Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Modeling Nonlinear Stabilization System on Clusters with Intel Xeon Phi Coprocessors

https://doi.org/10.15514/ISPRAS-2019-31(3)-18

Abstract

Currently, cluster systems are widely used, the nodes of which use processors with a large number of cores. Effective software implementation on such computing systems requires that the corresponding mathematical models have a significant parallelism resource. For the problems of modeling of hybrid dynamical systems (HDS) a significant resource of parallelism is typical, since in this class of mathematical models the (theoretically infinite-dimensional) phase space of control objects with space-distributed parameters is isolated. The purpose of this work is to study the effectiveness of the software implementation on parallel computing systems of the class of modeling problems of the influence of typical nonlinearities and nonstationarity on the output vector function of the HDS. As an example, a nonlinear stabilization system for a mobile control object (the rocket taking into account the elastic deformations of its body) is considered.

About the Author

Dmitry Vadimovich Melnichuk
Saratov State University
Russian Federation


References

1. Andreichenko D.K., Andreichenko K.P. On the theory of hybrid dynamical systems. Journal of Computer and Systems Sciences International, vol. 39, no. 3, 2000, pp. 383-398.

2. Andreichenko D.K., Andreichenko K.P. Modeling, analysis and synthesis of combined dynamical systems. Tutorial. Saratov, Rait-Ekspo Publ., 2013. 144 p. (in Russian) / Д.К. Андрейченко, К.П. Андрейченко. Моделирование, анализ и синтез комбинированных динамических систем. Учебное пособие. Саратов, Издательский дом «Райт-Экспо, 2013 г., 144 с.

3. Andreichenko D.K., Andreichenko K.P., Melnichuk D.V. Pattern MPI-MAP and modeling of nonlinear hybrid dynamical systems. In Proc. of the IV International scientific conference on Problems of control, information processing and transmission, vol. 2, 2015, pp. 19-26 (in Russian) / Д.К. Андрейченко, К.П. Андрейченко, Д.В. Мельничук. Паттерн MPI-MAP и моделирование нелинейных комбинированных динамических систем. В сборнике трудов IV международной научной конференции «Проблемы управления, обработки и передачи информации», т. 2, 2015 г., pp. 19-26

4. Andreichenko D.K., Andreichenko K.P., Melnichuk D.V., Portenko M.S. Adaptive Algorithm of Parametric Synthesis of Hybrid Dynamical Systems. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, vol. 16, issue. 4, 2016, pp. 465–475 (in Russian) / Д.К. Андрейченко, К.П. Андрейченко, Д.В. Мельничук, М.С. Портенко. Адаптивный алгоритм параметрического синтеза комбинированных динамических систем. Известия Саратовского университета, новая серия, серия: Математика. Механика. Информатика, том 16, вып. 4, 2016 г., стр. 465-475.

5. Kang Q., Träff, J.L., Al-Bahrani R., Agraval A., Choundary A., Liao W. Scalable Algorithms for MPI Intergroup Allgather and Allgatherv. Parallel Computing, vol. 85, 2019, pp. 220-230.

6. Dalcin L., Mortensen M., Keyes D.E. Fast parallel multidimensional FFT using advanced MPI. Journal of Parallel and Distributed Computing, vol. 128, 2019, p.p. 137–150

7. Avdeeva A.N., Puzikova V.V. Application of parallel algorithms for numerical simulation of quasi-one dimensional blood flow. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 2, 2018, pp. 301-316 (in Russian) DOI: 10.15514/ISPRAS-2018-30(2)-15 / Авдеева А.Н., Пузикова В.В. Применение параллельных алгоритмов при численном моделировании кровотока в квазиодномерном приближении. Труды ИСПРАН, том 30, вып. 2, 2018 г., стр. 301-316.

8. Towara M., Schanen M., Naumann U. MPI-Parallel Discrete Adjoint OpenFOAM. Procedia Computer Science, vol. 51, 2015, pp. 19-28.

9. Tamada Y. Memory efficient parallel algorithm for optimal DAG structure search using direct communication. Journal of Parallel and Distributed Computing, vol. 119, 2018, pp 27–35.

10. Chen C., Pouransari H., Rajamanickam S., Boman E.G., Darve E. A distributed-memory hierarchical solver for general sparse linear systems. Parallel Computing, vol. 74, 2018, pp. 49–64.

11. Takahashi D. Computation of the 100 quadrillionth hexadecimal digit of π on a cluster of Intel Xeon Phi processors. Parallel Computing, vol. 75, 2018, pp. 1–10.

12. Cheng X., He B., Lu M., Lau C.T. Many-core needs fine-grained scheduling: A case study of query processing on Intel Xeon Phi processors. Journal of Parallel and Distributed Computing, vol. 120, 2018, pp. 395–404.

13. Lazarev D.O., Kuzyurin N.N. On-line algorithm for scheduling parallel tasks on related computational clusters with processors of different capacities and its average-case analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 6, 2018, pp. 105-122 (in Russian). DOI: 10.15514/ISPRAS-2018-30(6)-6 Лазарев Д.О., Кузюрин Н.Н. Алгоритм построения расписаний выполнения параллельных задач на группах кластеров с процессорам различной производительности и его анализ в среднем. Труды ИСПРАН, том 30, вып. 6, 2018 г., стр.105-122.

14. Gandhi P. S., Borja P., Ortega R. Energy shaping control of an inverted flexible pendulum fixed to a cart. Control Engineering Practice, vol. 56, 2016, pp. 27–36.


Review

For citations:


Melnichuk D.V. Modeling Nonlinear Stabilization System on Clusters with Intel Xeon Phi Coprocessors. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2019;31(3):229-240. https://doi.org/10.15514/ISPRAS-2019-31(3)-18



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)