The Method of Converting an Expert Opinion to Z-number
https://doi.org/10.15514/ISPRAS-2016-28(3)-1
Abstract
About the Authors
E. A. GlukhodedRussian Federation
S. I. Smetanin
Russian Federation
References
1. Adrian K. Rantilla, David V. Budescu. Aggregation of Expert Opinions. In Systems Sciences, HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference, 1999.
2. Aliev, R. A., Alizadeh A. V. and Huseynov O. H. The arithmetic of discrete Z-numbers, Inform. Sciences, 290(1), 2015, pp.134-155.
3. Aliev, R.A., Alizadeh, A.V, Huseynov, O. H, Aliyev, R.R. The arithmetic of Z-numbers. Theory and Applications. World Scientific, 2015.
4. Aliev, R.A., Zeinalova, L. M. Decision-making under Z-information. In Human-centric decision-making models for social sciences, Springer-Verlag,, 2013, pp. 233-252.
5. Bai, Y., Wang, D. Fundamentals of Fuzzy Logic Control – Fuzzy Sets, Fuzzy Rules and Defuzzifications. In Advanced Fuzzy Logic Technologies in Industrial Applications, Springer, 2006 pp. 17-36.
6. Detyniecki, M. Fundamentals on Aggregation Operators. Berkeley initiative in Soft Computing, Computer Science Division, University of California, Berkeley, United Sates of America, 2001.
7. Eiichiro Takahagi. Usage: Choauet integral. Fuzzy Integral Calculation Site (online publication). Available at: http://www.isc.senshu-u.ac.jp/~thc0456/Efuzzyweb/mant1/mant1.html, accessed 03.04.2016.
8. Farina, M., and Amato, P. A fuzzy definition of "optimality" for many criteria optimization problems. IEEE T. Syst. Man Cy. A: Systems and Humans, 34(3), 2004, pp. 315-326.
9. Gilboa I., Schmeidler D. Additive Representations of Non-Additive Measures and the Choquet Integral. Kellogg School of Management, Northwestern University, Center for Mathematical Studies in Economics and Management Science, Discussion Papers (online publication). Available at: https://www.kellogg.northwestern.edu/research/math/papers/985.pdf, accessed 17.05.2016.
10. Gilboa, I. Theory of Decision under Uncertainty. Cambridge University Press, Cambridge, 2009.
11. Kang B., Wei D., Li Y., Deng Y. Decision Making Using Z-numbers under Uncertain Environment. Journal of Information & Computational Science, №8(7), 2012, pp. 2807-2814.
12. Kang, B., Wei, D., Li, Y., Deng, Y. A method of converting Z-number to classical fuzzy number. Journal of Information & Computational Science, №9(3), 2012 pp. 703-709.
13. Lala M. Zeinalova, Choquet aggregation based decision making under Z-information. ICTACT Journal on Soft Computing, 4(4), 2014, pp. 819-824.
14. Studies in Fuzziness and Soft Computing, vol. 97. Tomasa Calvo, Gaspar Mayor, Radko Mesiar (eds). Aggregation Operators. New Trends and Aplications. Physica-Verlag Heidelberg, 2002, 352 p.
15. Zadeh, L.A. A Note on Z-numbers. Information Sciences, №181, pp. 2923-2932.
16. Zadeh, L.A. Fuzzy sets. Information and Control, vol. 8(3), pp. 338–353, 1965.
17. Gulnara Yakh'yaeva. [Fundamentals of the theory of fuzzy sets. Lecture 4. Indicator for fuzziness of fuzzy sets. Fuzzy measures and integrals] (online publication). Available at: http://www.intuit.ru/studies/courses/87/87/lecture/20505?page=3, accessed 15.05.2016 (in Russian).
18. Sakulin S.A., Alfimtsev A.N. On the issue of the practical application of fuzzy measures and Choquet integral. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, spec. issue 4: Computer Systems and Technologies, 2012, pp. 55-63 (in Russian).
Review
For citations:
Glukhoded E.A., Smetanin S.I. The Method of Converting an Expert Opinion to Z-number. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(3):7-20. https://doi.org/10.15514/ISPRAS-2016-28(3)-1