
 307

 Periodic event sets detection in temporal
databases

© Ekaterina Ivannikova
Saint Petersburg State University

ivannikovae@gmail.com

Abstract. Temporal data regularity is an important data property that can be used in different
applications. Such regularity is explored in the field of periodic pattern mining. In this paper,
we raise a problem of periodic sets detection and suggest the method for its solution. The
existing algorithms for the periodic event mining are considered in detail and a new approach
is proposed in the paper. The comparison of the algorithms and their performance are
demonstrated through a series of experiments.

Keywords: periodic set; pattern mining; temporal mining; data regularity

1. Introduction
Pattern mining is an important area of data mining, and it has been growing rapidly
over the two past decades. The initial stimulus for the development of methods was
the problem of market basket analysis, that requires to determine which products are
usually purchased together by using a transaction database of supermarket buying.
The new knowledge could be used for the correct placement of goods or for the
advertising purpose. The first efficient algorithm for finding frequent patterns has
been proposed in [1]. Now there are many algorithms for detecting the patterns that
are applied in various fields. For example, they are used in biology to identify the
sequences of nucleotides, in the analysis of log files for the detection of failures or
attacks, in medicine for diagnosis, in marketing for advertising or tips for users, etc.
Many kinds of the data in the real world are time series or temporal databases.
Periodic pattern mining is the problem that regards temporal regularity. Periodic
patterns are characterized by a certain persistence and predictability. Information
about such regularity can be used for many tasks: for the purpose of personal
promotion to the users, for the timely reminders about the future events or
forecasting.
By the periodic pattern we mean the set of items that frequently occur together at
regular time intervals. There are two ways for prediction if the pattern and its period
p are known. If the pattern has occurred during some time interval (tbeg, tend) then it
is likely to repeat during (tbeg+ p, tend + p). And if several events of the pattern have

 308

occurred then other events of the pattern are likely to happen soon. Therefore, it is
important to identify and describe the periodicity.
There are several types of periodic patterns considered in literature. Most of the
studies on their mining apply the Apriori property heuristic and adopt some
variations of Apriori-like mining methods [9]. Apriori property is used to reduce
the search space and formulated as “All nonempty subsets of a frequent itemset
must also be frequent”, i.e. an itemset is frequent only if all of its sub-itemsets are
frequent. This observation applies to construct k+1-patterns based on the found k-
patterns set. But 1-patterns are generally detected by a simple search and are not
consider in detail. In addition, in most of the previous works the 1-pattern consists
of a single item while the pattern that consists of a number of events may be
interested in some tasks. In this work we present an algorithm for such periodic 1-
patterns finding and discuss several approaches to periodic event detection. We
propose a new algorithm to the periodic event mining as well. The experiments
show that our method is the more advantageous in some cases.
The remainder of this paper is organized as follows. In section 2 the previous works
on the frequent and periodic pattern mining will be discussed. In section 3 the
notation used throughout the paper and the formal definition of periodic patterns are
introduced. Section 4 describes the several possible ways of patterns detection and
section 5 presents the experimental results. The conclusion and future research
directions are contained in section 6.

2. Related works
Our study combines frequent pattern mining and periodic pattern mining in periodic
sets finding. We will review the related works in these areas below.

2.1. Frequent pattern mining
There are a huge number of studies in this field in literature. The existing algorithms
can be classified into three main groups:

- iterative Apriori-like level-wise mining techniques
- pattern mining methods without candidate generation
- mining techniques with the vertical data format

As mentioned above, the concept of frequent itemset and the first algorithm for
finding frequent patterns by using downward closure property, called Apriori, were
introduced by Agrawal and Srikant in [1]. This approach requires candidate set
generation and scanning the database to check each candidate. Such techniques as
hashing [14], partitioning [15], upper bound of the number of candidate patterns that
can be generated in the level-wise approach [5] were developed for improvements
and extensions of algorithms in that category [7].
In paper [10] a problem of finding long frequent patterns is considered and a new
FP-growth approach that mines frequent itemsets without candidate generation was

 309

devised. At the first step items are ordered in frequency-descending order and
according to this list, the database is compressed into a special FP-tree and after that
the tree is mined in some way. An alternative approach is proposed in [6].
These methods are used to discover patterns from a set of transactions in a
horizontal data format (i.e. {Transaction_id :itemset}). An example of alternative
class of the algorithms that first transforms the data into a vertical data format (i.e.
{item :Transaction_id set}) is Eclat [18]. These methods don’t require scanning the
database to count the support of (k+1)-candidates.

2.2. Periodic pattern mining
The problem of mining periodic patterns can be viewed from different perspectives
[9]: depending on the coverage of the pattern there are full- and partial-periodic
patterns. Basing on the precision of the periodicity synchronous and asynchronous
pattern can be identified. And a pattern can also be precise or approximate.
Generally, in the works related with our, the following notation of periodic pattern
is used. Let S be the sequence S = S1, S2, …. , Sn. A pattern p is the nonempty
sequence p = p1 … pk, where {*}.ji Sp  The additional event {*} – symbol
that matches any event and is used to represent the “don’t care” position in the
pattern. The frequency of a pattern p is the count of j such that the string s is true in
Si|p|+1 …Si|p|+|p|. If the frequency of the p exceeds a minimum support threshold, then
this pattern is named periodic. A pattern with the k non-{*} positions is also called
an i-pattern.
Cyclic association rules that display regular cyclic variation over time were first
introduced in [13]. These rules are based on partial-periodic patterns with perfect
periodicity in the sense that each pattern reoccurs in every cycle. In the article
several techniques called cycle-pruning, cycle-skipping and cycle-elimination were
proposed to optimize mine periodic patterns with 100% support.
General partial-periodic patterns with imperfect periodicity studied in [3, 4, 8] are
more common in real world. In work [3] a new structure named abbreviated list
table (ALT) that maintains the occurrence counts of all symbols and corresponding
periods was proposed. Using this structure only a small number of data sequence
passes are required to compute the periods and the patterns of size 1. Han et al [8]
explored interesting properties such as the Apriori property and the max-subpattern
hit set property related to partial periodicity and proposed several methods for
efficient mining of k-patterns. Another original algorithms for symbol and segment
periodicity detection based on mapping scheme and convolution may be
found in [4].
The above methods were used to discover potential periods from the entire time-
series data. In paper [16] the authors presented the dense periodic patterns that may
exist only in a limited range of the time-series.
Most of the works are concentrated on the k-patterns constructing and use a base
line algorithm for 1-patterns mining. To the best of our knowledge only paper [3]

 310

represents the way to improve 1-patterns mining. In our work we propose a new
approach to the 1-patterns mining and perform a comparison analysis with the
existing base line and ATL approaches. In addition, most of the existing studies
focused on the detection of such patterns where Si and pj are single events while we
explore the patterns where pi may be a set of events.
Another group of works [11, 12, 17] is focused on the regular activities that occur
with a calendar-based periodicity. In [12] the calendar schema is proposed to
construct periodic patterns. Calendar-based approach allows to specify multiple
time granularities. For example, schema (2010, *, 1) means that the pattern occurred
on the first day of each month in 2010. A fuzzy periodic calendar and an algorithm
for mining fuzzy periodicity are developed in [11].

3. Problem definition
Let E be a set of events. Time-series S is a sequence of records (ti, ei) with an event
ei ∈ E and a time stamp ti when the event occurred.
We assume that the pattern time interval is limited by user-specified window W, i.e.
all events in pattern occur within the interval W. Time-series S can be presented as
S = S1 S2 … Sn, where Si are sequential disjoint sets of the events happening during
the window. For example, for W equal to an hour, S1 may contain the events which
occurred from 12 am to 13 am, S2 contains the events that took place from 13 to 14
am, and so on.
Let T be a subset of E. The set T is contained in Si, if all the events of T are in Si.
The binary sequence for itemset T (BinSeqT) is constructed as follow: BinSeqT[i] =
1 if T is contained in Si, and BinSeqT[i] = 0 otherwise. The candidate pair (p, o)
with period p and offset o has a support Sup of the period (p, o) for the set T:

%100*
|]*[|

|1]*[:|),(
opiBinSeq
opiBinSeqiopSup

T

T




 , where

p
BinSeqSize = opiBinSeq T

T
)(|]*[| 

 BinSeqSizeo pi T)(*, 

The notation (p, o, sup) will be used if it is known that the candidate pair (p, o) has
the support sup. We say that the set T is a periodic 1-pattern with period p and
offset o if Sup(p, o) is not less than a specified minimum support. The length of a 1-
pattern is the number of elements in the pattern. The 1-pattern of length 1 we will
also be called a periodic event and the 1-pattern of length k greater than 1 we will
be referred to as a periodic k-set for short. Our goal is to find all possible periodic
sets in a given time-series.

 311

4. Algorithm
Our algorithm belongs to a group of methods using an iterative approach known as
a level-wise search. This approach uses k-patterns to generate (k+1)-patterns. At the
first step of the algorithm the set of periodic events is found by searching the binary
sequences. Further, the periodic sets with two items can be constructed and tested
for the periodicity (i.e. which of them satisfy a minimum support), and so on, until
no more periodic k-sets can be detected.
The following predefined parameters are used in the algorithms: minimum period
(P_min), maximum period (P_max), minimum support (Sup_min).

4.1. Periodic items
Three methods for the periodic events detection will be discussed below. The first
method is the base line algorithm that is used in most of existing works. In the
second approach we adopt the idea of ATL structure described in [3]. The third
approach represents a new way to periodic item detection. The periodic 1-sets or
periodic events are found using binary sequences of events. So, for each event it is
needed to construct the binary sequence as described in section 3.

 Base line approach.
This method requires counting the support value for all possible periods-candidates
as shown in fig. 1.

Fig. 1

Such an approach requires the full scan of the binary sequence for the testing of
some period. To check all the candidates (P_max – P_min + 1) passes are needed
for each event. If n is the length of the binary sequence, ہn/pۂ steps are required to
check one candidate (p, o). There are p candidate pairs with period p and different
offsets. To test them p * ہn/pۂ ~ n steps are required. And the number of interesting
periods is (P_max-P_min+1). So, the algorithm is performed in time O((P_max-
P_min+1) * n).

 ATL-based approach.
In this case only one full scan of the sequence is required. The number of times each
candidate pair occurs is counted by scanning.

forP_min ≤ p ≤P_max
for 0 ≤ o < p
 if (Sup(p, o) ≥ Sup_min) then
 Result.AddPeriod(p, o)

 312

Initially, count is equal to 0 for all the candidates. When a position i is considered, if
BinSeq[i] = 1 then the count of the occurrences increases by one for all the cycles
(p, o = i mod p).
For example, consider a binary sequence: BinSeq = 01001011001, P_min = 2,
P_max = 5.
Let the algorithm scan sequence at position i=4: BinSeq [4]=1 => (2, 0).count++, (3,
1).count++, (4, 0).count++, (5, 4).count++, and so on while i less than the sequence
length.
After the occurrences numbers of candidate periods have been counted the supports
of pairs are calculated as follow:

%
p

BinSeqSizeounts = (p, o).cSup(p, o) 100*)(/

This method is described below in Fig 2.

Fig. 2

Time complexity of this approach is O(n).

 Divider-based pruning approach.
This method is based on the following observation: if there is a triple (p, o, sup),
then a triple (p1, d1, sup1) = (p/d, o, sup/d) with smaller period and support also
exists. To be more precise d is a divider of p and sup1 no less than sup/d. So, in
order for a triple (p, o, sup) to exist, the existence of triple (p1 = p/d, o, sup1 ≥ sup/d)
calculated at the previous steps is necessary. Support values that were counted for
smaller periods can be used to reduce computing at the next iterations for larger
periods mining. If for some candidate (p, o) the support is equal to sup and sup <
Sup_min, then the candidate (p*i, o) is not suitable in case p*i < P_max and sup*i <
Sup_min.

Result; // the set of finding periods
for 0 ≤ I < Size(BinSeq)
if(BinSeq[i]=1) then
 forP_min ≤ p ≤ P_max
 (p, i mod p).count++;
forP_min ≤ p ≤P_max
for 0 ≤ I < p
 if(sup(p, o) ≥ Sup_min) then
 Result.Add(p, o);

 313

For example, at some iteration of the algorithm a candidate pair (4, 3) is tested on
periodicity with the minimum support 80 %. If the support of the candidate is 30%
then candidate (8, 3) may be excluded from further consideration.
The second observation we will use is that if the period (p, o) is found, then the
multiple periods (p*i, o) are not so interesting.
At the beginning of the algorithm we assume that there are all possible periods, i.e.
pairs (p, o). Denote this set as Cand. Pseudocode of the algorithm is given in
Figure 3.

Fig. 3

Algorithm evaluation:
1) In the algorithm a check of all candidates with the prime periods is required.
Such pairs couldn’t be removed from the set of candidates at the previous steps of
the algorithm.
The number of primes less than N is estimated approximately as N/ln(N).
Consequently, the number of prime periods in the range of P_min to P_max equal to
K = P_max/ln(P_max) – P_min/ln(P_min). To compute the support of pairs with
period p and all possible offsets the scan of the entire binary sequence is required.
Thus, to test all prime periods, we need to perform K*n steps.
2)Let’s consider what candidates with the composite periods should be treated on
the average. There are (P_min + P_max)/2 * (P_max - P_min +1) pairs with period
p from P_min to P_max and the corresponding offset from 0 to p-1.

Result; // the set of finding periods
while (not Cand.Empty())
 (p, o) = Cand.GiveNextPair();
sup = Sup(p, o);
if (sup ≥ Sup_min) then
Result.Add(p, o);
i = 1;

while (p*i ≤ P_max)
Cand.Remove(p*i, o);

else
 i = 1;
 while (p*i ≤ P_max and
sup*I < Sup_min)
 Cand.Remove(p*i, o);
 i++;

 314

The number of prime periods is equal to K. The mean period is (P_min + P_max)/2
and the number of candidates with this period and different offsets is (P_min +
P_max)/2 also. We estimate the count of candidates with prime periods as
K*(P_min + P_max)/2. Therefore, the number of candidates with the composite
periods may be computed like that:

We assume that a half of these pairs on the average are excluded from
consideration, i.e. from the candidate set, at the previous steps of the algorithm. To
check a candidate with period p it is required to scan n/p elements of the binary
sequence. Consequently, to check a candidate with the mean period it is required n /
(P_min+P_max) / 2 = 2*n / (P_min+P_max) elements. So, to check the candidates
with composite periods it is needed to take

	

= *(P_max – P_min + 1 - K)*nsteps on the average.

3) So, summing the results in 1) and 2) for evaluating prime and composite periods
respectively we conclude that the algorithm perform
K*n + *(P_max – P_min + 1 - K)*n = *(P_max – P_min + 1+K)*n steps. And
the time complexity of this approach is O(*(P_max – P_min + 1+K)*n) in the
mean.

4.2. Periodic k-sets

The Apriori property can be adapted to periodic sets: All nonempty subsets of a
periodic set must also be periodic sets with the same periods and offsets. So, for
k+1-sets generation we will use the k-sets.
Let Pk(p, o) be the collection of k-sets having period p with offset o. This set
contains the patterns with their binary sequences. The order of elements in the
patterns is not significant, and we will keep items in lexicographic order. In this
case we apply the join step proposed by Agrawal, etc. in [1] to the candidate k+1-

 315

sets (denote this set as Ck+1(p, o)) generation. Pk is joined with Pk in the following
way:

Let p = p1 p2 … pk, q = q1 q2 … qk ∈ Pk

If p, q such that p1 = q1, … , pk-1 = qk-1, pk < qk, then

c = p1 p2 … pk qk ∈ Ck+1

We will store k-sets with their binary sequences. BinSeqp is the binary sequence for
k-pattern P and BinSeqqk is the binary sequence of item qk. Support of the candidate
set c = p1 p2 … pk qk is calculated as:

%100*
|]*[|

|| 1]*[&1]*[:
opiBinSeq

(p, o) =Sup

p

qkp

c

opiBinSeqopiBinSeqi




p
BinSeqSize = opiBinSeq p

p
)(|]*[| 

If the support of the candidate c is more than the given minimum support, then c ∈
Pk+1(p, o). All k+1-candidates are tested and the set of k+1-sets is composed.
Similarly, the collection of k+2-sets is obtained from the set of k+1-patterns
and so on.
Let’s estimate the time required to generate Pk+1(p, o) from the set Pk(p, o). Let m be
the number of the patterns in Pk(p, o). The count of the candidate k+1-sets deriving
at the join step can be evaluated as (m-1) + (m-2) + … + 1 = m(m-1)/2 in the worst
case. If n is the binary sequence length, then 2*n/p steps are required to check the
one candidate. So, the algorithm perform m(m-1)*n/p steps during the construction
of the Pk+1(p, o) set from Pk(p, o).
So, we have shown the method for periodic k-sets mining above. Note that the
periodic k-patterns can be obtained from the found periodic sets using known
methods for periodic pattern mining.

5. Experiments

5.1. Data generation
For our experiments we used synthetic data. The time-series were generated by
tuning the following parameters: the beginning date and the end date of the
sequence, the number of different events (|E|), the length of time-series (i.e. total
number of entries in a file), the count of periodic sets in series, the minimum and
maximum periods, the minimum and maximum window for periodic sets, the
minimum and maximum support of periodic sets.

 316

Note that in addition to the known generated periodic sets the time-series may
contain a number of others patterns. These periods are formed by noise events,
which correspond to the real data. Some of the periods may be obvious, well-known
or uninteresting, but the task of the revelation of interesting and useful periodic
patterns is not in the scope of this work.
The events in the data have different frequency. |E| is the number of different
(noisy) events. We have an ordered list of the events. At some moment of the time
an event with a sequential number N occurs. The number N is calculated as N =
random.Next(random.Next(|E|)).
So, the smaller the event ordinal number, the more frequently it happens. The
intervals between successive events in the generated data are the same.

5.2. Experiment performance
The algorithms described for periodic events detection are denoted as BL (Base line
Approach), ATL (ATL-based approach) and DBP (Divider-based pruning
approach).
Fig. 1 illustrates that the behavior of the algorithms depends on the time-series
frequency. Time-series frequency (FS) is a value that indicates how many events
occur in a time unit or a patterns window. The other parameters of the data: data for
the time span in a month, 1200 different events, the window size for patterns from
10 minutes to an hour, the periods from 3 hours to a week, the support of the
generated patterns ranges from 60 to 100%. The algorithm works with P_min= 3
hour, P_max= 1 week, Sup_min= 70%.

Fig. 1

 317

Figure 1 shows a significant efficiency gain by DBP and ATL over base line
approach BL. These algorithms allow to improve the execution time by 1,6-5,4
times. ATL is more efficient for a smaller number of entries an hour while it is
opposite with DBP. We assume that the algorithms performance really depends on
the ratio of different events number and time-series frequency, and not only on the
frequency of series. It is confirmed by the second experiment (Fig. 2), where the
size of events set E is changed for a fixed frequency (20 events per minute).
For our data if the rate |E|/FS < 0,7 then the algorithm ATL is more efficient, and it
is otherwise if |E|/FS > 0,7 then DBP.
Fig. 3 gives execution time against range of periods. The minimum period is set at
three hour and the maximum period value varies from 24 to 168 hours. All
algorithms are ecexuted longer with increasing the range. But DBP execution time
grows slower by 1,3-1,5 times as compared to the other two.
The scalability of the algotithms with respect to the analyzed data size is displayed
in Fig. 4. We compare the performance of each approach for data from 8 to 96 Mb,
which corresponds to the data period from 1 to 12 months if the time-series has 5
events per minute on average and 900 different events. The graphs show that three
algorithms have scalability close to linear. However, ATL execution time increase
grows about 1,6 times more slowly than BL and 2 times more slowly than DBP for
such data.

Fig. 2

 318

Fig. 3

Obviously, the generation of k+1-sets depends largely on the previous step, i.e. how
many k-sets were found (the greater the number of k-sets, the more time is required
for k+1-sets detection) while the generation time of the 1-sets relies on the input
data size mostly. Therefore the stage of the periodic event extracting may take a
significant part of periodic set mining algorithm and the improvement of this step
can accelerate the algorithm performance as a whole. Fig. 5 shows the performance
of the algorithm against the number of 1-sets. For step of 1-sets detection we use the
BL algorithm.

Fig. 4

 319

Fig. 5

Unlike the BL and ATL methods, using the introduced DBP approach in order to
mine the periodic events allows to reduce the time of the k-patterns discovery as
well. It is achieved due to the removal of multiple periods. For the same data in
previous experiment the k-sets generation after the first step with DBP is 2-12%
faster than after BL.

6. Conclusion
In this work the problem of periodic 1-patterns finding was considered. We
represent the approach to periodic sets generation relying on the methods of
frequent pattern mining. The new algotithm DPA for the periodic item mining was
introduced as well as its evaluation was determined. We considered in detail the
other existing approaches and compared them with the proposed one. The series of
experiments shows that the proposed algorithms DPA can give up to a hundreds
percent increase in performance of 1-patterns mining over the base line approach
used in most of the previous studies. The our algorithm is the more advantageous
then ATL in some cases also. The experimental comparison of the existing methods
with different data and parameters is described in the paper.
In the future work it is interesting to analyze the memory management and explore
the algorithms performance on the real and big data. Although the BL requires more
time, it is no need to store the additional structures as DBP or ATL. Other directions
for the future work are the solution of useful periodic patterns detection problem
and developing the parallel extensions of the algorithms.

 320

References
[1] RakeshAgrawal and RamakrishnanSrikant. Fast algorithms for mining association rules

in large databases. In VLDB, pages 487-499, 1994.
[2] Juan M. Ale and Gustavo Rossi. Discovering association rules in temporal databases. In

Encyclopedia of Database Technologies and Applications, pages 195-200. 2005.
[3] Huiping Cao, David W. Cheung, and Nikos Mamoulis. Discovering partial periodic

patterns in discrete data sequences. In PAKDD, pages 653-658, 2004.
[4] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. Periodicity detection

in time series databases. IEEE Trans. Knowl. Data Eng., 17(7):875-887, 2005.
[5] FlorisGeerts, Bart Goethals, and Jan Van den Bussche. A tight upper bound on the

number of candidate patterns. In ICDM, pages 155-162, 2001.
[6] GöstaGrahne and Jianfei Zhu. E-ciently using prex-trees in mining frequent itemsets. In

FIMI, 2003.
[7] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current

status and future directions. Data Min. Knowl. Discov.,15(1):55-86, 2007.
[8] Jiawei Han, Guozhu Dong, and Yiwen Yin. E-cient mining of partial periodic patterns in

time series database. In ICDE, pages 106-115, 1999.
[9] Jiawei Han and MichelineKamber. Data Mining: Concepts and Techniques, second

edition. Morgan Kaufmann, 2000.
[10] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In SIGMOD Conference, pages 1-12, 2000.
[11] Wan-Jui Lee, Jung-Yi Jiang, and Shie-Jue Lee. Mining fuzzy periodic association rules.

Data Knowl. Eng., 65(3):442_462, 2008.
[12] Yingjiu Li, PengNing, Xiaoyang Sean Wang, and SushilJajodia. Discovering calendar-

based temporal association rules. In TIME, pages 111-118, 2001.
[13] BanuÖzden, Sridhar Ramaswamy, and Abraham Silberschatz. Cyclic association rules.

In ICDE, pages 412-421, 1998.
[14] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash-based algorithm

for mining association rules. In Proceedings of the 1995 ACMSIGMOD international
conference on Management of data, SIGMOD '95, pages 175-186, New York, NY,
USA, 1995. ACM.

[15] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An effcient algorithm
for mining association rules in large databases. In VLDB, pages 432-444, 1995.

[16] Chang Sheng, Wynne Hsu, and Mong-Li Lee. Mining dense periodic patterns in time
series data. In ICDE, page 115, 2006.

[17] Keshri Verma and Om Prakash Vyas. E-cient calendar based temporal association rule.
SIGMOD Record, 34(3):63-70, 2005.

[18] Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEETrans.
Knowl. DataEng., 12(3):372-390, 2000.

 321

