
 285

 Comparative Study Parallel Join Algorithms
for MapReduce environment

A. Pigul
m05pay@math.spbu.ru

Saint Petersburg State University

Abstract. There are the following techniques that are used to analyze massive amounts of
data: MapReduce paradigm, parallel DBMSs, column-wise store, and various combinations
of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms
is not directly supported in MapReduce. The aim of this work is to generalize and compare
existing equi-join algorithms with some optimization techniques.

Key Words: parallel join algorithms, MapReduce, optimization.

1. Introduction
Data-intensive applications include large-scale data warehouse systems, cloud
computing, data-intensive analysis. These applications have their own specific
computational workload. For example, analytic systems produce relatively rare
updates but heavy select operation with millions of records to be processed, often
with aggregations.
Applications for large-scale data analysis use such techniques as parallel DBMS,
MapReduce (MR) paradigm, and columnar storage. Applications of this type
process multiple data sets. This implies need to perform several join operation. It’s
known join operation is one of the most expensive operations in terms both I / O
and CPU costs.
Unfortunately, join algorithms is not directly supported in MapReduce. There are
some approaches to solve this problem by using a high-level language PigLatin,
HiveQL for SQL queries or implementing algorithms from research papers. The
aim of this work is to generalize and compare existing equi-join algorithms with
some optimization techniques.
This paper is organized as follows the section 2 describe state of the art. Join
algorithms and some optimization techniques were introduced in 3 section.
Performance evaluation will be described in 4 section. Finally, future direction and
some discussion of experiments will be given.

 286

2. Related Work

2.1. Architectural Approaches
Column storage is one of the architectural approaches to store data in columns, that
the values of one field are stored physically together in a compact storage area.
Column storage strategy improves performance by reducing the amount of
unnecessary data from disk by excluding the columns that are not needed.
Additional gains may be obtained using data compression. Storage method in
columns outperforms row-based storage for workloads typical for analytical
applications, which are characterized by heavy selection operation from millions of
records, often with aggregation and by infrequent update operation. For this class of
workloads I/O is major factor limited the performance. Comparison of column-wise
and row-wise stores approaches is presented in [1].
Another architectural approach is a software framework MapReduce. Paradigm
MapReduce was introduced in [11] to process massive amounts of unstructured
data.
Originally, this approach was contrasted with a parallel DBMS. Deep analysis of the
advantages and disadvantages of these two architectures was presented in [25,10].
Later, hybrid systems appeared in [9, 2]. There are three ways to combine
approaches MapReduce and parallel DBMS.

 MapReduce inside a parallel DBMS. The main intention is to move
computation closer to data. This architecture can be exemplified with
hybrid database Greenplum with MAD approach [9].

 DBMS inside MapReduce. The basic idea is to connect multiple single
node database systems using MapReduce as the task coordinator and
network communication layer. An example is a hybrid database
HadoopDB [2].

 MapReduce aside of the parallel DBMS. MapReduce is used to implement
an ETL produced data to be stored in parallel DBMS. This approach is
discussed in [28] Vertica, which also supports the column-wise store.

Another group of hybrid systems combines MapReduce with column-wise store.
MapReduce and column-wise store are effective in data-intensive applications.
Hybrid systems based on this two techniques may be found in [20,13].

2.2. Algorithms for Join Operation
Detailed comparison of relational join algorithms was presented in [26]. In our
paper, the consideration is restricted to a comparison of joins in the context of
MapReduce paradigm.
Papers which discuss equi-join algorithms can be divided into two categories which
describe join algorithms and multi join execution plans.

 287

The former category deals with design and analyses join algorithm of two data sets.
A comparative analysis of two-way join techniques is presented in [6, 4, 21]. The
cost model for two-way join algorithms in terms of cost I/O is presented in [7, 17].
The basic idea of multi-way join is to find strategies to combine the natural join of
several relations. Different join algorithms from relation algebra are presented in
[30]. The authors introduce the extension of MapReduce to facilitate implement
relation operations. Several optimizations for multi-way join are described in [3,
18]. Authors introduced a one-to-many shuffling strategy. Multi-way join
optimization for column-wise store is considered in [20, 32].
Theta-Joins and set-similarity joins using MapReduce are addressed in [23] and [27]
respectively.

2.3. Optimization techniques and cost models
In contrast to the sql queries in parallel database, the MapReduce program contains
user-defined map and reduce functions. Map and reduce functions can be
considered as a black-box, when nothing is known about these functions, or they
can be written on sql-like languages, such as HiveQL, PigLatin, MRQL, or sql
operations can be extracted from functions on semantic basis. Automatic finding
good configuration settings for arbitrary program offered in [16]. Theoretical
designing cost models for arbitrary MR program for each phase separately presented
in [15]. If the MR program is similar to the semantics of SQL, it allows us to
construct a more accurate cost model or adapt some of the optimization techniques
from relational databases. HadoopToSQL [22] allows to take advantage of two
different data storages such as SQL database and the text format in MapReduce
storage and to use index at right time by transforming the MR program to SQL.
Manimal system [17] uses static analysis for detection and exploiting selection,
projection and data compression in MR programs and if needed to employ
B+ tree index.
New SQL-like query language and algebra is presented in [12]. But they are needed
cost model based on statistic. Detailed construction of the model to estimate the I/O
cost for each phase separately is given in [24]. Simple theoretical considerations for
selecting a particular join algorithm are presented in [21]. Another approach [7] for
selecting join algorithm is to measure the correlation between the input size and the
join algorithm execution time with fixed cluster configuration settings.

3. Join algorithms and optimization techniques
In this section we consider various techniques of two-way joins in MapReduce
framework. Join algorithms can be divided into two groups: Reduce-side join and
Map-side join. The pseudo code presented in Listings, where R – right dataset, L –
left dataset, V – line from file, Key – join key, that was parsed from a tuple, in this
context tuple is V.

 288

3.1. Reduce-Side join
Reduce-side join is an algorithm which performs data pre-processing in Map phase,
and direct join is done during the Reduce phase. Join of this type is the most general
without any restriction on the data. Reduce-side join is the most time-consuming,
because it contains an additional phase and transmits data over the network from
one phase to another. In addition, the algorithm has to pass information about source
of data through the network. The main objective of the improvement is to reduce the
data transmission over the network from the Map task to the Reduce task by
filtering the original data through semi-joins. Another disadvantage of this class of
algorithms is the sensitivity to the data skew, which can be addressed by replacing
the default hash partitioner with a range partitioner.
There are three algorithms in this group:

 General reducer-side join,
 Optimized reducer-side join,
 the Hybrid Hadoop join.

General reducer-side join is the simplest one. The same algorithms are called
Standard Repartition Join in [6]. The abbreviation is GRSJ and pseudo code is
presented in Listing 1.
This algorithm has both Map and Reduce phases. In the Map phase, data are read
from two sources and tags are attached to the value to identify the source of a
key/value pair. As the key is not effecting by this tagging, so we can use the
standard hash partitioner. In Reduce phase, data with the same key and different
tags are joined with nested-loop algorithm. The problems of this approach are that
the reducer should have sufficient memory for all records with a same key; and the
algorithm sensitivity to the data skew.

Listing 1: GRSJ.

Map (K: null, V from R or L)
 Tag = bit from name of R or L;
 emit (Key, pair(V,Tag));

Reduce (K’: join key, LV: list of V with key K’)
create buffers Br and Bl for R and L;
 for t in LV do
 add t.v to Br or Bl by t.Tag;
 for r in Br do
 for l in Bl do
 emit (null, tuple(r.V,l.V));

 289

Listing 2: ORSJ.

Optimized reducer-side join enhances previous algorithm by overriding sorting
and grouping by the key, as well as tagging data source. Also known as Improved
Repartition Join in [6], Default join in [14]. The abbreviation is ORSJ. In Listing 2
pseudo code is shown. In the algorithm all the values of the first tag are followed by
the values of the second one. In contrast with the General reducer-side join, the tag
is attached to both a key and a value. Due to the fact that the tag is attached to a key,
the partitioner must be overridden in order to split the nodes by the key only. This
case requires buffering for only one of input sets.
Optimized reducer-side join inherits major disadvantages of General reducer-
side join namely the transferring through the network additional information about
the source and the algorithm sensitivity to the data skew.
The Hybrid join [4] combines the Map-side and Reduce-side joins. The abbreviation
is HYB and Listing 3 describe pseudo code.

Listing 3: HYB

Job 1: partition the smaller file S Job 2: join two datasets
 Map (K:null, V from S) Map (K:null, V from B)
 emit (Key,V); emit (Key,V);
 Reduce (K’:join key, LV: list of V’ with key K’) init() //for Reduce phase
 for t in LV do read needed partition of output om Job 1;
 emit (null, t); add it to hashMap(Key, list(V)) H;
 Reduce (K’:join key, LV: list of
 V’ with key K’)
 if(K’ in H) then
 for r in LV do
 for l in H.get(K’) do
 emit (null, tuple(r,l));

Map (K:null, V from R or L)
 Tag = bit from name of R or L;
 emit (pair(Key,Tag), pair(V,Tag));

Partitioner(K:key, V:value, P:the number of reducers)
 return hash_f(K.Key) mod P;

Reduce (K’: join key, LV: list of V’ with key K’)
 create buffers Br for R;
 for t in LV with t.Tag corresponds to R do
 add t.v to Br;
 for l in LV with l.Tag corresponds to L do
 for r in Br do
 emit (null, tuple(r.V,l.V));

 290

In Map phase, we process only one set and the second set is partitioned in advance.
The pre-partitioned set is pulled out of blocks from a distributed system in the
Reduce phase, where it is joined with another data set that came from the Map
phase. The similarity with the Map-side join is the restriction that one of the sets has
to be split in advance with the same partitioner, which will split the second set.
Unlike Map-side join, it is necessary to split in advance only one set. The similarity
with the Reduce-side join is that algorithm requires two phases, one of them for pre-
processing of data and one for direct join. In contrast with the Reduce-side join we
do not need additional information about the source of data, as they come to the
Reducer at a time.

3.2. Map-Side join
Map-side join is an algorithm without Reduce phase. This kind of join can be
divided into two groups. First of them is partition join, when data previously
partitioned into the same number of parts with the same partitioner. The relevant
parts will be joined during the Map phase. This map-side join is sensitive to the data
skew. The second is in memory join, when the smaller dataset send whole to all
mappers and bigger dataset is partitioned over the mappers. The problem with this
type of join occurs when the smaller of the sets cannot fit in memory.
There are three methods to avoid this problem:

 JDBM-based map join,
 Multi-phase map join,
 Reversed map join.

Map-side partition join algorithm assumes that the two sets of data pre-partitioned
into the same number of splits by the same partitioner. Also known as default map
join. The abbreviation is MSPJ and Listing 4 describe pseudo code. At the Map
phase one of the sets is read and loaded into the hash table, then two sets are joined
by the hash table. This algorithm buffers all records with the same keys in memory,
as is the case with skew data may fail due to lack of enough memory.

Listing 4: MSPJ

Job 1: partition dataset S as in HYB
Job 2: partition dataset B as in HYB
Job 3: join two datasets
 init() //for Map phase
 read needed partition of output file from Job 1;
 add it to hashMap(Key, list(V)) H;
 Map(K:null, V from B)
 if (K in H) then
 for r in LV do
 for l in H.get(K) do
 emit(null, tuple(r,l));

 291

Listing 5: MSPMJ.

Map-side partition merge join is an improvement of the previous version of the join.
The abbreviation is MSPMJ and pseudo code is presented in Listing 5. If data sets
in addition to their partition are sorted by the same ordering, we apply merge join.
The advantage of this approach is that the reading of the second set is on-demand,
but not completely, thus memory overflow can be avoided. As in the previous cases,
for optimization can be used the semi-join filtering and range partitioner.
In-Memory Join does not require to distribute original data in advance unlike the
versions of map joins discussed above. The same algorithms are called Map-side
replication join in [7], Broadcast Join in [6], Memory-backed joins [4], Fragment-
Replicate join in [14]. The abbreviation is IMMJ. Nevertheless, this algorithm has a
strong restriction on the size of one of the sets: it must fit completely in memory.
The advantage of this approach is its resistance to the data skew because it
sequentially reads the same number of tuples at each node. There are two options
for transferring the smaller of the sets:

 using a distributed cache,
 reading from a distributed file system.

Job 1: partition S dataset as in HYB
Job 2: partition B dataset as in HYB
Job 3: join two datasets
 init() //for Map phase
 find needed partition SP of output file from Job 1;
 read first lines with the same key K2 from SP and add
 to buffer Bu;
 Map(K:null, V from B)
 while (K > K2) do
 read T from SP with key K2;
 while (K == K2) do
 add T to Bu;
 read T from SP with key K2;
 if (K == K2) then
 for r in Bu do
 emit(null, tuple(r,V));

 292

Listing 6: IMMJ

Listing 7: REV.

The next three algorithms optimize the In-Memory Join for a case, when two sets
are large and no of them fits into the memory.
JDBM-based map join is presented in [21]. In this case, JDBM library automatically
swaps hash table from memory to disk.

Listing 8: JDBM

Listing 9: Multi-phase map join.

Multi-phase map join [21] is algorithm where the smaller of the sets is partitioned
into parts that fit into memory, and for each part runs In-Memory join. The problem

For part P from S that fit into memory do IMMJ(P,B).

The same as IMMJ, but H is implemented by HTree
instead of hashMap .

init() //for Map phase
 read S from HDFS;
 add it to hashMap(Key, list(V)) H;
map (K:null, V from S)
 add to hashMap(Key, V) H;
close() //for Map phase
 find B in HDFS
 while (not end B) do
 read line T;
 K = join key from tuple T;
 if (K in H) then
 for l in H.get(K) do
 emit(null, tuple(T,l));

init() // for Map phase
 read S from HDFS;
 add it to hashMap(Key, list(V)) H;
map (K:null, V from B)
 if (K in H) then
 for l in H.get(K) do
 emit (null, tuple(v,l));

 293

with this approach is that it has a poor performance. If the size of the set, which to
be put in the memory is increased twice, the execution time of this join is also
doubled. It is important to note that the set, which will not be loaded into memory,
will be read many times from the disk.
Idea of Reversed map join [21] approach is that the bigger of the sets, which is
partitions during the Map phase, loading in the hash table. Also known as Broadcast
Join in [6]. The abbreviation is REV. The second dataset is read from a file line by
line and joined using a hash table.

3.3. Semi-Join
Sometimes a large portion of the data set does not take part in the join. Deleting of
tuples that will not be used in join significantly reduces the amount of data
transferred over the network and the size of the dataset for the join. This
preprocessing can be carried out using semi-joins by selection or by a bitwise filter.
However, these filtering techniques introduce some cost (an additional MR job), so
the semi-join can improve the performance of the system only if the join key has
low selectivity. There are three ways to implement the semi-join operation:

 a semi-join using bloom-filter,
 semi-join using selection,
 an adaptive semi-join.

Bloom-filter is a bit array that defines a membership of element in the set. False
positive answers are possible, but there are no false-negative responses in the
solution of the containment problem. The accuracy of the containment problem
solution depends on the size of the bitmap and on the number of elements in the set.
These parameters are set by the user. It is known that for a bitmap of fixed size m
and for the data set of n tuples, the optimal number of hash functions is
k=0.6931*m/n. In the context of MapReduce, the semi-join is performed in two
jobs. The first job consists of the Map phase, in which keys from one set are
selected and added to the Bloom-filter. The Reduce phase combines several Bloom-
filters from first phase into one. The second job consists only of the Map phase,
which filters the second data set with a Bloom-filter constructed in previous job.
The accuracy of this approach can be improved by increasing the size of the bitmap.
However in this case, a larger bitmap consumes more amounts of memory. The
advantage of this method is its the compactness. The performance of the semi-join
using Bloom-filter highly depends on the balance between the Bloom-filter size,
which increases the time needed for its reconstruction of the filter in the second job,
and the number of false positive responses in the containment solution. The large
size of the data set can seriously degrade the performance of the join.

 294

Listing 10: Semi-join using Bloom-filter

Listing 11: Semi-join with selection.

Semi-join with selection extracts unique keys and constructs a hash table. The
second set is filtered by the hash table constructed in the previous step. In the

Job 1: find unique keys
 Map (K:null, V from L)
 Create HashMap H;
 if (not Key in H) then
 add Key to H;
 emit (Key, null);

 Reduce (K’: key, LV) //only one Reducer
 emit (null,key);

Job 2: filter dataset
 init() //for Map phase
 add to HashMap H unique keys from job 1;
 Map (K:null, V from R)
 if (Key in H) then
 emit (null,V);

Job 3: do join with L dataset and filtered dataset from
Job 2.

Job 1: construct Bloom filter
 Map (K:null, V from L)
 Add Key to BloomFilter Bl
 close() //for Map phase
 emit(null, Bl);

 Reduce (K’: key, LV) //only 1 Reducer
 for l in LV do
 union filters by operation Or
 close() // for Reduce phase
 write resulting filter into file;

Job 2: filter dataset
 init() //for Map phase
 read filter from file in Bl
 Map (K:null, V from R)
 if (Key in Bl) then
 emit (null, V);

Job 3: do join with L dataset and filtered dataset from
Job 2.

 295

context of MapReduce, the semi-join is performed in two jobs. Unique keys are
selected during the Map phase of the first job and then they are combined into one
file during the Map phase. The second job consists of only the Map phase, which
filters out the second set. The semi-join using selection has some limitations. Hash
table in memory, based on records of unique keys, can be very large, and depends
on the key size and the number of different keys.
The Adaptive semijoin is performed in one job, but filters the original data on the
flight during the join. Similar to the Reduce-side join at the Map phase the keys
from two data sets are read and values are set equal to tags which identify the source
of the keys. At the Reduce phase keys with different tags are selected. The
disadvantage of this approach is that additional information about the source of data
is transmitted over the network.

Listing 12: Adaptive semi-join.

3.4. Range Partitioners
All algorithms, except the In-Memory join and their optimizations are sensitive to
the data skew. This section describes two techniques of the default hash partitioner
replacement.
A Simple Range-based Partitioner [4] (this kind similar to the Skew join in [14])
applies a range vector of dimension n constructed from the join keys before starting
a MR job. By this vector join keys will be splitted into n parts, where n is the
number of Reduce jobs. Ideally partitioner vector is constructed from the whole
original set of keys, in practice a certain number of keys is chosen randomly from
the data set. It is known that the optimal number of keys for the vector construction
is equal to the square root of the total number of tuples. With a heavy data skew into
a single key value, some elements of the vector may be identical. If the key belongs
to multiple nodes, a node is selected randomly in the case of data on which to build

Job 1: find keys which are present
in two datasets

Job 2: before joining it is necessary to filter the
smaller

Map (K:null, V from R or L) dataset dataset by keys from the Job 1 that will
 Tag = bit from name of R or L; be loaded into hash map.
 emit (Key,Tag); Then the bigger dataset is joined with filtered

one
 Reduce (K’: join key,
 LV: list of V with key K’)

 Val = first value from LV;
 for t in LV do
 if (not Val==Val2) then
 emit (null, K’);

 296

a hash table, otherwise the key is sent to all nodes (to save memory as a hash table is
contained in the memory).
Virtual Processor Partitioner [4] is an improvement of the previous algorithm based
on increasing the number of partition. The number of parts is specified multiple of
the tasks number. The approach tends to load the nodes with the same keys
uniformly (compared with the previous version). The same keys are scattered on
more nodes than in the previous case.

Listing 13: The range partitioners.

3.5. Distributed cache
The advantage of using distributed cache is that data set are copied only once at the
node. It is especially effective if several tasks at one node need the same file. In
contrast the access to the global file system needs more communication between the
nodes. Better performance of the joins without the cache can be achieved by
increasing number of the files replication, so there's a good chance to access the file
version locally.

//before the MR job starts Map(K:null, V from L or R)
// optimal max = sqrt(|R|+|L|) Tag = bit from name of R or L;
getSamples (Red:the number of reducers,
max: the max

 read file with samples and add samples
 to Buffer B;

 number of samples) //in case virtual partition it is needed to
 C = max/Splits.length; // each index mod |Reducers|
 Create buffer B; Ind = {i: B[i-1] < Key <= B[i]}
 for s in Splits of R and L do // Ind may be array of indexes in skew

 case
 get C keys from s; if (Ind.length >1) then
 add it to B if (V in L) then
 sort B; node = random(Ind);
 //in case simple range partitioner P == 1 emit (pair(Key, node), pair(V, Tag));
 //in case virtual range partitioner P > 1 else
 for j<(Red*P) do for i in Ind do
 T = B.length/(Red*P)*(j+1); emit (pair(Key, i), pair(V, Tag));
 write into file B[T]; else emit (pair(Key, Ind), pair(V,

 Tag));
 Partitioner (K:key, V:value, P:

 the number of reducers)
 return K.Ind;
 Reducer (K’: join key, LV: list of

 V’ with key K’)
 The same as GRSJ

 297

3.6. Comparative analysis of algorithms
The features of join algorithms are presented in the Table 1. The approaches with
pre-processing is good when data is prepared in advance for example come from
another MapReduce job. Algorithms with one phase and without tagging is more
preferable due to the fact that no additional transferring data through the network
are needed. Approaches that sensitive to the data skew may be improved by
optimizations with range partitioner. In case of data low selectivity semi-join
algorithms can improve performance and reduce the possibility of memory
overflow.
 Pre-

proces-
sing

The
number
of
phases

Tags Sensi-
tive
to
data
skew

Need
distr.

cache

Memory
overflow

Join
algorithm

GRSJ - 2 To
value

yes - Number
tuples for
the same
key is
large

Nested
loop

ORSJ - 2 To
key
and
value

yes - Number
tuples for
the same
key is big

Nested
loop

HYB 1 data 2 - yes - Part size is
large

Hash

MSPJ 2 data 1 - yes - Part size is
large

Hash

MSPMJ 2 data +
sort

1 - yes - - Sort-
merge

IMMJ - 1 - - yes Size of
smaller
dataset is
large

Hash

MUL 1 data 1*part - - yes - IMMJ

 298

JDBM - 1 - - yes - JDBM
hash
table

REV - 1 - - yes Part size is
big and
number of
tuples for
the same
key is big

Hash

Table 1: Comparative analysis of algorithms.

The multiphase and JDBM map join algorithms is excluded from our experiments
because of their poor performance.

4. Experiments

4.1. Dataset
Data are the set of tuples, which attributes are separated by a comma. Tuple is split
into a pair of a key and a value, where value is the remaining attributes. Generation
of synthetic data was done as in [4]. Join keys are distributed randomly except
experiment with the data skew.

4.2. Cluster configuration
Cluster consists of three virtual machines, where one of them is master and slave at
the same time, the remaining two are the slaves. Host configuration consists of 1
processor, 512 mb of memory for nodes, 5 gb is the disk size. Hadoop 20.203.0
runs on Ubuntu 10.10.

4.3. The General Case
The base idea of this experiment is to compare executions time of different phases
of various algorithms. Some parameters are fixed: the number of Map and Reduce
tasks is 3, the input size is 104x105 and 106x106 tuples.

 299

Figure 1: Executions time of different phases of various algorithms. Size 104*105.

Figure 2: Executions time of different phases of various algorithms. Size 106*106.

For a small amount of data, Map phase, in which all tuples are tagged, and Shuffle
phase, in which data are transferred from one phase to another, are more costly in
Reduce-Side joins. It should be noted that GRSJ is better than ORSJ on small data,
but it is the same on big data. It is because in first case time does not spend on
combining tuples. Possible, on the larger data ORSJ outperform GRSJ when the
usefulness of grouping by key will be more significant. Also for algorithms with
pre-processing more time are spent on partitioning data. The algorithms in memory
(IMMJ and REV) are similar in small data. Two algorithms are not shown in the

 300

graph because of their bad times: JDBM-based map join and Multi-phase map join.
In large data IMMJ algorithm could not be executed because of memory overflow.

4.4. Semi-Join
The main idea of this experiment is to compare different semi-join algorithms.
These parameters are fixed: the number of Map and Reduce tasks is 3, the bitmap
size of Bloom-filter is 25*105, the number of hash-functions in Bloom-filter is 173,
built-in Jenkins hash algorithm is used in Bloom-filter. Adaptive semi-join
(ASGRSJ) does not finish because of memory overflow. The abbreviation of
Bloom-filter semi-join for GRSJ is BGRSJ. The abbreviation of semi-join with
selection for GRSJ is SGRSJ respectively.

Figure 3: Comparison of different semi-join implementations.

4.5. Speculative execution
Speculative execution reduces negative effects of non-uniform performance of
physical nodes. In this experiment two join algorithms GRSJ and IMMJ is chosen
because of different numbers of phases and one of them sensitive to the data skew.
Two dataset are considered: normal data that consists of 105x105 tuples and skew
data that contain for one data 5*104 same key in tuples and for second data 10 same
keys in tuples. In case of IMMJ, which is not sensitive to the data skew, the
performance with speculative execution is the similar approach without it. In case of
GRSJ algorithm with uniform data approach without speculative execution is better
than with it. But GRSJ algorithm with skew data and speculative execution
outperforms four times approach without it.

 301

Figure 4: The effect of speculative execution.

4.6. Distributed cache
In [21] was showed that using of distributed cache is not always good strategy. They
suggested that the problem can be a high speed network. This experiment was
carried out for Reversed Map-Side join, because for which a distributed cache can
be important. Replication was varied as 1, 2, 3 and size of data is fixed – 106x106
tuples. When data is small, the difference is not always visible. In large data
algorithms with distributed cache outperform approach of reading from a globally
distributed system.

Figure 5: Performance of Reversed Map-Side join with and without using
distributed cache.

 302

4.7. Skew data
It is known that many of the presented algorithms are sensitive to the data skew. In
this experiment take part such algorithms as Reduce-side join with Simple Range-
based Partitioner for GRSJ (GRSJRange) and Virtual Processor Partitionerfor GRSJ
(GRSJVirtual), and also for comparing in memory join: IMMJ, REV because of
resistant to the skew. Fixed parameters are used: size of two dataset is 2*106, one of
the data set has the same key in 5*105 tuples, and another has the same keys in 10 or
1 tuples. In case with IMMJ was memory overflow.

Figure 6: Processing the data skew.

Although these experiments do not completely cover the tunable set of Hadoop
parameters, they are shown the advantages and disadvantages of the proposed
algorithms. The main problems of these algorithms are time spent on pre-
processing, transferring data, the data skew, and memory overflow.
Each of the optimization techniques introduces additional cost to the
implementation of the join, so the algorithm based on the tunable settings and
specific data should be carefully chosen. Also important are the parameters of the
network bandwidth when distributed cache are used or not used and a hardware
specification of nodes because of it is importance when speculative executions are
on. Speculative execution reduces negative effects of non-uniform performance of
physical nodes.
Based on the collected statistics such as data size, how many keys will be taking
part in the join, these statistics may be collected as well as the construction of a
range partitioner, the query planner can choose an efficient variant of the join. For
example, in [5] was proposed what-if analyses and cost-based optimization.

 303

5. Future work
The algorithms discussed in this paper, only two sets are joined. It is interesting to
extend from binary operation to multi argument joins. Among the proposed
algorithms, there is no effective universal solution. Therefore, it is necessary to
evaluate the proposed cost models for join algorithms. And for this problem it is
need to use real cluster with more than three nodes in it and more powerful to
process bigger data, due to the fact that the execution time on the virtual machine
may be different from the real cluster in reading/writing, transferring data over the
network and so on.
Also the idea of processing the data skew in MapReduce applications from [19] can
be applied to the join algorithms. Another direction to future work is to extend
algorithm to support a theta-join and outer join.
An interesting area for future work is to develop, implement and evaluate
algorithms or extended algebraic operations suitable for complex similarity queries
in an open distributed heterogeneous environment. The reasons to evaluate complex
structured queries are: a need to combine search criteria for different types of
information; a query refinement e.g. based on user profile or feedback; advanced
users may need query structuring. The execution model and algebraic operation to
be implemented are outlined in [31]. The main goal is to solve the problems
presented in [8] as a problem.
In addition, one of the issues is efficient physical representation of data. Binary
formats are known to outperform the text both in speed reading and partitioning
key / value pairs, and the transmission of compressed data over the network. Along
with the binary data format, column storage has already been proposed for paradigm
MapReduce. It is interesting to find the best representation for specific data.

6. Conclusion
In this work we describe the state of the art in the area of massive parallel
processing, presented our comparative study of these algorithms with optimizations
such as semi-join and range partiotioner. Also our directions of future work is
discussed.

References
[1] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores:

how different are they really? In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 967–980, New York, NY,
USA, 2008. ACM.

[2] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and
Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB Endow., 2:922–933, August 2009.

[3] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In
Proceedings of the 13th International Conference on Extending Database Technology,
EDBT ’10, pages 99–110, New York, NY, USA, 2010. ACM.

 304

[4] Fariha Atta. Implementation and analysis of join algorithms to handle skew for the
hadoop mapreduce framework. Master’s thesis, MSc Informatics, School of Informatics,
University of Edinburgh, 2010.

[5] Shivnath Babu. Towards automatic optimization of mapreduce programs. In
Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages 137–
142, New York, NY, USA, 2010. ACM.

[6] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce. In
Proceedings of the 2010 international conference on Management of data, SIGMOD ’10,
pages 975–986, New York, NY, USA, 2010. ACM.

[7] A Chatzistergiou. Designing a parallel query engine over map/reduce. Master’s thesis,
MSc Informatics, School of Informatics, University of Edinburgh, 2010.

[8] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Integrating db and ir
technologies: What is the sound of one hand clapping? In CIDR, pages 1–12, 2005.

[9] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Welton.
Mad skills: new analysis practices for big data. Proc. VLDB Endow., 2:1481–1492,
August 2009.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool.
Commun. ACM, 53:72–77, January 2010.

[11] Jeffrey Dean, Sanjay Ghemawat, and Google Inc. Mapreduce: simplified data processing
on large clusters. In In OSDI04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation. USENIX Association, 2004.

[12] Leonidas Fegaras, Chengkai Li, and Upa Gupta. An optimization framework for map-
reduce queries. In EDBT 2012, march 2012.

[13] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and Sandeep Tata. Column-
oriented storage techniques for mapreduce. Proc. VLDB Endow., 4:419–429, April
2011.

[14] Alan F Gates. Programming Pig. O’Reilly Media, 2011.
[15] Herodotos Herodotou. Hadoop performance models. CoRR, abs/1106.0940, 2011.
[16] Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and cost-based

optimization of mapreduce programs. PVLDB, 4(11):1111– 1122, 2011.
[17] Eaman Jahani, Michael J. Cafarella, and Christopher R´e. Automatic optimization for

mapreduce programs. Proc. VLDB Endow., 4:385–396, mar 2011.
[18] Dawei Jiang, Anthony K. H. Tung, and Gang Chen. Map-join-reduce: Toward scalable

and efficient data analysis on large clusters. IEEE Transactions on Knowledge and Data
Engineering, 23:1299– 1311, 2011.

[19] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. A study of skew
in mapreduce applications. Moskow, Russia, june 2011. In the 5th Open Cirrus Summit.

[20] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai Wu. Llama:
leveraging columnar storage for scalable join processing in the mapreduce framework.
In Proceedings of the 2011 international conference on Management of data, SIGMOD
’11, pages 961–972, New York, NY, USA, 2011. ACM.

[21] Gang Luo and Liang Dong. Adaptive join plan generation in hadoop. Technical report,
Duke University, 2010.

[22] Christine Morin and Gilles Muller, editors. European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer systems, EuroSys 2010, Paris,
France, April 13-16, 2010. ACM, 2010.

 305

[23] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In
Proceedings of the 2011 international conference on Management of data, SIGMOD ’11,
pages 949–960, New York, NY, USA, 2011. ACM.

[24] Konstantina Palla. A comparative analysis of join algorithms using the hadoop
map/reduce framework. Master’s thesis, MSc Informatics, School of Informatics,
University of Edinburgh, 2009.

[25] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-scale
data analysis. In Proceedings of the 35th SIGMOD international conference on
Management of data, SIGMOD ’09, pages 165–178, New York, NY, USA, 2009. ACM.

[26] Donovan A. Schneider and David J. DeWitt. A performance evaluation of four parallel
join algorithms in a shared-nothing multiprocessor environment. SIGMOD Rec.,
18:110–121, June 1989.

[27] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using mapreduce. In Proceedings of the 2010 international conference on Management
of data, SIGMOD ’10, pages 495–506, New York, NY, USA, 2010. ACM.

[28] Vertica Systems, Inc. Managing Big Data with Hadoop & Vertica, 2009.
[29] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. A simulation

approach to evaluating design decisions in mapreduce setups. In MASCOTS, pages 1–
11. IEEE, 2009.

[30] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIGMOD ’07, pages
1029–1040, New York, NY, USA, 2007. ACM.

[31] Anna Yarygina, Boris Novikov, and Natalia Vassilieva. Processing complex similarity
queries: A systematic approach. In Maria Bielikova, Johann Eder, and A Min Tjoa,
editors, ABDIS 2011 Research Communications: Proceedings II of the 5th East-
European Conference on Advances in Databases and Information Systems 20 – 23
September 2011, Vienna, pages 212–221. Austrian Computer Society, September 2011.

[32] Minqi Zhou, Rong Zhang, Dadan Zeng, Weining Qian, and Aoying Zhou. Join
optimization in the mapreduce environment for column-wise data store. In Proceedings
of the 2010 Sixth International Conference on Semantics, Knowledge and Grids, SKG
’10, pages 97–104, Washington, DC.

 306

