Тестовое окружение для верификации блока подсистемы памяти многопроцессорной системы
https://doi.org/10.15514/ISPRAS-2019-31(3)-6
Аннотация
Об авторах
Дмитрий Алексеевич ЛебедевРоссия
Михаил Владимирович Петроченков
Россия
Список литературы
1. . Hennessy J.L., Patterson D.A. Computer Architecture: A Quantitative Approach. Fifth Edition. Morgan Kaufmann, 2012. 857 p.
2. . A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.
3. . W.K. Lam. Hardware Design Verification: Simulation and Formal Method-Based Approaches. Prentice Hall, 2005, 624 p.
4. . Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 231-246. DOI: 10.15514/ISPRAS-2017-29(4)-15.
5. . Ivanov Lubomir and Nunna R. Modeling and verification of cache coherence protocols. In Proc of the 2001 IEEE International Symposium on Circuits and Systems, vol. 5, 2001, pp. 129-132. DOI: 10.1109/ISCAS.2001.922002.
6. . P.A. Abdulla, M.F. Atig, Z. Ganjeiy, A. Reziney, and Y. Zhu, Verification of cache coherence protocols wrt. trace filters. In Proc. of the 15th Conference on Formal Methods in Computer-Aided Design, pp. 9-16.
7. . I.A. Stotland, V.N. Kutsevol, A.N. Meshkov. Problems of functional verification of Elbrus microprocessor L2-cache. Issues of radio electronics, ser. EVT, no. 1, 2015, pp. 76-84 (in Russian) / Стотланд И.А., Куцевол В.Н., Мешков А.Н. Проблемы функциональной верификации кэш-памяти второго уровня микропроцессоров с архитектурой «Эльбрус». Вопросы радиоэлектроники, сер. ЭВТ, 2015, no. 1, стр. 76-84.
8. . C++TESK Testing ToolKit review. Available at: https://forge.ispras.ru/projects/cpptesk-toolkit, accessed 12.06.2019.
9. . Standard Universal Verification Methodology. Available at: http://accellera.org/downloads/standards/uvm, accessed 12.06.2019.
10. . Kamkin A., Chupilko M. A TLM-based approach to functional verification of hardware components at different abstraction levels. In Proc. of the 12th Latin-American Test Workshop (LATW), 2011, pp. 1-6.
11. . Averill M. Law, W. David Kelton. Simulation Modelling and Analysis. McGraw-Hill Education, 3rd edition, 2000, 784 p.
12. . Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone Verification of Multicore Multiprocessor Cores. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 161-172. DOI: 10.15514/ISPRAS-2016-28(3)-10.
13. . Lebedev D.A., Stotland I.A. Construction of validation modules based on reference functional models in a standalone verification of communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 183-194. DOI: 10.15514/ISPRAS-2018-30(3)-13.
14. . 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language. Available at: https://standards.ieee.org/standard/1800-2017.html, accessed 22.06.2019.
Рецензия
Для цитирования:
Лебедев Д.А., Петроченков М.В. Тестовое окружение для верификации блока подсистемы памяти многопроцессорной системы. Труды Института системного программирования РАН. 2019;31(3):67-76. https://doi.org/10.15514/ISPRAS-2019-31(3)-6
For citation:
Lebedev D.A., Petrotchenkov M.V. Test environment for verification of multi-processor memory subsystem unit. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2019;31(3):67-76. https://doi.org/10.15514/ISPRAS-2019-31(3)-6