Preview

Труды Института системного программирования РАН

Расширенный поиск

Возможности гибридного метода аппроксимации конвективных потоков при моделировании течений сжимаемых сред

https://doi.org/10.15514/ISPRAS-2016-28(3)-16

Полный текст:

Аннотация

Для моделирования течений в широком диапазоне чисел Маха предложен гибридный метод аппроксимации конвективных слагаемых, основанный на схеме Курганова-Тадмора и разновидности метода проекций PISO (Pressure Implicit With Splitting Operators). Особенность данного метода состоит в неявной выражении конвективных потоков из схемы Курганова-Тадмора и введении специальной функции-переключателя, обеспечивающей в зависимости от локальных характеристик потока переход от «сжимаемой» схемы (Курганова-Тадмора) к «несжимаемой» схеме (стандартная аппроксимация, используемая в методе PISO). Использование такой гибридной схемы позволяет получить следующие преимущества: а) за счёт неявного учёта диффузионных слагаемых шаг по времени не ограничен скоростью распространения волн диффузионным механизмом; б) за счёт аппроксимации конвективных слагаемых неявным способом и перехода к стандартным схемам PISO шаг по времени ограничивается только потоковым числом Куранта; в) при необходимости разрешения акустических волн достаточно снижения шага по времени до достижения акустическим числом Куранта значений меньше 1 во всей области; г) использование схемы Курганова-Тадмора позволяет получить неосциллирующее решение в задачах с распространением акустических сигналов или при М > 0.3. В данной работе выполнено тестирование реализации гибридного метода для широкого класса задач с известным аналитическим решением и экспериментальными данными: а) сжимаемые течения - распространение волны в прямом канале (Задача Сода), обтекание плоского клина, обтекание обратного уступа сверхзвуковым потоком, обтекание прямого уступа сверхзвуковым потоком, течение в сверхзвуковом сопле при наличии прямого скачка уплотнения в закритической части; б) несжимаемые течения - дозвуковое течение ламинарного вязкого потока в канале круглого сечения, обтекание цилиндра в ламинарном режиме; обтекание цилиндра турбулентным потоком, течение струй газов со смешением; в) промышленные и академические верификационные задачи - истечение струи газа из сверхзвукового сопла, истечение квазиравновесной расширяющейся струи плазмы в вакуум; г) качественное исследование адекватности модели для задач промышленного масштаба - моделирование течения в высокоскоростном компрессоре, модель гидродинамики водокольцевого насоса. Все материалы работы и исходный код свободно доступны через проект GiHub https://github.com/unicfdlab.

Об авторе

М. В. Крапошин
Институт системного программирования РАН
Россия


Список литературы

1. M. Kraposhin, A. Bovtrikova, S. Strijhak. Adaptation of Kurganov-Tadmor Numerical Scheme for Applying in Combination with the PISO Method in Numerical Simulation of Flows in a Wide Range of Mach Numbers. Procedia Computer Science, 66:43-52, 2015

2. OpenFOAM: http://openfoam.org/

3. J.D. Anderson, Jr. Modern Compressible Flow: With Historical Perspective. New York: McGraw-Hill, third edition, 2003

4. F.M. White. Fluid Mechanics. McGraw-Hill Book Co., New York, NY, third Edition, 1994

5. H.E. Smith. The Flow Field and Heat Transfer Downstream of a Rearward Facing Step in Supersonic Flow. Technical report ARL 67-0056. Aerospace Research Laboratories, Ohio, 1967 (Mar.)

6. ANSYS Fluid Dynamics Verification Manual, Release 15.0, 2013

7. G.D. Garrard, W.J. Phares. Calibration of the PARC Program for Propulsion-Type flows. AEDC-TR-90-7, July, 1990

8. М.П. Галанин, Е.Б. Савенков. Методы численного анализа математических моделей. М.: Издательство МГТУ им. Н.Э. Баумана, 2010

9. C. Liang. High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders with Spectral Difference method. Report ACL 2008-4 Aerospace Computing Laboratory, Aeronautics and Astronautics , Stanford University , May 2008

10. X. Liu. Wind loads on multiple cylinders arranged in tandem with effects of turbulence and surface roughness. Master thesis, Department of Civil and Environmental Engineering, Louisiana State University, 2003

11. F.R. Menter, M. Kuntz, R. Langtry. Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12-17 October, 2003. Publisher: 2003 Begell House, Inc.

12. J.R. Edwards, M. Ling. Low-Diffusion Flux-Splitting Methods for Flows at All Speeds. AIAA Journal 1998

13. R.A.C. Germanos, L.F. de Souza. Analysis of Dispersion Errors in Acoustic Wave Simulations. Thermal Engineering, Vol. 5 - No 01 - July 2006

14. Y.-H. Kim. Sound Propagation. An Impedance Based Approach. John Wiley Sons, first edition, 2010

15. L.E. Kinsler. Fundamentals of acoustics. Wiley, New York, 2000

16. Л.Г. Лойцянский. Механика жидкости и газа. М.: Дрофа, 2003

17. K.S. Abdol-Hamid et al. Numerical Investigation of Flow in an Over-expanded Nozzle with Porous Surfaces. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005

18. S.C. Asbury, C.A. Hunter. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control. NASA Langley Research Cente, 1999

19. R. Engeln, S. Mazouffre, P. Vankan, D.C. Schram, N. Sadeghi. Flow dynamics and invasion by background gas of a supersonically expanding thermal plasma. Plasma Sources Sci. Technol. 10 (2001) 595-605

20. S.E. Selezneva, M.I. Boulos, M.C.M. van de Sanden, R. Engeln, D.C. Schram. Stationary supersonic plasma expansion: continuum fluid mechanics versus direct simulation Monte Carlo method. Journal of Physics D: Applied Physics, Volume 35, Number 12, http://dx.doi.org/10.1088/0022-3727/35/12/312

21. H. Jasak, Z. Tukovic. Dynamic mesh handling in OpenFOAM applied to fluid-structure interaction simulations. V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal,14-17 June 2010

22. O. Petit, H. Nilson, M. Page, M. Beaudoin. The ERCOFTAC Centrifugal Pump OpenFOAM Case-Study. In Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problem in Hydraulic Machinery and Systems, Brno, Czech Republic, 2009

23. J.F. Combès. Test Case U3: Centrifugal Pump with a Vaned Diffuser. ERCOFTAC Seminar and Workshop on Turbomachinery Flow Prediction VII, Aussois, jan 4-7, 1999

24. K. Wittig. Konstruktion einer Gastubine fuer Modellflugzeuge und Dokumentation der Auslegungsrechnungen. Muenchen, 24 September 1993

25. Strömungssimulation Flüssigkeitsringpumpe. Projekt 1. Ingenieurburo beilke, 28.09.2015, Dresden

26. H. Ding, Y. Jiang, H. Wu, J. Wang. Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model. ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, Volume 1: Symposia, Seoul, South Korea, July 26-31, 2015

27. M. Kraposhin, C. Brouzet, T. Dauxois, E. Ermanyuk, S. Joubaud, I. Sibgatullin. Direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating vertical wall. Proceedings of ISP RAS, 26(5):117-142, 2014. DOI: 10.15514/ISPRAS-2014-26(5)-6

28. В.А. Васильев, М.В. Крапошин, А.Ю. Ницкий, А.В. Юскин. Применение HPC-технологий для решения пространственных задач мультифизики. Вычислительные методы и программирование, 12(1):160-169, 2011


Для цитирования:


Крапошин М.В. Возможности гибридного метода аппроксимации конвективных потоков при моделировании течений сжимаемых сред. Труды Института системного программирования РАН. 2016;28(3):267-326. https://doi.org/10.15514/ISPRAS-2016-28(3)-16

For citation:


Kraposhin M.V. Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2016;28(3):267-326. (In Russ.) https://doi.org/10.15514/ISPRAS-2016-28(3)-16

Просмотров: 88


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)