Preview

Труды Института системного программирования РАН

Расширенный поиск

Поддержка выполнения проектов, ориентированных на данные, в современных предприятиях

https://doi.org/10.15514/ISPRAS-2016-28(3)-13

Полный текст:

Аннотация

С ростом объема и спроса на данные основными проблемами организаций, которые пытается реализовать проекты, становится не только то, чтобы технически собрать, очистить, интегрировать данные и обеспечить к ним доступ, а в большей степени обеспечение понимания того, как и зачем их следует использовать. Отсутствует взаимопонимание на логическом и техническом уровнях между специалистами по обработке и анализу данных, ИТ-подразделениями и бизнес-подразделениями, поскольку неясно, откуда происходят данные, как они выглядит, что содержат, и как их следует обрабатывать в контексте существующих систем. В этой статье мы представляем платформу для исследования и обработки данных, что позволяет выполнять ориентированные на данные проекты без полной переделки организационной структуры предприятия при наличии поддержки требуемых процессов и технических средств.

Об авторе

А. Р. Топчян
Ереванский государственный университет
Армения


Список литературы

1. Rahman, Nayem, and Fahad Aldhaban. Assessing the effectiveness of big data initiatives. 2015 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2015.

2. Thomas H. Davenport and Jill Dyche. Big data in big companies. International Institute for Analytics, 2013

3. Apache Mesos. http://mesos.apache.or, 2015.

4. Ted Dunning and Ellen Friedman. Streaming Architecture: New Designs Using Apache Kafka and Mapr Streams. O’Reilly Medi, 2016.

5. Matt Welsh D. Culler, and E. Brewer. SEDA: an architecture for highly concurrent server applications. Proceedings of the 18th Symposium on Operating Systems Principles (SOSP-18), Banff, Canada, 2001.

6. Abhishek Verma et al. Large-scale cluster management at Google with Borg. Proceedings of the Tenth European Conference on Computer Systems. ACM, 2015.

7. Artyom Topchyan, Tigran Topchyan. Muscle-based skeletal bipedal locomotion using neural evolution. Ninth International Conference on Computer Science and Information Technologies Revised Selected Papers1-6, 2013.

8. Shearer C. The CRISP-DM model: the new blueprint for data mining. J Data Warehousing; 5:1, 22, 2000

9. Dan Linstedt. Super Charge your Data Warehouse. 1-3, 2010.

10. A. Maksai, J. Bogojeska and D. Wiesmann. Hierarchical Incident Ticket Classification with Minimal Supervision,. IEEE International Conference on Data Mining, Shenzhen,, 2014, pp.923-928, 2014

11. Alex Gorelik. The Enterprise Big Data Lake: Delivering on the Promise of Hadoop and Data Science in the Enterprise. O’Reilly Medi, 2016

12. Tom White. Hadoop: The definitive guide. O’Reilly Medi, 2012

13. Bharvi Dixit. Elasticsearch essentials, 2016

14. Nathan Marz and James Warren. Big Data: Principles and best practices of scalable real-time data systems. Manning Publications Co, 2015

15. Michael Hausenblas and Nathan Bijnens. Lambda Architecture. http://lambda-architecture.net/, 2015

16. Preeti S. Patil; Srikantha Rao; Suryakant B.Patil. Optimization of Data Warehousing System: Simplification in Reporting and Analysis. IJCA Proceedings on International Conference and workshop on Emerging Trends in Technology (ICWET) (Foundation of Computer Science) 9 (6):33-37, 2011

17. Newell, Andrew, et al. Optimizing distributed actor systems for dynamic interactive services. Proceedings of the Eleventh European Conference on Computer Systems. ACM, 2016

18. Apache Avro Project. https://avro.apache.org/docs/current, 2015.

19. Apache Kafka Project. http://kafka.apache.org/documentation.html, 2015.

20. Confluent Kafka-Connect. http://docs.confluent.io/2.0.0/connect, 2015.

21. William Cohen Pradeep Ravikumar, and Stephen Fienberg. A comparison of string metrics for matching names and records. Kdd workshop on data cleaning and object consolidation. Vol. 3, 2003

22. Matthew Hoffman, Francis R. Bach, and David M. Blei. Online learning for latent dirichlet allocation. Advances in neural information processing systems, 2010

23. David M. Blei, Andrew Y. Ng, and Michael I.Jordan. Latent dirichlet allocation. Journal of machine Learning research 3.Jan: 993-1022, 2003

24. Project Calico. https://www.projectcalico.org, 2015.

25. Raj Jain and Subharthi Paul. Network virtualization and software defined networking for cloud computing: a survey. IEEE Communications Magazine 51.11, 24-31, 2013


Для цитирования:


Топчян А.Р. Поддержка выполнения проектов, ориентированных на данные, в современных предприятиях. Труды Института системного программирования РАН. 2016;28(3):209-230. https://doi.org/10.15514/ISPRAS-2016-28(3)-13

For citation:


Topchyan A. Enabling Data Driven Projects for a Modern Enterprise. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(3):209-230. https://doi.org/10.15514/ISPRAS-2016-28(3)-13

Просмотров: 126


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)