
Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

21

Approaches to Optimizing V8 JavaScript
Engine

Dmitry Botcharnikov <dmitry.b@samsung.com>

LLC Samsung R&D Institute Rus, 12, ul. Dvintsev, housing 1, office #1500,

Moscow, 127018, Russian Federation

Abstract. JavaScript is one of the most popular programming languages in the world. Started

as a simple scripting language for web browsers it now becomes language of choice for

millions of engineers in the web, mobile and server-side development. However its

interpretational nature doesn’t always provide adequate performance. To speed up execution

of JavaScript programs there were developed several optimization techniques in recent years.

One example of modern high-performing JavaScript engine is a V8 engine used in Google

Chrome browser and node.js web server among others. This is an open source project which

implemented some advanced optimization methods including Just-in-Time compilation,

Polymorphic Inline Caches, optimized recompilation of hot code regions, On Stack

Replacement &c. In previous year we were involved in project of optimizing performance of

V8 JavaScript engine on major benchmark suites including Octane, SunSpider and Kraken.

The project was quite time limited, however we achieved about 10% total performance

improvement compared to open source version. We have decided to focus on following

approaches to achieve the project’s goal: optimized build of V8 itself, because total running

time is shared between compilation and execution; tuning of V8 runtime options which

default values may not be always optimal; implementation of additional scalar optimizations.

All of these approaches have made contribution to final result.

Ключевые слова: JavaScript; optimizations; V8; common subexpression eimination

DOI: 10.15514/ISPRAS-2015-27(6)-2

For citation: Botcharnikov Dmitry. Approaches to Optimizing V8 JavaScript Engine. Trudy

ISP RAN/Proc. ISP RAS, vol. 27, issue 6, 2015, pp. 21-32 (in Russian). DOI:

10.15514/ISPRAS-2015-27(6)-2

1. Introduction

JavaScript is one of the most popular programming languages in the world [1].

Started as a simple scripting language for web browsers it now becomes language of

choice for millions of engineers in the web, mobile and server-side development.

However its interpretational nature doesn’t always provide adequate performance.

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

22

To speed up execution of JavaScript programs there were developed several

optimization techniques in recent years. One example of modern high-performing

JavaScript engine is a V8 engine [2] used in Google Chrome browser and node.js

web server among others. This is an open source project which implemented some

advanced optimization methods including Just-in-Time compilation [3],

Polymorphic Inline Caches [4], optimized recompilation of hot code regions, On

Stack Replacement [5] &c.

In previous year we were involved in project of optimizing performance of V8

JavaScript engine on major benchmark suites including Octane [6], SunSpider [7]

and Kraken [8]. The project was quite time limited, however we achieved about

10% total performance improvement compared to open source version.

The rest of paper is organized as follow: in Section 2 there is an architectural

overview of V8, in Section 3 we enumerate and reason our approaches with more

detailed discussion in Sections 4, 5, and 6. We conclude in Section 7.

2. V8 engine architecture

In contrast to other JavaScript engines V8 implements compilation to native code

from the beginning. It consists of two JIT compilers: the first (called Full code

generator) performs fast non-optimized compilation for every encountered

JavaScript function, while the second one (called Crankshaft) compiles and

optimizes only those functions (and loops) which already ran some amount of time

and are likely to run further.

Fig. 1 V8 Engine Architecture

The overall work of V8 engine is as follows (Fig.1):

 Every new script is preliminary scanned to separate each individual

function.

 The function that should run is compiled into Abstract Syntax Tree (AST)

form.

 AST is compiled into native machine code instrumented with counters for

Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

23

function calls and loop back edges.

 Also on method call sites V8 inserts special dispatch structure called

Polymorphic Inline Cache (PIC). This cache is initialized with call to

generic dispatch routine. After each invocation PIC is populated with direct

call to type specific receiver up to some predefined limit. In such way PICs

collect runtime type information of objects.

 The result code then runs.

 When instrumentation counters reach some predefined threshold, “hot”

function or loop is selected for optimized recompilation.

 For this purpose V8 one more time recompiles selected function in AST

form. But in this case it also performs optimizations.

 It compiles AST into Static Single Assignment (SSA) form (called

Hydrogen) and propagates type information collected by PICs along SSA

edges.

 Then it performs several optimizations on this SSA form using type

information.

 After that it generates low level representation (called Lithium), does

Register Allocation and generates optimized native code which then runs.

Note that V8 optimizing compiler performs much less transformational passes than

common ahead-of-time compilers (e.g. gcc, clang/llvm). The reasons behind this we

further discuss in Section 6.

3. Approaches to speed up V8 engine

To investigate possible areas of V8 optimization we have performed V8 engine

profiling on ARM platform with three different profiling tools: Perf [9], ARM

Streamline [10] and Gprof [11]. Each of those has advantages and disadvantages

over others but results are very close: V8 JavaScript engine has no ‘hot’ functions in

itself that need to be optimized. Different methods show different functions in order

of share to total execution time. This is clear evidence that individual function’s

contribution is very small compared to precision of measurement. Thus optimization

of individual functions can’t achieve much increase in performance.

In following table object identified as perf-2549.map is a code generated by V8

engine.

Overhe

ad

Shared Object Symbol

65.11% perf-2549.map 0x5aba4000

0.76% d8 v8::internal::Scanner::ScanIdentifierOrKeyword()

0.75% d8 v8::internal::IncrementalMarking::Step

(int,v8::internal::IncrementalMarking::CompletionA

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

24

ction)

0.66% [kernel.kallsyms] _raw_spin_unlock_irqrestore

0.65% libc-2.17.so memchr

0.52% d8 v8::internal::Heap::DoScavenge(v8::internal::Object

Visitor*, unsigned char*)

0.51% libc-2.17.so 0x0004f3ac

0.50% d8 int

v8::internal::FlexibleBodyVisitor<v8::internal::New

SpaceScavenger,

v8::internal::JSObject::BodyDescriptor,

int>::VisitSpecialized<20>

(v8::internal::Map*, v8::internal::HeapObject*)

0.44% d8 void

v8::internal::ScavengingVisitor<(v8::internal::Mark

sHandling)1,

(v8::internal::LoggingAndProfiling)0>::EvacuateOb

ject

<(v8::internal::ScavengingVisitor<(v8::internal::Ma

rksHandling)1,

(v8::internal::LoggingAndProfiling)0>::ObjectConte

nts)1, 4>(v8::internal::Map*,

v8::internal::HeapObject**,

v8::internal::HeapObject*, int)

0.43% d8 v8::internal::ScavengeWeakObjectRetainer::Retain

As(v8::internal::Object*)

0.43% d8 v8::internal::Scanner::Scan()

0.37% [kernel.kallsyms] __memzero

Fig. 2 Several top entries from detailed profile of Octane benchmark by V8 on Linux.

We have decided to focus on following approaches to achieve the project’s goal:

 Optimized build of V8 itself, because total running time is shared between

compilation and execution.

 Tuning of V8 runtime options which default values may not be always

optimal.

 Implementation of additional scalar optimizations.

All of these approaches have made contribution to final result.

4. Optimized build

We have decided to investigate Link Time Optimization [12] and platform options

tuning [13]. The latter gave us small outcome (~0.5%) while former have decreased

performance.

Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

25

We have made investigation on Arndale ARM (Samsung Exynos 5250 CPU)

development board running Linux with Linaro gcc 4.7 toolchain for the first

investigation and the same board running Android 4.4 with Android NDK 9 Linaro

toolchain for the second one.

We have specified the following platform options:

 -O3 for highest optimization level

 -mcpu=cortex-a15 for target CPU.

Fig. 3 Effect of LTO

Fig. 4 Effect of platform options tuning

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

26

5. Runtime parameters tuning

V8 engine has quite large set of parameters which guides JIT compilation and

execution of JavaScript programs. We have found that their default values are not

adequate in all cases, e.g. we have found that disabling lazy compilation can

substantially improve performance.

As noted in Section 2 V8 performs preliminary parsing of each new script source to

separate each individual function. However when we specify parameter ‘--no-lazy’,

it instead compiles all functions at once in given script.

Enabling this mode has various impacts on different benchmark. We can see big

degradation of CodeLoad test score by about 40% while in the same time huge

increase 2.5 times of MandreelLatency test score. The overall increase about 5%

was also reproduced on Galaxy Note 3 devices running Android 4.4.

Fig. 5 Effect of eager compilation on Octane benchmarks.

6. Scalar optimizations

We have tried to implement several well-known scalar optimizations in V8 however

with varying success. In contrast to ahead of time compilers for classic imperative

languages such as C/C++, Pascal, Ada &c., just-in-time compiler has to share time

among analysis, optimization and execution. That’s why sophisticated optimizations

which require thorough analysis don’t necessarily lead to increasing performance in

such case.

As noted in Section 2 the V8 engine performs optimized compilation of ‘hot’

regions similar to off-line compiles did. At this stage PICs already collected type

Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

27

information so we can apply well-known scalar optimization techniques in AST and

SSA representations.

The platform used in benchmark was Samsung Galaxy Note 3 with Qualcomm

Snapdragon (N9005) CPU. Devices run Android 4.4.2 (KitKat). Octane benchmark

suite used in tests was Version 9 download from corresponding repository. For

development we use Android NDK r9c on Linux x86_64 Ububtu 12.04 TLS

6.1 Algebraic Simplification

The Algebraic Simplification uses algebraic identities like a - 0 = a to simplify

expressions. This transformation was implemented in V8 parser when it builds AST

representation for Crankshaft.

As was noted above at this point we have collected type information so we can

safely optimize algebraic expression given that operands are numeric.

Despite the large amount of optimized expressions in Octane benchmark suite the

final result was very small.

Fig. 6 Effect of Algebraic Expression Simplification

6.2 Common Subexpression Elimination

V8 engine already has implemented Global Value Numbering optimization which

eliminates redundant code. However there are related but not identical optimizations

such as Constant Propagation and Common Subexpression Elimination. For their

differences see [14].

Because V8 already has some kind of Constant Propagation we decided to

implement Global Common Subexpression Elimination in SSA form.

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

28

We have found that running this optimization before and after Global Value

Numbering gives net effect about 2% performance improvement.

Fig. 7 Effect of Global Common Subexpression Elimination

6.3 Fast call frame for ARM

In our investigations we also have found interesting instruction sequence that speeds

up call frame management on original ARMv7 CPUs.

To support EABI [15] compiler typically generate the following prologue and

epilogue in each function.

Prologue:

func:
 stmdb sp!, {r4-r5, fp, lr}
 add fp, sp, #N

Epilogue:

 mov sp, fp
 ldmia sp!, {r4-r5, fp, lr}
 bx lr

We have found however that the following sequences of instruction while provide

the same functionality are executed faster on ARMv7 CPUs:

Prologue:

func:
 sub sp, sp, #16
 stm sp, {r4,r5,fp, lr}
 add fp, sp, #N

Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

29

Epilogue:

 mov sp, fp
 ldm sp, {r4, r5, fp, lr}
 add sp, sp, #16
 bx lr

The results on synthetic benchmark (~2 million calls, sec):

It is interesting however, that such results are not reproduced on Qualcomm

Snapdragon 800 CPU.

7. Conclusion

We have found that even in the presence of type information in V8 optimizing

compiler application of traditional scalar optimizations in JavaScript gives

diminishing returns.

On the other hand successful application of optimized build gives us evidence that

there is a space for optimizations in JavaScript engines.

References

[1]. TIOBE Index for October 2015

(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html).

[2]. Chrome V8, September 10, 2015 (https://developers.google.com/v8/?hl=en)

[3]. Just-in-time compilation, Wikipedia, October 17, 2015

(https://en.wikipedia.org/wiki/Just-in-time_compilation)

[4]. Hölzle U., Chambers C., Ungar D. Optimizing Dynamically-Typed Object-Oriented

Languages With Polymorphic Inline Caches, ECOOP ‘91 proceedings, Springer Verlag

Lecture Notes in Computer Science 512, July, 1991

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://developers.google.com/v8/?hl=en
https://en.wikipedia.org/wiki/Just-in-time_compilation

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

30

[5]. Wingo A., On-stack replacement in V8, June 20, 2011

(https://wingolog.org/archives/2011/06/20/on-stack-replacement-in-v8)

[6]. Octane 2.0 (https://chromium.github.io/octane)

[7]. SunSpider 1.0.2 JavaScript Benchmark

(https://www.webkit.org/perf/sunspider/sunspider.html)

[8]. Kraken JavaScript Benchmark (version 1.1) (http://krakenbenchmark.mozilla.org)

[9]. perf (Linux), Wikipedia, (https://en.wikipedia.org/wiki/Perf_%28Linux%29)

[10]. Streamline Performance Analyzer, (http://ds.arm.com/ds-5/optimize)

[11]. Gprof, Wikipedia, (http://en.wikipedia.org/wiki/Gprof)

[12]. Interprocedural optimization, Wikipedia

(https://en.wikipedia.org/wiki/Interprocedural_optimization)

[13]. GCC ARM options (https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-

Options.html#ARM-Options)

[14]. Muchnik S., Advanced Compiler Design and Implementation, Morgan Kauffmann

Publishers, San Francisco, USA, 1997, 856p

[15]. Application Binary Interface for the ARM Architecture v2.09

(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html)

Подходы к оптимизации движка
JavaScript V8

Дмитрий Бочарников <dmitry.b@samsung.com>

Московский исследовательский центр Cамсунг,

Москва, ул. Двинцев, 12, корп. 1

Аннотация. JavaScript является одним из наиболее распространенных языков

программирования. Однако производительность движков JavaScript не всегда

удовлетворительна. Автором разработаны подходы, позволяющие повысить

производительность движка V8 на 10% на основных тестовых наборах.

Ключевые слова: JavaScript, оптимизации, V8, исключение общих подвыражений

DOI: 10.15514/ISPRAS-2015-27(6)-2

Для цитирования: Бочарников Дмитрий. Подходы к оптимизации движка JavaScript

V8. Труды ИСП РАН, том 27, вып. 6, 2015 г., стр. 21-32. DOI: 10.15514/ISPRAS-2015-

27(6)-2.

Литература

[1]. TIOBE Index for October 2015

(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html).

[2]. Chrome V8, September 10, 2015 (https://developers.google.com/v8/?hl=en)

[3]. Just-in-time compilation, Wikipedia, October 17, 2015

(https://en.wikipedia.org/wiki/Just-in-time_compilation)

https://wingolog.org/archives/2011/06/20/on-stack-replacement-in-v8
https://chromium.github.io/octane/
https://www.webkit.org/perf/sunspider/sunspider.html
http://krakenbenchmark.mozilla.org/
https://en.wikipedia.org/wiki/Perf_%28Linux%29
http://ds.arm.com/ds-5/optimize
http://en.wikipedia.org/wiki/Gprof
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-Options.html%23ARM-Options
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-Options.html%23ARM-Options
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://developers.google.com/v8/?hl=en
https://en.wikipedia.org/wiki/Just-in-time_compilation

Дмитрий Бочарников. Подходы к оптимизации движка JavaScript V8. Труды ИСП РАН, том 27, вып. 6, 2015 г.,

с.21-32

31

[4]. Hölzle U., Chambers C., Ungar D. Optimizing Dynamically-Typed Object-Oriented

Languages With Polymorphic Inline Caches, ECOOP ‘91 proceedings, Springer Verlag

Lecture Notes in Computer Science 512, July, 1991

[5]. Wingo A., On-stack replacement in V8, June 20, 2011

(https://wingolog.org/archives/2011/06/20/on-stack-replacement-in-v8)

[6]. Octane 2.0 (https://chromium.github.io/octane)

[7]. SunSpider 1.0.2 JavaScript Benchmark

(https://www.webkit.org/perf/sunspider/sunspider.html)

[8]. Kraken JavaScript Benchmark (version 1.1) (http://krakenbenchmark.mozilla.org)

[9]. perf (Linux), Wikipedia, (https://en.wikipedia.org/wiki/Perf_%28Linux%29)

[10]. Streamline Performance Analyzer, (http://ds.arm.com/ds-5/optimize)

[11]. Gprof, Wikipedia, (http://en.wikipedia.org/wiki/Gprof)

[12]. Interprocedural optimization, Wikipedia

(https://en.wikipedia.org/wiki/Interprocedural_optimization)

[13]. GCC ARM options (https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-

Options.html#ARM-Options)

[14]. Muchnik S., Advanced Compiler Design and Implementation, Morgan Kauffmann

Publishers, San Francisco, USA, 1997, 856p

[15]. Application Binary Interface for the ARM Architecture v2.09

(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html)

https://wingolog.org/archives/2011/06/20/on-stack-replacement-in-v8
https://chromium.github.io/octane/
https://www.webkit.org/perf/sunspider/sunspider.html
http://krakenbenchmark.mozilla.org/
https://en.wikipedia.org/wiki/Perf_%28Linux%29
http://ds.arm.com/ds-5/optimize
http://en.wikipedia.org/wiki/Gprof
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-Options.html%23ARM-Options
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/ARM-Options.html%23ARM-Options
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0036b/index.html

Dmitry Botcharnikov. Approaches to Optimizing V8 JavaScript Engine. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue

6, 2015, pp. 21-32

32

