Random graphs, models and generators of scale-free graphs
Abstract
About the Authors
M. M. BernovskiyRussian Federation
N. N. Kuzyurin
Russian Federation
References
1. Newman M., Barabási A.L., Watts D. J.. The Structure and dynamics of networks. Princeton University Press, 2006.
2. Erdös P., Rényi A. On the evolution of random graphs. Publ. Math. Debrecen. 1959. V. 6. P. 290-297.
3. Aiello W., Chung F., Lu L. A Random Graph Model for Massive Graphs. STOC '2000.
4. Janson S., Łuczak T., Norros I., Large cliques in a power-law random graph, J. Appl. Probab. 2010. V. 47, N. 4, pp. 1124-1135.
5. Barabási L.A., Albert R. Emergence of scaling in random networks. Science, 1999.
6. V.286. P. 509-512
7. Barabási L.A., Albert R., Jeong H.. Scale-free characteristics of random networks: the topology of the world-wide web. Physica, 2000. V. A281. P. 69-77.
8. Barabási L.A., Albert R., Jeong H. Diameter of the world-wide web. Nature, 1999. V. 401. P. 130-131.
9. Kumar R., Raghavan P., Rajagopalan S., Sivakumar D., Tomkins A., Upfal E. Stochastic models for the web graph. Proceedings of the 41st Symposium on Foundations of Computer Science. 2000.
10. Bollobás B., Riordan O. Mathematical results on scale-free random graphs. Handbook of graphs and networks. Weinheim: Wiley-VCH, 2003. P. 1-34.
11. Raigoroskii A.M. Modeli sluchainykh grafov [Random graph models]. MCNMO [Moscow center of continuous mathematical education], 2011. 136 , p. (in Russian)
12. Buckley P.G., Osthus D. Popularity based random graph models leading to scale-free degree sequence. Discrete Mathematics. Volume 282, Issues 1–3, 6 May 2004, pp. 53–68.
13. Bollobás B., Borgs C., Chayes T., Riordan O.M. Directed scale-free graphs. Proceedings SODA '03 Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms.
14. Brady A.R. A compact routing scheme for power-law networks using empirical discoveries in power-law graph topology. http://digg.cs.tufts.edu/readings/pdf/021.pdf
15. Chakrabarti D., et al. R-MAT: A Recursive Model for Graph Mining. http://www.cs.cmu.edu/ christos/PUBLICATIONS/siam04.pdf
16. Medina A., et al. BRITE: Universal Topology Generation from a User’s Perspective. http://www.cs.bu.edu/brite/publications/usermanual.pdf
17. Miller J. C., Hagberg A. Efficient Generation of Networks with Given Expected Degrees. WAW, 2011.
18. Nazir A.,, Raza C., Chuah C.-N.. Unveiling Facebook: a measurement study of social network based applications. IMC'08.
19. Leskovec J., Kleinberg J., Faloutsos C. Graph evolution: Densification and shrinking diameters. ACM Transact. on Knowledge Discovery from Data, 1(1), 2007.
Review
For citations:
Bernovskiy M.M., Kuzyurin N.N. Random graphs, models and generators of scale-free graphs. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2012;22. (In Russ.)