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Abstract. Temporal data regularity is an important data property that can be used in different 
applications. Such regularity is explored in the field of periodic pattern mining. In this paper, 
we raise a problem of periodic sets detection and suggest the method for its solution. The 
existing algorithms for the periodic event mining are considered in detail and a new approach 
is proposed in the paper. The comparison of the algorithms and their performance are 
demonstrated through a series of experiments. 
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1. Introduction 
Pattern mining is an important area of data mining, and it has been growing rapidly 
over the two past decades. The initial stimulus for the development of methods was 
the problem of market basket analysis, that requires to determine which products are 
usually purchased together by using a transaction database of supermarket buying. 
The new knowledge could be used for the correct placement of goods or for the 
advertising purpose. The first efficient algorithm for finding frequent patterns has 
been proposed in [1]. Now there are many algorithms for detecting the patterns that 
are applied in various fields. For example, they are used in biology to identify the 
sequences of nucleotides, in the analysis of log files for the detection of failures or 
attacks, in medicine for diagnosis, in marketing for advertising or tips for users, etc. 
Many kinds of the data in the real world are time series or temporal databases. 
Periodic pattern mining is the problem that regards temporal regularity. Periodic 
patterns are characterized by a certain persistence and predictability. Information 
about such regularity can be used for many tasks: for the purpose of personal 
promotion to the users, for the timely reminders about the future events or 
forecasting. 
By the periodic pattern we mean the set of items that frequently occur together at 
regular time intervals. There are two ways for prediction if the pattern and its period 
p are known. If the pattern has occurred during some time interval (tbeg, tend) then it 
is likely to repeat during (tbeg+ p, tend + p). And if several events of the pattern have 
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occurred then other events of the pattern are likely to happen soon. Therefore, it is 
important to identify and describe the periodicity. 
There are several types of periodic patterns considered in literature. Most of the 
studies on their mining apply the Apriori property heuristic and adopt some 
variations of Apriori-like mining methods [9].  Apriori property is used to reduce 
the search space and formulated as “All nonempty subsets of a frequent itemset 
must also be frequent”, i.e. an itemset is frequent only if all of its sub-itemsets are 
frequent. This observation applies to construct k+1-patterns based on the found k-
patterns set. But 1-patterns are generally detected by a simple search and are not 
consider in detail. In addition, in most of the previous works the 1-pattern consists 
of a single item while the pattern that consists of a number of events may be 
interested in some tasks. In this work we present an algorithm for such periodic 1-
patterns finding and discuss several approaches to periodic event detection. We 
propose a new algorithm to the periodic event mining as well. The experiments 
show that our method is the more advantageous in some cases. 
The remainder of this paper is organized as follows. In section 2 the previous works 
on the frequent and periodic pattern mining will be discussed. In section 3 the 
notation used throughout the paper and the formal definition of periodic patterns are 
introduced. Section 4 describes the several possible ways of patterns detection and 
section 5 presents the experimental results. The conclusion and future research 
directions are contained in section 6. 

2. Related works 
Our study combines frequent pattern mining and periodic pattern mining in periodic 
sets finding. We will review the related works in these areas below.  

2.1. Frequent pattern mining  
There are a huge number of studies in this field in literature. The existing algorithms 
can be classified into three main groups: 

- iterative Apriori-like level-wise mining techniques 
- pattern mining methods without candidate generation 
- mining techniques with the vertical data format 

As mentioned above, the concept of frequent itemset and the first algorithm for 
finding frequent patterns by using downward closure property, called Apriori, were 
introduced by Agrawal and Srikant in [1]. This approach requires candidate set 
generation and scanning the database to check each candidate. Such techniques as 
hashing [14], partitioning [15], upper bound of the number of candidate patterns that 
can be generated in the level-wise approach [5] were developed for improvements 
and extensions of algorithms in that category [7]. 
In paper [10] a problem of finding long frequent patterns is considered and a new 
FP-growth approach that mines frequent itemsets without candidate generation was 
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devised. At the first step items are ordered in frequency-descending order and 
according to this list, the database is compressed into a special FP-tree and after that 
the tree is mined in some way. An alternative approach is proposed in [6]. 
These methods are used to discover patterns from a set of transactions in a 
horizontal data format (i.e. {Transaction_id :itemset}). An example of alternative 
class of the algorithms that first transforms the data into a vertical data format (i.e. 
{item :Transaction_id set}) is Eclat [18]. These methods don’t require scanning the 
database to count the support of (k+1)-candidates. 

2.2. Periodic pattern mining 
The problem of mining periodic patterns can be viewed from different perspectives 
[9]: depending on the coverage of the pattern there are full- and partial-periodic 
patterns. Basing on the precision of the periodicity synchronous and asynchronous 
pattern can be identified. And a pattern can also be precise or approximate.  
Generally, in the works related with our, the following notation of periodic pattern 
is used. Let S be the sequence S = S1, S2, …. , Sn. A pattern p is the nonempty 
sequence p = p1 … pk, where {*}.ji Sp  The additional event {*} – symbol 
that matches any event and is used to represent the “don’t care” position in the 
pattern. The frequency of a pattern p is the count of j such that the string s is true in 
Si|p|+1 …Si|p|+|p|. If the frequency of the p exceeds a minimum support threshold, then 
this pattern is named periodic. A pattern with the k non-{*} positions is also called 
an i-pattern. 
Cyclic association rules that display regular cyclic variation over time were first 
introduced in [13]. These rules are based on partial-periodic patterns with perfect 
periodicity in the sense that each pattern reoccurs in every cycle. In the article 
several techniques called cycle-pruning, cycle-skipping and cycle-elimination were 
proposed to optimize mine periodic patterns with 100% support. 
General partial-periodic patterns with imperfect periodicity studied in [3, 4, 8] are 
more common in real world. In work [3] a new structure named abbreviated list 
table (ALT) that maintains the occurrence counts of all symbols and corresponding 
periods was proposed. Using this structure only a small number of data sequence 
passes are required to compute the periods and the patterns of size 1. Han et al [8] 
explored interesting properties such as the Apriori property and the max-subpattern 
hit set property related to partial periodicity and proposed several methods for 
efficient mining of k-patterns. Another original algorithms for symbol and segment 
periodicity detection based on mapping scheme and convolution may be  
found in [4].  
The above methods were used to discover  potential periods from the entire time-
series data. In paper [16] the authors presented the dense periodic patterns that may 
exist only in a limited range of the time-series. 
Most of the works are concentrated on the k-patterns constructing and use a base 
line algorithm for 1-patterns mining. To the best of our knowledge only paper [3] 
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represents the way to improve 1-patterns mining. In our work we propose a new 
approach to the 1-patterns mining and perform a comparison analysis with the 
existing base line and ATL approaches. In addition, most of the existing studies 
focused on the detection of such patterns where Si and pj are single events while we 
explore the patterns where pi may be a set of events. 
Another group of works [11, 12, 17] is focused on the regular activities that occur 
with a calendar-based periodicity. In [12] the calendar schema is proposed to 
construct periodic patterns. Calendar-based approach allows to specify multiple 
time granularities. For example, schema (2010, *, 1) means that the pattern occurred 
on the first day of each month in 2010. A fuzzy periodic calendar and an algorithm 
for mining fuzzy periodicity are developed in [11]. 

3. Problem definition 
Let E be a set of events. Time-series S is a sequence of records (ti, ei) with an event 
ei ∈ E and a time stamp ti when the event occurred. 
We assume that the pattern time interval is limited by user-specified window W, i.e. 
all events in pattern occur within the interval W. Time-series S can be presented as 
S = S1 S2 … Sn, where Si are sequential disjoint sets of the events happening during 
the window. For example, for W equal to an hour, S1 may contain the events which 
occurred from 12 am to 13 am, S2 contains the events that took place from 13 to 14 
am, and so on. 
Let T be a subset of E. The set T is contained in Si, if all the events of T are in Si. 
The binary sequence for itemset T (BinSeqT) is constructed as follow: BinSeqT[i] = 
1 if T is contained in Si, and BinSeqT[i] = 0 otherwise. The candidate pair (p, o) 
with period p and offset o has a support Sup of the period (p, o) for the set T: 
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The notation (p, o, sup) will be used if it is known that the candidate pair (p, o) has 
the support sup. We say that the set T is a periodic 1-pattern with period p and 
offset o if Sup(p, o) is not less than a specified minimum support. The length of a 1-
pattern is the number of elements in the pattern. The 1-pattern of length 1 we will 
also be called a periodic event and the 1-pattern of length k greater than 1 we will 
be referred to as a periodic k-set for short.  Our goal is to find all possible periodic 
sets in a given time-series. 
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4. Algorithm 
Our algorithm belongs to a group of methods using an iterative approach known as 
a level-wise search. This approach uses k-patterns to generate (k+1)-patterns. At the 
first step of the algorithm the set of periodic events is found by searching the binary 
sequences. Further, the periodic sets with two items can be constructed and tested 
for the periodicity (i.e. which of them satisfy a minimum support), and so on, until 
no more periodic k-sets can be detected. 
The following predefined parameters are used in the algorithms: minimum period 
(P_min), maximum period (P_max), minimum support (Sup_min). 

4.1. Periodic items 
Three methods for the periodic events detection will be discussed below. The first 
method is the base line algorithm that is used in most of existing works. In the 
second approach we adopt the idea of ATL structure described in [3]. The third 
approach represents a new way to periodic item detection. The periodic 1-sets or 
periodic events are found using binary sequences of events. So, for each event it is 
needed to construct the binary sequence as described in section 3.   

 Base line approach. 
This method requires counting the support value for all possible periods-candidates 
as shown in fig. 1. 

 

 

 
Fig. 1 

Such an approach requires the full scan of the binary sequence for the testing of 
some period. To check all the candidates (P_max – P_min + 1) passes are needed 
for each event. If n is the length of the binary sequence, ہn/pۂ steps are required to 
check one candidate (p, o). There are p candidate pairs with period p and different 
offsets. To test them p * ہn/pۂ ~ n steps are required. And the number of interesting 
periods is (P_max-P_min+1). So, the algorithm is performed in time O((P_max-
P_min+1) * n). 

 ATL-based approach. 
In this case only one full scan of the sequence is required. The number of times each 
candidate pair occurs is counted by scanning.  

forP_min ≤ p ≤P_max 
for 0 ≤ o < p 
  if (Sup(p, o) ≥ Sup_min) then  
  Result.AddPeriod(p, o) 
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Initially, count is equal to 0 for all the candidates. When a position i is considered, if 
BinSeq[i] = 1 then the count of the occurrences increases by one for all the cycles 
(p, o = i mod p).  
For example, consider a binary sequence: BinSeq = 01001011001, P_min = 2, 
P_max = 5.  
Let the algorithm scan sequence at position i=4: BinSeq [4]=1 => (2, 0).count++, (3, 
1).count++, (4, 0).count++, (5, 4).count++, and so on while i less than the sequence 
length.  
After the occurrences numbers of candidate periods have been counted the supports 
of pairs are calculated as follow:  

%
p

BinSeqSizeounts = (p, o).cSup(p, o) 100*)(/
 

This method is described below in Fig 2. 

 

 

 

 

 

Fig. 2 

Time complexity of this approach is O(n). 

 Divider-based pruning approach. 
This method is based on the following observation: if there is a triple (p, o, sup), 
then a triple (p1, d1, sup1) = (p/d, o, sup/d) with smaller period and support also 
exists. To be more precise d is a divider of p and sup1 no less than sup/d. So, in 
order for a triple (p, o, sup) to exist, the existence of triple (p1 = p/d, o, sup1 ≥ sup/d) 
calculated at the previous steps is necessary. Support values that were counted for 
smaller periods can be used to reduce computing at the next iterations for larger 
periods mining. If for some candidate (p, o) the support is equal to sup and sup < 
Sup_min, then the candidate (p*i, o) is not suitable in case p*i < P_max and sup*i < 
Sup_min. 

Result; // the set of finding periods 
for  0 ≤ I < Size(BinSeq) 
if(BinSeq[i]=1) then 
  forP_min ≤ p ≤ P_max 
   (p, i mod p).count++; 
forP_min ≤ p ≤P_max 
for 0 ≤ I < p  
  if(sup(p, o) ≥ Sup_min) then 
  Result.Add(p, o); 
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For example, at some iteration of the algorithm a candidate pair (4, 3) is tested on 
periodicity with the minimum support 80 %. If the support of the candidate is 30% 
then candidate (8, 3) may be excluded from further consideration. 
The second observation we will use is that if the period (p, o) is found, then the 
multiple periods (p*i, o) are not so interesting.  
At the beginning of the algorithm we assume that there are all possible periods, i.e. 
pairs (p, o). Denote this set as Cand. Pseudocode of the algorithm is given in  
Figure 3. 

 

 

 

 

 

 

 

 

Fig. 3 

Algorithm evaluation: 
1) In the algorithm a check of all candidates with the prime periods is required. 
Such pairs couldn’t be removed from the set of candidates at the previous steps of 
the algorithm. 
The number of primes less than N is estimated approximately as N/ln(N). 
Consequently, the number of prime periods in the range of P_min to P_max equal to 
K = P_max/ln(P_max) – P_min/ln(P_min). To compute the support of pairs with 
period p and all possible offsets the scan of the entire binary sequence is required. 
Thus, to test all prime periods, we need to perform K*n steps. 
2)Let’s consider what candidates with the composite periods should be treated on 
the average. There are (P_min + P_max)/2 * (P_max - P_min +1) pairs with period 
p from P_min to P_max and the corresponding offset from 0 to p-1. 

Result; // the set of finding periods 
while (not Cand.Empty()) 
  (p, o) = Cand.GiveNextPair(); 
sup = Sup(p, o); 
if (sup ≥ Sup_min) then 
Result.Add(p, o); 
i  =  1; 

while (p*i ≤ P_max) 
Cand.Remove(p*i, o); 

else 
  i = 1; 
  while (p*i ≤ P_max and  
sup*I < Sup_min) 
  Cand.Remove(p*i, o); 
  i++; 
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The number of prime periods is equal to K. The mean period is (P_min + P_max)/2 
and the number of candidates with this period and different offsets is (P_min + 
P_max)/2 also. We estimate the count of candidates with prime periods as 
K*(P_min + P_max)/2. Therefore, the number of candidates with the composite 
periods may be computed like that: 

 

 

We assume that a half of these pairs on the average are excluded from 
consideration, i.e. from the candidate set, at the previous steps of the algorithm. To 
check a candidate with period p it is required to scan n/p elements of the binary 
sequence. Consequently, to check a candidate with the mean period it is required n / 
(P_min+P_max) / 2 = 2*n / (P_min+P_max) elements. So, to check the candidates 
with composite periods it is needed to take 

	
 

= *(P_max – P_min + 1 - K)*nsteps on the average. 

3) So, summing the results in 1) and 2) for evaluating prime and composite periods 
respectively we conclude that the algorithm perform   
K*n +   *(P_max – P_min + 1 - K)*n =  *(P_max – P_min + 1+K)*n steps. And 
the time complexity of this approach is  O( *(P_max – P_min + 1+K)*n)  in the 
mean. 

4.2. Periodic k-sets 

The Apriori property can be adapted to periodic sets: All nonempty subsets of a 
periodic set must also be periodic sets with the same periods and offsets. So, for 
k+1-sets generation we will use the k-sets.    
Let Pk(p, o) be the collection of k-sets having period p with offset o. This set 
contains the patterns with their binary sequences. The order of elements in the 
patterns is not significant, and we will keep items in lexicographic order. In this 
case we apply the join step proposed by Agrawal, etc. in [1] to the candidate k+1-
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sets (denote this set as Ck+1(p, o)) generation. Pk is joined with Pk in the following 
way:  

Let p = p1 p2 … pk, q = q1 q2 … qk ∈ Pk 

If p, q such that p1 = q1, … , pk-1 = qk-1, pk < qk, then 

c = p1 p2 … pk qk ∈ Ck+1 

We will store k-sets with their binary sequences. BinSeqp is the binary sequence for 
k-pattern P and BinSeqqk is the binary sequence of item qk. Support of the candidate 
set c = p1 p2 … pk qk is calculated as: 

%100*
|]*[|

|| 1]*[&1]*[:
opiBinSeq

(p, o) =Sup

p

qkp

c

opiBinSeqopiBinSeqi




 

p
BinSeqSize = opiBinSeq p

p
)(|]*[| 

 
If the support of the candidate c is more than the given minimum support, then c ∈ 
Pk+1(p, o). All k+1-candidates are tested and the set of k+1-sets is composed. 
Similarly, the collection of k+2-sets is obtained from the set of k+1-patterns  
and so on. 
Let’s estimate the time required to generate Pk+1(p, o) from the set Pk(p, o). Let m be 
the number of the patterns in Pk(p, o). The count of the candidate k+1-sets deriving 
at the join step can be evaluated as (m-1) + (m-2) + … + 1 = m(m-1)/2 in the worst 
case. If n is the binary sequence length, then 2*n/p steps are required to check the 
one candidate. So, the algorithm perform m(m-1)*n/p steps during the construction 
of the Pk+1(p, o) set from Pk(p, o).  
So, we have shown the method for periodic k-sets mining above. Note that the 
periodic k-patterns can be obtained from the found periodic sets using known 
methods for periodic pattern mining. 

5. Experiments 

5.1. Data generation 
For our experiments we used synthetic data. The time-series were generated by 
tuning the following parameters: the beginning date and the end date of the 
sequence, the number of different events (|E|), the length of time-series (i.e. total 
number of entries in a file), the count of periodic sets in series, the minimum and 
maximum periods, the minimum and maximum window for periodic sets, the 
minimum and maximum support of periodic sets. 

 316

Note that in addition to the known generated periodic sets the time-series may 
contain a number of others patterns. These periods are formed by noise events, 
which correspond to the real data. Some of the periods may be obvious, well-known 
or uninteresting, but the task of the revelation of interesting and useful periodic 
patterns is not in the scope of this work. 
The events in the data have different frequency. |E| is the number of different 
(noisy) events. We have an ordered list of the events. At some moment of the time 
an event with a sequential number N occurs. The number N is calculated as N = 
random.Next(random.Next(|E|)). 
So, the smaller the event ordinal number, the more frequently it happens. The 
intervals between successive events in the generated data are the same. 

5.2. Experiment performance 
The algorithms described for periodic events detection are denoted as BL (Base line 
Approach), ATL (ATL-based approach) and DBP (Divider-based pruning 
approach). 
Fig. 1 illustrates that the behavior of the algorithms depends on the time-series 
frequency. Time-series frequency (FS) is a value that indicates how many events 
occur in a time unit or a patterns window. The other parameters of the data: data for 
the time span in a month, 1200 different events, the window size for patterns from 
10 minutes to an hour, the periods from 3 hours to a week, the support of the 
generated patterns ranges from 60 to 100%.  The algorithm works with P_min= 3 
hour, P_max= 1 week, Sup_min= 70%. 

 

Fig. 1 
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Figure 1 shows a significant efficiency gain by DBP and ATL over base line 
approach BL. These algorithms allow to improve the execution time by 1,6-5,4 
times. ATL is more efficient for a smaller number of entries an hour while it is 
opposite with DBP. We assume that the algorithms performance really depends on 
the ratio of different events number and time-series frequency, and not only on the 
frequency of series. It is confirmed by the second experiment (Fig. 2), where the 
size of events set E is changed for a fixed frequency (20 events per minute). 
For our data if the rate |E|/FS < 0,7 then the algorithm ATL is more efficient, and it 
is otherwise if |E|/FS > 0,7 then DBP. 
Fig. 3 gives execution time against range of periods. The minimum period is set at 
three hour and the maximum period value varies from 24 to 168 hours. All 
algorithms are ecexuted longer with increasing the range. But DBP execution time 
grows slower by 1,3-1,5 times as compared to the other two.  
The scalability of the algotithms with respect to the analyzed data size is displayed 
in Fig. 4. We compare the performance of each approach for data from 8 to 96 Mb, 
which corresponds to the data period from 1 to 12 months if the time-series has 5 
events per minute on average and 900 different events. The graphs show that three 
algorithms have scalability close to linear. However, ATL execution time increase 
grows about 1,6 times more slowly than BL and 2 times more slowly than DBP for 
such data. 

 
Fig. 2 
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Fig. 3 

Obviously, the generation of k+1-sets depends largely on the previous step, i.e. how 
many k-sets were found (the greater the number of k-sets, the more time is required 
for k+1-sets detection) while the generation time of the 1-sets relies on the input 
data size mostly. Therefore the stage of the periodic event extracting may take a 
significant part of periodic set mining algorithm and the improvement of this step 
can accelerate the algorithm performance as a whole. Fig. 5 shows the performance 
of the algorithm against the number of 1-sets. For step of 1-sets detection we use the 
BL algorithm. 

 
Fig. 4 
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Fig. 5 

Unlike the BL and ATL methods, using the introduced DBP approach in order to 
mine the periodic events allows to reduce the time of the k-patterns discovery as 
well. It is achieved due to the removal of multiple periods. For the same data in 
previous experiment the k-sets generation after the first step with DBP is 2-12% 
faster than after BL. 

6. Conclusion 
In this work the problem of periodic 1-patterns finding was considered. We 
represent the approach to periodic sets generation relying on the methods of 
frequent pattern mining. The  new algotithm DPA for the periodic item mining was 
introduced as well as its evaluation was determined. We considered in detail the 
other existing approaches and compared them with the proposed one. The series of 
experiments shows that the proposed algorithms DPA can give up to a hundreds 
percent increase in performance of 1-patterns mining over the base line approach 
used in most of the previous studies. The our algorithm is the more advantageous 
then ATL in some cases also. The experimental comparison of the existing methods 
with different data and parameters is described in the paper. 
In the future work it is interesting to analyze the memory management and explore 
the algorithms performance on the real and big data. Although the BL requires more 
time, it is no need to store the additional structures as DBP or ATL. Other directions 
for the future work are the solution of useful periodic patterns detection problem 
and developing the parallel extensions of the algorithms. 
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