Preview

Труды Института системного программирования РАН

Расширенный поиск

Методы анализа информационных потоков в сети Интернет

https://doi.org/10.15514/ISPRAS-2018-30(6)-11

Полный текст:

Аннотация

Распространение информации - это фундаментальный процесс, происходящий в сети Интернет. Ежедневно мы можем наблюдать публикацию различной информации и ее дальнейшее распространение через новостные агентства и сообщения обычных пользователей. И хотя сам процесс можно наблюдать явно, определить отдельные пути передачи очень сложно. Проникновение глобальной информационной среды во все сферы жизни человечества радикально меняет скорость и пути распространения информации. В этом обзоре мы исследуем модели распространения информационных потоков в сети Интернет, разделяя их на две группы: объяснительные, предполагающие наличие сети влияния между информационными узлами, и предсказательные, ставящие своей задачей изучение распространения отдельных частей информации. Несмотря на всю сложность, изучение глубинных свойств распространения информации необходимо для понимания общих процессов, происходящих в современном информационном обществе.

Об авторах

А. А. Аветисян
Институт системного программирования им. В.П. Иванникова РАН; Московский государственный университет имени М.В. Ломоносова
Россия


М. Д. Дробышевский
Институт системного программирования им. В.П. Иванникова РАН; Московский физико-технический институт (государственный университет)
Россия


Д. Ю. Турдаков
Институт системного программирования им. В.П. Иванникова РАН; Московский государственный университет имени М.В. Ломоносова; НИУ “Высшая школа экономики”
Россия


Список литературы

1. M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, 2010, pp. 1019-1028.

2. Z.-K. Zhang, C. Liu, X.-X. Zhan, X. Lu, C.-X. Zhang, and Y.-C. Zhang. Dynamics of information diffusion and its applications on complex networks. Physics Reports, vol. 651, 2016, pp. 1-34.

3. Acquisti and R. Gross. Imagined communities: Awareness, information sharing, and privacy on the facebook. In Proc. of the International workshop on privacy enhancing technologies. Springer, 2006, pp. 36-58.

4. S. Fournier and J. Avery. The uninvited brand. Business horizons, vol. 54, no. 3, pp. 193-207, 2011.

5. G.E. Kreindler and H.P. Young. Rapid innovation diffusion in social networks. In Proceedings of the National Academy of Sciences, vol. 111, supplement 3, 2014, pp. 10 881-10 888.

6. T. Holz, M. Steiner, F. Dahl et al. Measurements and mitigation of peer-to-peer-based botnets: A case study on storm worm. In Proc. of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, 2008.

7. B. Doerr, M. Fouz, and T. Friedrich. Why rumors spread so quickly in social networks. Communications of the ACM, vol. 55, no. 6, 2012, pp. 70-75.

8. J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. In Proc. of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009, pp. 497-506.

9. Y. Sano, K. Yamada, H. Watanabe, H. Takayasu, and M. Takayasu. Empirical analysis of collective human behavior for extraordinary events in the Blogosphere. Physical Review E, vol. 87, no. 1, 2013.

10. J. Lehmann, B. Goncalves, J.J. Ramasco, and C. Cattuto. Dynamical classes of collective attention in twitter. In Proc. of the 21st international conference on World Wide Web, 2012, pp. 251–260.

11. Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. In Proc. of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012, pp. 6–14.

12. D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proc. of the 20th international conference on World wide web, 2011, pp. 695–704.

13. M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H.E. Stanley, and W. Quattrociocchi. The spreading of misinformation online. In Proceedings of the National Academy of Sciences, vol. 113, no. 3, 2016, pp. 554–559.

14. S. Ardon, A. Bagchi, A. Mahanti, A. Ruhela, A. Seth, R. M. Tripathy, and S. Triukose. Spatio-temporal and events based analysis of topic popularity in twitter. In Proc. of the 22nd ACM international conference on Information & Knowledge Management, 2013, pp. 219–228.

15. E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion. In Proc. of the 21st international conference on World Wide Web, 2012, pp. 519–528.

16. S. Goel, D.J. Watts, and D.G. Goldstein. The structure of online diffusion networks. In Proc. of the 13th ACM conference on electronic commerce, 2012, pp. 623–638.

17. S. Goel, A. Anderson, J. Hofman, and D. J. Watts. The structural virality of online diffusion. Management Science, vol. 62, no. 1, 2015, pp. 180–196.

18. S. Krishnan, P. Butler, R. Tandon, J. Leskovec, and N. Ramakrishnan. Seeing the forest for the trees: new approaches to forecasting cascades. In Proc. of the 8th ACM Conference on Web Science, 2016, pp. 249–258.

19. S.A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012, pp. 33–41.

20. E. Bakshy, S. Messing, and L.A. Adamic. Exposure to ideologically diverse news and opinion on facebook. Science, vol. 348, no. 6239, 2015, pp. 1130–1132.

21. A. Vazquez, B. Racz, A. Lukacs, and A.-L. Barabasi. Impact of non-poissonian activity patterns on spreading processes. Physical review letters, vol. 98, no. 15, 2007.

22. J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In Proc. of the 2010 IEEE 10th International Conference on Data Mining (ICDM), 2010, pp. 599–608.

23. M.J. Salganik, P.S. Dodds, and D.J. Watts. Experimental study of inequality and unpredictability in an artificial cultural market. Science, vol. 311, no. 5762, 2006, pp. 854–856.

24. J. Cheng, L.Adamic, P.A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In Proc. of the 23rd international conference on World wide web, 2014, pp. 925–936.

25. MemeTracker data. Режим доступа: http://www.memetracker.org/data.html, дата обращения 20.11.2018.

26. D. Centola, V. M. Eguıluz, and M.W. Macy. Cascade dynamics of complex propagation. Physica A: Statistical Mechanics and its Applications, vol. 374, no. 1, 2007, pp. 449–456.

27. A. Nematzadeh, E. Ferrara, A. Flammini, and Y.-Y. Ahn. Optimal network modularity for information diffusion. Physical review letters, vol. 113, 2014, no. 8.

28. P.S. Dodds and D.J. Watts. A generalized model of social and biological contagion. Journal of theoretical biology, vol. 232, no. 4, 2005, pp. 587–604.

29. C.D. Brummitt, K.-M. Lee, and K.-I. Goh. Multiplexity-facilitated cascades in networks. Physical Review E, vol. 85, no. 4, 2012.

30. F. Karimi and P. Holme. Threshold model of cascades in empirical temporal networks. Physica A: Statistical Mechanics and its Applications, vol. 392, no. 16, 2013, pp. 3476–3483.

31. L. Dickens, I. Molloy, J. Lobo, P.-C. Cheng, and A. Russo. Learning stochastic models of information flow. In Proc. of the 2012 IEEE 28th international conference on data engineering, 2012, pp. 570–581.

32. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003, pp. 137–146.

33. M. Kimura, K. Saito, and R. Nakano. Extracting influential nodes for information diffusion on a social network. In Proc. of the Twenty-Second AAAI conference on Artificial intelligence, vol. 2, 2007, pp. 1371–1376.

34. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks, vol. 33, no. 1-6, 2000, pp. 309–320.

35. M. Kimura, K. Saito, and H. Motoda. Minimizing the spread of contamination by blocking links in a network. in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2008, pp. 1175–1180.

36. K. Lerman. Information is not a virus, and other consequences of human cognitive limits. Future Internet, vol. 8, no. 2, 2016.

37. M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697, 2011.

38. M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf. Structure and dynamics of information pathways in online media. In Proc. of the sixth ACM international conference on Web search and data mining, 2013, pp. 23–32.

39. S. Bourigault, S. Lamprier, and P. Gallinari. Representation learning for information diffusion through social networks: an embedded cascade model. In Proc. of the Ninth ACM International Conference on Web Search and Data Mining, 2016, pp. 573–582.

40. M. Jenders, G. Kasneci, and F. Naumann. Analyzing and predicting viral tweets. In Proceedings of the 22nd international conference on world wide web, 2013, pp. 657–664.

41. Y. Zhang, Z. Xu, and Q. Yang. Predicting popularity of messages in twitter using a feature-weighted model. Режим доступа: http://www.nlpr.ia.ac.cn/2012papers/gjhy/gh154.pdf, дата обращения 20.11.2018.

42. Q. Cao, H. Shen, K. Cen, W. Ouyang, and X. Cheng. Deephawkes: Bridging the gap between prediction and understanding of information cascades. In Proc. of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 1149–1158.

43. C. Li, J. Ma, X. Guo, and Q. Mei. Deepcas: An end-to-end predictor of information cascades. In Proc. of the 26th International Conference on World Wide Web, 2017, pp. 577–586.

44. B. Shulman, A. Sharma, and D. Cosley. Predictability of popularity: Gaps between prediction and understanding. in Proc. of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016), 2016, pp. 348–357.

45. S. Petrovic, M. Osborne, and V. Lavrenko. Rt to win! predicting message propagation in twitter. In Proc. of the Fifth International AAAI Conference on Weblogs and Social Media, 2011, pp. 586–589.

46. Q. Zhang, Y. Gong, J. Wu, H. Huang, and X. Huang. Retweet prediction with attention-based deep neural network. In Proc. of the 25th ACM International on Conference on Information and Knowledge Management, 2016, pp. 75–84.

47. B. Jiang, Z. Lu, N. Li, J. Wu, and Z. Jiang. Retweet prediction using social-aware probabilistic matrix factorization. Lecture Notes in Computer Science, vol. 10860, 2018, pp. 316–327.

48. Y. Yang, J. Tang, C. W.-k. Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang. Rain: Social role-aware information diffusion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 367–373.

49. S. Choobdar, P. Ribeiro, S. Parthasarathy, and F. Silva. Dynamic inference of social roles in information cascades. Data mining and knowledge discovery, vol. 29, no. 5, 2015, pp. 1152–1177.

50. L. Hughes and L. Palen. Twitter adoption and use in mass convergence and emergency events. International journal of emergency management, vol. 6, no. 3-4, 2009, pp. 248–260.

51. P. N. Howard, A. Duffy, D. Freelon, M. M. Hussain, W. Mari, and M. Maziad. Opening closed regimes: what was the role of social media during the arab spring? Режим доступа: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2595096, дата обращения 20.11.2018.


Для цитирования:


Аветисян А.А., Дробышевский М.Д., Турдаков Д.Ю. Методы анализа информационных потоков в сети Интернет. Труды Института системного программирования РАН. 2018;30(6):199-220. https://doi.org/10.15514/ISPRAS-2018-30(6)-11

For citation:


Avetisyan A.A., Drobyshevskiy M.D., Turdakov D.Yu. Methods for Information Spread Analysis. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(6):199-220. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(6)-11

Просмотров: 276


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)