthetic benchmark (~2 million calls, sec): 

 

It is interesting however, that such results are not reproduced on Qualcomm 

Snapdragon 800 CPU. 

7. Conclusion 

We have found that even in the presence of type information in V8 optimizing 

compiler application of traditional scalar optimizations in JavaScript gives 

diminishing returns. 

On the other hand successful application of optimized build gives us evidence that 

there is a space for optimizations in JavaScript engines. 
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