Testing different numerical methods opportunities for internal flows simulation
https://doi.org/10.15514/ISPRAS-2018-30(6)-18
Abstract
References
1. [1]. Castilla R., Alemany I., Algar A., Gamez-Montero P.J., Roquet P., Codina E. Pressure-Drop Coefficients for Cushioning System of Hydraulic Cylinder with Grooved Piston: A Computational Fluid Dynamic Simulation. Energies, vol. 10, no. 11, 2016.
2. [2]. Fries C., Manhartsgruber B. A moving piston boundary condition including gap flow in OpenFOAM. Wseas Transactions on Fluid Mechanics, vol. 10, 2015, pp.95-104.
3. [3]. Melnikova V.G., Kotsur O.S., Shcheglov G.A. Numerical simulation of the flow rate regulator valve using OpenFOAM. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 1, 2017, pp. 53-70 (in Russian). DOI: 10.15514/ISPRAS-2017-29(1)-4.
4. [4]. Stepanchwnko T.E. Simulation of the flow in the pipeline in the COMSOL 3.5 Multiphysics package. In Proc. of the VIII Russian scientific-practical conference «Microsoft Technologies in the theory and practice of programming», 2012, pp. 62-65 (in Russian).
5. [5]. Gobish А.V. Modeling of internal viscous incompressible flow by finite element method using counterflow schemes. Abstract of the PhD Thesis, Institute of Computational Technologies of SB RAS, Novosibirsk, 2007, 17 p. (in Russian).
6. [6]. Mutabaruka P., Kamrin Ken A simulation technique for slurries interacting with moving parts and deformable solids with applications. Computational Particle Mechanics, vol. 5, issue 2, 2018, pp. 239–267. DOI: 10.1007/s40571-017-0166-3.
7. [7]. Manhartsgruber B. The Lattice Bolzmann Method used for fluid flow modeling in hydraulic components. In Proc. of the 15th Scandinavian International Conference on Fluid Power, Sweden, 2017.
8. [8]. J.M. Gimenez, H. Aguerre, N.M. Nigro, S. Idelson. PFEM based solvers implemented in the OpenFOAM suite. In Proc. of the V International Conference on Particle-Based Methods (PARTICLES 2017), Hanover. Germany. 2017.
9. [9]. Nourgaliev R.R., Dinh T.N., Theofanous T.G., Joseph D. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, vol. 29, issue 1, 2003, pp. 117−169.
10. [10]. Chen S., Doolen G.D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, vol. 30, 1998, pp. 329–364.
11. [11]. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, 2001, 288 p.
12. [12]. B. Fornberg, T.A. Driscoll, G. Wright, R. Charles. Observations on the Behavior of Radial Basis Function Approximations Near Boundaries. Computers and Mathematics with Applications. vol. 43, issues 3-5, 2002, pp. 473-490.
13. [13]. Moukalled F., Mangani L., Darwish M. The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab. Fluid Mechanics and Its Applications, vol. 113, Springer. 2015.
14. [14]. Lamb G. Hydrodynamics. Dover Publications, 1945, 768 p.
Review
For citations:
Melnikova V.G. Testing different numerical methods opportunities for internal flows simulation. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2018;30(6):315-328. (In Russ.) https://doi.org/10.15514/ISPRAS-2018-30(6)-18