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Abstract. There are the following techniques that are used to analyze massive amounts of 
data: MapReduce  paradigm, parallel DBMSs, column-wise store, and various combinations 
of these approaches. We focus in a MapReduce environment. Unfortunately, join algorithms 
is not directly supported in MapReduce. The aim of this work is to generalize and compare 
existing equi-join algorithms with some optimization techniques. 
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1. Introduction 
Data-intensive applications include large-scale data warehouse systems, cloud 
computing, data-intensive analysis. These applications have their own specific 
computational workload. For example, analytic systems produce relatively rare 
updates but heavy select operation with millions of records to be processed, often 
with aggregations.  
Applications for large-scale data analysis use such techniques as parallel DBMS, 
MapReduce (MR) paradigm, and columnar storage.   Applications of this type 
process multiple data sets. This implies need to perform several join operation. It’s 
known join operation is one of the most expensive operations in terms both  I / O 
and CPU costs. 
Unfortunately, join algorithms is not directly supported in MapReduce. There are 
some approaches to solve this problem by using a high-level language PigLatin, 
HiveQL for SQL queries or implementing algorithms from research papers.  The 
aim of this work is to generalize and compare existing equi-join algorithms with 
some optimization techniques.   
This paper is organized as follows the section 2 describe state of the art. Join 
algorithms and some optimization techniques were introduced in 3 section. 
Performance evaluation will be described in 4 section. Finally, future direction and 
some discussion of experiments will be given.   
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2. Related Work 

2.1. Architectural Approaches 
Column storage is one of the architectural approaches to store data in columns, that 
the values of one field are stored physically together in a compact storage area. 
Column storage strategy improves performance by reducing the amount of 
unnecessary data from disk by excluding the columns that are not needed. 
Additional gains may be obtained using data compression. Storage method in 
columns outperforms row-based storage for workloads typical for analytical 
applications, which are characterized by heavy selection operation from millions of 
records, often with aggregation and by infrequent update operation. For this class of 
workloads I/O is major factor limited the performance. Comparison of column-wise 
and row-wise stores approaches is presented in [1]. 
Another architectural approach is a software framework MapReduce. Paradigm 
MapReduce was introduced in [11] to process massive amounts of unstructured 
data.  
Originally, this approach was contrasted with a parallel DBMS. Deep analysis of the 
advantages and disadvantages of these two architectures was presented in [25,10].  
Later, hybrid systems appeared in [9, 2]. There are three ways to combine 
approaches MapReduce and parallel DBMS.  

 MapReduce inside a parallel DBMS. The main intention is to move 
computation closer to data. This architecture can be exemplified with 
hybrid database Greenplum with MAD approach [9].  

  DBMS inside MapReduce. The basic idea is to connect multiple single 
node database systems using MapReduce as the task coordinator and 
network communication layer. An example is a hybrid database 
HadoopDB [2].  

  MapReduce aside of the parallel DBMS. MapReduce is used to implement 
an ETL produced data to be stored in parallel DBMS. This approach is 
discussed in [28] Vertica, which also supports the column-wise store. 

Another group of hybrid systems combines MapReduce with column-wise store. 
MapReduce and column-wise store are effective in data-intensive applications. 
Hybrid systems based on this two techniques may be found in [20,13]. 

2.2. Algorithms for Join Operation 
Detailed comparison of relational join algorithms was presented in [26]. In our 
paper, the consideration is restricted to a comparison of joins in the context of 
MapReduce paradigm.  
Papers which discuss equi-join algorithms can be divided into two categories which 
describe join algorithms and multi join execution plans.  
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The former category deals with design and analyses join algorithm of two data sets. 
A comparative analysis of two-way join techniques is presented in [6, 4, 21].  The 
cost model for two-way join algorithms in terms of cost I/O is presented in [7, 17].  
The basic idea of multi-way join is to find strategies to combine the natural join of 
several relations. Different join algorithms from relation algebra are presented in 
[30]. The authors introduce the extension of MapReduce to facilitate implement 
relation operations. Several optimizations for multi-way join are described in [3, 
18]. Authors introduced a one-to-many shuffling strategy. Multi-way join 
optimization for column-wise store is considered in [20, 32]. 
Theta-Joins and set-similarity joins using MapReduce are addressed in [23] and [27] 
respectively. 

2.3. Optimization techniques and cost models   
In contrast to the sql queries in parallel database, the  MapReduce program contains 
user-defined map and reduce functions.  Map and reduce functions can be 
considered as a black-box, when nothing is known about these functions, or they 
can be written on sql-like languages, such as HiveQL, PigLatin, MRQL, or sql 
operations can be extracted from functions on semantic basis. Automatic finding 
good configuration settings for arbitrary program offered in [16]. Theoretical 
designing cost models for arbitrary MR program for each phase separately presented 
in [15]. If the MR program is similar to the semantics of SQL, it allows us to 
construct a more accurate cost model or adapt some of the optimization techniques 
from relational databases.  HadoopToSQL [22] allows to take advantage of two 
different data storages such as SQL database and the text format in MapReduce 
storage and to use index at right time by transforming the MR program to SQL. 
Manimal system [17] uses static analysis for detection and exploiting selection, 
projection and data compression in MR programs and if needed to employ  
B+ tree index. 
New SQL-like query language and algebra is presented in [12]. But they are needed 
cost model based on statistic.  Detailed construction of the model to estimate the I/O 
cost for each phase separately is given in [24].  Simple theoretical considerations for 
selecting a particular join algorithm are presented in [21].  Another approach [7] for 
selecting join algorithm is to measure the correlation between the input size and the 
join algorithm execution time with fixed cluster configuration settings. 

3. Join algorithms and optimization techniques 
In this section we consider various techniques of two-way joins in MapReduce 
framework. Join algorithms can be divided into two groups: Reduce-side join and 
Map-side join. The pseudo code presented in Listings, where R – right dataset, L – 
left dataset, V – line from file, Key – join key, that was parsed from a tuple, in this 
context tuple is V. 
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3.1. Reduce-Side join 
Reduce-side join is an algorithm which performs data pre-processing in Map phase, 
and direct join is done during the Reduce phase. Join of this type is the most general 
without any restriction on the data. Reduce-side join is the most time-consuming, 
because it contains an additional phase and transmits data over the network from 
one phase to another. In addition, the algorithm has to pass information about source 
of data through the network. The main objective of the improvement is to reduce the 
data transmission over the network from the Map task to the Reduce task by 
filtering the original data through semi-joins. Another disadvantage of this class of 
algorithms is the sensitivity to the data skew, which can be addressed by replacing 
the default hash partitioner with a range partitioner. 
There are three algorithms in this group:  

 General reducer-side join,  
 Optimized reducer-side join,  
 the Hybrid Hadoop join. 

General reducer-side join is the simplest one. The same algorithms are called 
Standard Repartition Join in [6]. The abbreviation is GRSJ and pseudo code is 
presented in Listing 1. 
This algorithm has both Map and Reduce phases. In the Map phase, data are read 
from two sources and tags are attached to the value to identify the source of a 
key/value pair. As the key is not effecting by this tagging, so we can use the 
standard hash partitioner. In Reduce phase, data with the same key and different 
tags are joined with nested-loop algorithm. The problems of this approach are that 
the reducer should have sufficient memory for all records with a same key; and the 
algorithm sensitivity to the data skew.  
 

 

Listing 1: GRSJ. 

Map (K: null, V from R or L) 
      Tag = bit from name of R or L; 
      emit (Key, pair(V,Tag)); 
 
Reduce (K’: join key, LV: list of V with key K’) 
create buffers Br and Bl for R and L; 
      for t in LV do 
              add t.v to  Br or Bl by t.Tag; 
      for r in Br do  
              for l in Bl do 
               emit (null, tuple(r.V,l.V)); 
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Listing 2: ORSJ. 

Optimized reducer-side join enhances previous algorithm by overriding sorting 
and grouping by the key, as well as tagging data source. Also known as Improved 
Repartition Join in [6], Default join in [14]. The abbreviation is ORSJ. In Listing 2 
pseudo code is shown. In the algorithm all the values of the first tag are followed by 
the values of the second one. In contrast with the General reducer-side join, the tag 
is attached to both a key and a value. Due to the fact that the tag is attached to a key, 
the partitioner must be overridden in order to split the nodes by the key only. This 
case requires buffering for only one of input sets.  
Optimized reducer-side join inherits major disadvantages of General reducer-
side join namely the transferring through the network additional information about 
the source and the algorithm sensitivity to the data skew.  
The Hybrid join [4] combines the Map-side and Reduce-side joins. The abbreviation 
is HYB and Listing 3 describe pseudo code. 

 
Listing 3: HYB 

Job 1: partition the smaller file S                                   Job 2: join two datasets 
  Map (K:null, V from S)                                                  Map (K:null, V from B) 
     emit (Key,V);                                                                 emit (Key,V); 
     Reduce (K’:join key, LV: list of V’ with key K’)          init()  //for Reduce phase    
        for t in LV do                                           read needed partition of output  om Job 1; 
           emit (null, t);                                         add it to hashMap(Key, list(V)) H; 
                                                                                         Reduce (K’:join key, LV: list of 
                                                                                                         V’ with key K’) 
                           if(K’ in H) then 
                                    for r in LV do  
                                 for l in H.get(K’) do 
                                                        emit (null, tuple(r,l));   

Map (K:null, V from R or L) 
      Tag = bit from name of R or L; 
      emit (pair(Key,Tag), pair(V,Tag)); 
 
Partitioner(K:key, V:value, P:the number of reducers) 
       return hash_f(K.Key) mod P;  
 
Reduce (K’: join key, LV: list of V’ with key K’) 
       create buffers Br for R; 
       for t in LV with t.Tag corresponds to R do 
              add t.v to  Br; 
       for l in LV with l.Tag corresponds to L do 
              for r in Br do 
                     emit (null, tuple(r.V,l.V)); 
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In Map phase, we process only one set and the second set is partitioned in advance. 
The pre-partitioned set is pulled out of blocks from a distributed system in the 
Reduce phase, where it is joined with another data set that came from the Map 
phase. The similarity with the Map-side join is the restriction that one of the sets has 
to be split in advance with the same partitioner, which will split the second set. 
Unlike Map-side join, it is necessary to split in advance only one set. The similarity 
with the Reduce-side join is that algorithm requires two phases, one of them for pre-
processing of data and one for direct join. In contrast with the Reduce-side join we 
do not need additional information about the source of data, as they come to the 
Reducer at a time. 

3.2. Map-Side join 
Map-side join is an algorithm without Reduce phase. This kind of join can be 
divided into two groups. First of them is partition join, when data previously 
partitioned into the same number of parts with the same partitioner. The relevant 
parts will be joined during the Map phase. This map-side join is sensitive to the data 
skew. The second is in memory join, when the smaller dataset send whole to all 
mappers and bigger dataset is partitioned over the mappers. The problem with this 
type of join occurs when the smaller of the sets cannot fit in memory.  
There are three methods to avoid this problem: 

 JDBM-based map join,  
 Multi-phase map join,  
 Reversed map join. 

Map-side partition join algorithm assumes that the two sets of data pre-partitioned 
into the same number of splits by the same partitioner. Also known as default map 
join. The abbreviation is MSPJ and Listing 4 describe pseudo code. At the Map 
phase one of the sets is read and loaded into the hash table, then two sets are joined 
by the hash table. This algorithm buffers all records with the same keys in memory, 
as is the case with skew data may fail due to lack of enough memory. 

 

Listing 4: MSPJ 

Job 1: partition dataset S as in HYB 
Job 2: partition dataset B as in HYB 
Job 3: join two datasets 
   init()   //for Map phase 
       read needed partition of output file from Job 1; 
       add it to hashMap(Key, list(V)) H; 
    Map(K:null, V from B) 
        if (K in H) then 
              for r in LV do  
                   for l in H.get(K) do 
                emit(null, tuple(r,l));



 291

 

Listing 5: MSPMJ. 

Map-side partition merge join is an improvement of the previous version of the join. 
The abbreviation is MSPMJ and pseudo code is presented in Listing 5. If data sets 
in addition to their partition are sorted by the same ordering, we apply merge join. 
The advantage of this approach is that the reading of the second set is on-demand, 
but not completely, thus memory overflow can be avoided. As in the previous cases, 
for optimization can be used the semi-join filtering and range partitioner. 
In-Memory Join does not require to distribute original data in advance unlike the 
versions of map joins discussed above. The same algorithms are called Map-side 
replication join in [7], Broadcast Join in [6], Memory-backed joins [4], Fragment-
Replicate join in [14]. The abbreviation is IMMJ. Nevertheless, this algorithm has a 
strong restriction on the size of one of the sets: it must fit completely in memory. 
The advantage of this approach is its resistance to the data skew because it 
sequentially reads the same number of tuples at each node. There are two options 
for transferring the smaller of the sets: 

 using a distributed cache, 
 reading from a distributed file system. 

Job 1: partition S dataset as in HYB 
Job 2: partition B dataset as in HYB 
Job 3: join two datasets 
    init()  //for Map phase 
        find needed partition SP of output file from Job 1; 
        read first lines with the same key K2 from SP and add    
                 to buffer Bu; 
    Map(K:null, V from B) 
          while (K > K2) do 
                    read T from SP with key K2; 
                    while (K == K2) do 
                         add T to Bu; 
                         read T from SP with key K2;     
           if (K == K2) then 
                    for r in Bu do  
                        emit(null, tuple(r,V)); 
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Listing 6: IMMJ 

 

Listing 7: REV. 

The next three algorithms optimize the In-Memory Join for a case, when two sets 
are large and no of them fits into the memory. 
JDBM-based map join is presented in [21]. In this case, JDBM library automatically 
swaps hash table from memory to disk. 

 

Listing 8: JDBM 

 

Listing 9: Multi-phase map join. 

Multi-phase map join [21] is algorithm where the smaller of the sets is partitioned 
into parts that fit into memory, and for each part runs In-Memory join. The problem 

For part P from S that fit into memory do IMMJ(P,B). 

The same as IMMJ, but H is implemented by HTree 
instead of hashMap . 

init()   //for Map phase 
    read S from HDFS; 
    add it to hashMap(Key, list(V)) H; 
map (K:null, V from S) 
      add to hashMap(Key, V) H; 
close()  //for Map phase 
       find B in HDFS 
       while (not end B) do 
              read line T; 
              K = join key from tuple T; 
              if (K in H) then 
                       for l in H.get(K) do 
                            emit(null, tuple(T,l));      

init()  // for Map phase 
    read S from HDFS; 
    add it to hashMap(Key, list(V)) H; 
map (K:null, V from B) 
       if (K in H) then 
          for l in H.get(K) do 
                 emit (null, tuple(v,l));             
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with this approach is that it has a poor performance. If the size of the set, which to 
be put in the memory is increased twice, the execution time of this join is also 
doubled. It is important to note that the set, which will not be loaded into memory, 
will be read many times from the disk.  
Idea of Reversed map join [21] approach is that the bigger of the sets, which is 
partitions during the Map phase, loading in the hash table. Also known as Broadcast 
Join in [6]. The abbreviation is REV. The second dataset is read from a file line by 
line and joined using a hash table. 

3.3. Semi-Join 
Sometimes a large portion of the data set does not take part in the join. Deleting of 
tuples that will not be used in join significantly reduces the amount of data 
transferred over the network and the size of the dataset for the join. This 
preprocessing can be carried out using semi-joins by selection or by a bitwise filter. 
However, these filtering techniques introduce some cost (an additional MR job), so 
the semi-join can improve the performance of the system only if the join key has 
low selectivity. There are three ways to implement the semi-join operation:  

 a semi-join using bloom-filter,  
 semi-join using selection, 
 an adaptive semi-join. 

Bloom-filter is a bit array that defines a membership of element in the set. False 
positive answers are possible, but there are no false-negative responses in the 
solution of the containment problem. The accuracy of the containment problem 
solution depends on the size of the bitmap and on the number of elements in the set. 
These parameters are set by the user. It is known that for a bitmap of fixed size m 
and for the data set of n tuples, the optimal number of hash functions is 
k=0.6931*m/n. In the context of MapReduce, the semi-join is performed in two 
jobs. The first job consists of the Map phase, in which keys from one set are 
selected and added to the Bloom-filter. The Reduce phase combines several Bloom-
filters from first phase into one. The second job consists only of the Map phase, 
which filters the second data set with a Bloom-filter constructed in previous job. 
The accuracy of this approach can be improved by increasing the size of the bitmap. 
However in this case, a larger bitmap consumes more amounts of memory. The 
advantage of this method is its the compactness. The performance of the semi-join 
using Bloom-filter highly depends on the balance between the Bloom-filter size, 
which increases the time needed for its reconstruction of the filter in the second job, 
and the number of false positive responses in the containment solution. The large 
size of the data set can seriously degrade the performance of the join. 
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Listing 10: Semi-join using Bloom-filter 

 

Listing 11: Semi-join with selection. 

Semi-join with selection extracts unique keys and constructs a hash table. The 
second set is filtered by the hash table constructed in the previous step. In the 

Job 1: find unique keys 
    Map (K:null, V from L) 
          Create HashMap H; 
          if (not Key in H) then 
                add Key to H;  
       emit (Key, null); 
 
    Reduce (K’: key, LV) //only one Reducer 
         emit (null,key);     
    
Job 2: filter dataset  
    init()  //for Map phase 
           add to  HashMap H unique keys from job 1;      
    Map (K:null, V from R) 
           if (Key in H) then 
               emit (null,V);       
 
Job 3: do join with L dataset and filtered dataset from 
Job 2.

Job 1: construct Bloom filter 
     Map (K:null, V from L) 
            Add Key to BloomFilter Bl 
     close()  //for Map phase 
            emit(null, Bl); 
 
    Reduce (K’: key, LV) //only 1 Reducer 
       for l in LV do 
            union filters by operation Or 
       close()  // for Reduce phase 
            write resulting filter into file;  
      
Job 2: filter dataset  
     init()   //for Map phase 
            read filter from file in Bl 
     Map (K:null, V from R) 
            if (Key in Bl)  then 
                emit (null, V); 
 
Job 3: do join with L dataset and filtered dataset from 
Job 2.



 295

context of MapReduce, the semi-join is performed in two jobs. Unique keys are 
selected during the Map phase of the first job and then they are combined into one 
file during the Map phase. The second job consists of only the Map phase, which 
filters out the second set. The semi-join using selection has some limitations. Hash 
table in memory, based on records of unique keys, can be very large, and depends 
on the key size and the number of different keys. 
The Adaptive semijoin is performed in one job, but filters the original data on the 
flight during the join. Similar to the Reduce-side join at the Map phase the keys 
from two data sets are read and values are set equal to tags which identify the source 
of the keys. At the Reduce phase keys with different tags are selected. The 
disadvantage of this approach is that additional information about the source of data 
is transmitted over the network. 

Listing 12: Adaptive semi-join. 

3.4. Range Partitioners 
All algorithms, except the In-Memory join and their optimizations are sensitive to 
the data skew. This section describes two techniques of the default hash partitioner 
replacement. 
A Simple Range-based Partitioner [4] (this kind similar to the Skew join in [14]) 
applies a range vector of dimension n constructed from the join keys before starting 
a MR job. By this vector join keys will be splitted into n parts, where n is the 
number of Reduce jobs. Ideally partitioner vector is constructed from the whole 
original set of keys, in practice a certain number of keys is chosen randomly from 
the data set. It is known that the optimal number of keys for the vector construction 
is equal to the square root of the total number of tuples. With a heavy data skew into 
a single key value, some elements of the vector may be identical. If the key belongs 
to multiple nodes, a node is selected randomly in the case of data on which to build 

Job 1: find keys which are present  
in two datasets    

Job 2: before joining it is necessary to filter the 
smaller    

Map (K:null, V from R or L)     dataset dataset by keys from the Job 1 that will  
         Tag = bit from name of R or L; be loaded into hash map.  
          emit (Key,Tag); Then the bigger dataset is joined with filtered 

one 
          Reduce (K’: join key,  
           LV: list of V with key K’) 

 

              Val = first value from LV;  
                   for t in LV do  
                      if (not Val==Val2) then  
                           emit (null, K’);  
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a hash table, otherwise the key is sent to all nodes (to save memory as a hash table is 
contained in the memory). 
Virtual Processor Partitioner [4] is an improvement of the previous algorithm based 
on increasing the number of partition. The number of parts is specified multiple of 
the tasks number.  The approach tends to load the nodes with the same keys 
uniformly (compared with the previous version). The same keys are scattered on 
more nodes than in the previous case. 

 

Listing 13: The range partitioners. 

3.5. Distributed cache 
The advantage of using distributed cache is that data set are copied only once at the 
node. It is especially effective if several tasks at one node need the same file. In 
contrast the access to the global file system needs more communication between the 
nodes. Better performance of the joins without the cache can be achieved by 
increasing number of the files replication, so there's a good chance to access the file 
version locally. 

//before the MR job starts                  Map(K:null, V from L or R) 
// optimal max = sqrt(|R|+|L|)  Tag = bit from name of R or L; 
getSamples (Red:the number of reducers, 
max: the max  

  read file with samples and add samples 
  to Buffer B; 

                      number of samples)   //in case virtual partition it is needed to 
       C = max/Splits.length;                      // each index mod |Reducers| 
       Create buffer B;          Ind = {i:  B[i-1] < Key <= B[i]}    
      for s in Splits of R and L do  // Ind may be array of indexes in skew 

   case 
              get C keys from s;   if (Ind.length >1) then 
              add it to B         if (V in L) then 
       sort B; node = random(Ind); 
      //in case simple range partitioner P == 1 emit (pair(Key, node), pair(V, Tag)); 
      //in case virtual  range partitioner P > 1        else 
      for j<(Red*P) do for i in Ind do 
               T = B.length/(Red*P)*(j+1);      emit (pair(Key, i), pair(V, Tag)); 
              write into file B[T];    else  emit (pair(Key, Ind), pair(V, 

   Tag)); 
             Partitioner (K:key, V:value, P: 

            the number of reducers) 
                 return K.Ind; 
                     Reducer (K’: join key, LV: list of 

             V’ with key K’) 
    The same as GRSJ 
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3.6. Comparative analysis of algorithms   
The features of join algorithms are presented in the Table 1. The approaches with 
pre-processing is good when data is prepared in advance for example come from 
another MapReduce job. Algorithms with one phase and without tagging is more 
preferable due to the fact that no additional transferring data through the network 
are needed.   Approaches  that sensitive to the data skew may be improved by 
optimizations with range partitioner. In case of data low selectivity semi-join 
algorithms can improve performance and reduce the possibility of memory 
overflow.  
 Pre-

proces-
sing  

The 
number 
of 
phases  

Tags  Sensi-
tive 
to 
data 
skew  

Need 
distr.  

cache 

Memory 
overflow  

Join 
algorithm 

GRSJ  -  2  To 
value  

yes  -  Number 
tuples for 
the same 
key is 
large  

Nested 
loop  

ORSJ  -  2  To 
key 
and 
value  

yes  -  Number 
tuples for 
the same 
key is big  

Nested 
loop  

HYB  1 data  2  -  yes  -  Part size is 
large  

Hash  

MSPJ  2 data  1  -  yes  -  Part size is 
large  

Hash  

MSPMJ  2 data + 
sort  

1  -  yes  -  -  Sort-
merge  

IMMJ  -  1  -  -  yes  Size of 
smaller 
dataset is 
large  

Hash  

MUL  1 data  1*part  -  -  yes  -  IMMJ  
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JDBM  -  1  -  -  yes  -  JDBM 
hash 
table  

REV  -  1  -  -  yes  Part size is 
big and 
number of 
tuples for 
the same 
key is big  

Hash  

Table 1: Comparative analysis of algorithms. 

The multiphase and JDBM map join algorithms is excluded from our experiments 
because of their poor performance.    

4. Experiments 

4.1. Dataset 
Data are the set of tuples, which attributes are separated by a comma. Tuple is split 
into a pair of a key and a value, where value is the remaining attributes. Generation 
of synthetic data was done as in [4]. Join keys are distributed randomly except 
experiment with the data skew. 

4.2. Cluster configuration 
Cluster consists of three virtual machines, where one of them is master and slave at 
the same time, the remaining two are the slaves. Host configuration consists of 1 
processor, 512 mb of memory for  nodes, 5 gb is the disk size. Hadoop  20.203.0 
runs on  Ubuntu 10.10. 

4.3. The General Case 
The base idea of this experiment is to compare executions time of different phases 
of various algorithms. Some parameters are fixed: the number of  Map and Reduce 
tasks is 3, the input size is 104x105 and 106x106 tuples.  
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Figure 1: Executions time of different phases of various algorithms. Size 104*105. 

 

 

Figure 2: Executions time of different phases of various algorithms. Size 106*106. 

For a small amount of data, Map phase, in which all tuples are tagged, and Shuffle 
phase, in which data are transferred from one phase to another, are more costly in 
Reduce-Side joins. It should be noted that GRSJ is better than ORSJ on small data, 
but it is the same on big data. It is because in first case time does not spend on 
combining tuples. Possible, on the larger data ORSJ outperform  GRSJ when the 
usefulness of grouping by key will be more significant.  Also for algorithms with 
pre-processing more time are spent on partitioning data. The algorithms in memory 
(IMMJ and REV) are similar in small data. Two algorithms are not shown in the 
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graph because of their bad times: JDBM-based map join and Multi-phase map join. 
In large data IMMJ algorithm could not be executed because of memory overflow. 

4.4. Semi-Join 
The main idea of this experiment is to compare different semi-join algorithms. 
These parameters are fixed: the number of Map and Reduce tasks is 3, the bitmap 
size of Bloom-filter is 25*105, the number of hash-functions in Bloom-filter is 173, 
built-in Jenkins hash algorithm is used in Bloom-filter. Adaptive semi-join 
(ASGRSJ) does not finish because of memory overflow. The abbreviation of 
Bloom-filter semi-join for GRSJ is BGRSJ. The abbreviation of semi-join with 
selection for GRSJ is SGRSJ respectively. 

 

Figure 3: Comparison of different semi-join implementations. 

4.5. Speculative execution 
Speculative execution reduces negative effects of non-uniform performance of 
physical nodes. In this experiment two join algorithms GRSJ and IMMJ is chosen 
because of different numbers of phases and one of them sensitive to the data skew. 
Two dataset are considered: normal data that consists of 105x105 tuples and skew 
data that contain for one data 5*104 same key in tuples and for second data 10 same 
keys in tuples. In case of IMMJ, which is not sensitive to the data skew, the 
performance with speculative execution is the similar approach without it. In case of 
GRSJ algorithm with uniform data approach without speculative execution is better 
than with it. But GRSJ algorithm with skew data and speculative execution 
outperforms four times approach without it.   
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Figure 4: The effect of speculative execution. 

4.6. Distributed cache 
In [21] was showed that using of distributed cache is not always good strategy. They 
suggested that the problem can be a high speed network. This experiment was 
carried out for Reversed Map-Side join, because for which a distributed cache can 
be important.  Replication was varied as 1, 2, 3 and size of data is fixed – 106x106 
tuples. When data is small, the difference is not always visible. In large data 
algorithms with distributed cache outperform approach of reading from a globally 
distributed system.  

 

Figure 5: Performance of Reversed Map-Side join with and without using 
distributed cache. 
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4.7. Skew data 
It is known that many of the presented algorithms are sensitive to the data skew. In 
this experiment take part such algorithms as Reduce-side join with Simple Range-
based Partitioner for GRSJ (GRSJRange) and Virtual Processor Partitionerfor GRSJ 
(GRSJVirtual), and also for comparing in memory join: IMMJ, REV because of 
resistant to the skew. Fixed parameters are used: size of two dataset is 2*106, one of 
the data set has the same key in 5*105 tuples, and another has the same keys in 10 or 
1 tuples. In case with IMMJ was memory overflow. 

 

 

Figure 6: Processing the data skew. 

Although these experiments do not completely cover the tunable set of Hadoop 
parameters, they are shown the advantages and disadvantages of the proposed 
algorithms. The main problems of these algorithms are time spent on pre-
processing, transferring data, the data skew, and memory overflow.  
Each of the optimization techniques introduces additional cost to the 
implementation of the join, so the algorithm based on the tunable settings and 
specific data should be carefully chosen. Also important are the parameters of the 
network bandwidth when distributed cache are used or not used and a hardware 
specification of nodes because of it is importance when speculative executions are 
on.  Speculative execution reduces negative effects of non-uniform performance of 
physical nodes.  
Based on the collected statistics such as data size, how many keys will be taking 
part in the join, these statistics may be collected as well as the construction of a 
range partitioner, the query planner can choose an efficient variant of the join. For 
example, in [5] was proposed what-if analyses and cost-based optimization.  
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5. Future work 
The algorithms discussed in this paper, only two sets are joined. It is interesting to 
extend from binary operation to multi argument joins. Among the proposed 
algorithms, there is no effective universal solution. Therefore, it is necessary to 
evaluate the proposed cost models for join algorithms. And for this problem it is 
need to use real cluster with more than three nodes in it and more powerful to 
process bigger data, due to the fact that the execution time on the virtual machine 
may be different from the real cluster in reading/writing, transferring data over the 
network and so on. 
Also the idea of processing the data skew in MapReduce applications from [19] can 
be applied to the join algorithms. Another direction to future work is to extend 
algorithm to support a theta-join and outer join. 
An interesting area for future work is to develop, implement and evaluate 
algorithms or extended algebraic operations suitable for complex similarity queries 
in an open distributed heterogeneous environment. The reasons to evaluate complex 
structured queries are: a need to combine search criteria for different types of 
information; a query refinement e.g. based on user profile or feedback; advanced 
users may need query structuring. The execution model and algebraic operation to 
be implemented are outlined in [31]. The main goal is to solve the problems 
presented in [8] as a problem. 
In addition, one of the issues is efficient physical representation of data. Binary 
formats are known to outperform the text both in speed reading and partitioning  
key / value pairs, and the transmission of compressed data over the network. Along 
with the binary data format, column storage has already been proposed for paradigm 
MapReduce. It is interesting to find the best representation for specific data. 

6. Conclusion 
In this work we describe the state of the art in the area of massive parallel 
processing, presented our comparative study of these algorithms with optimizations 
such as semi-join and range partiotioner. Also our directions of future work is 
discussed.  
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