Preview

Труды Института системного программирования РАН

Расширенный поиск

Применение i-векторов для автоматизированного определения уровня близости языков

https://doi.org/10.15514/ISPRAS-2019-31(5)-12

Полный текст:

Аннотация

В докладе рассказывается о результатах применения i-векторных методов распознавания речи для задания расстояния между языками. В качестве входных данных используются фонограммы спонтанной речи. Эксперименты проводятся на звукозаписях латышских и латгальских говоров, но методы применимы и к любым другим идиомам.

Об авторе

Анс-Атаол Улдович Берзинь
http://ansis.lv/
Латвийский университет
Латвия
Магистр математических наук, завершающий диссертацию по компьютерной лингвистике


Список литературы

1. A.A. Bērziņš. The Principles of Collection of Information for Automated Analyse of Audio Recordings. Tbilisi, Meridiani, 2011, pp. 39–46 (in Georgian and Russian) / А.У. Берзинь. Принципы сбора информации для автоматизированного анализа фонограм. Тбилиси, Меридиани, 2011 / ბერზინი ა. ინფორმაციის მოპოვების პრინციპები ფონოგრამების ავტომატური ანალიზისთვის. ქართული ენა და თანამედროვე ტექნოლოგიები, თბილისი, მერიდიანი, 2011

2. Zha Sh., Peng X., Cao H., Zhuang X., Natarajan P., Natarajan P. Text Classification via iVector Based Feature Representation. In Proc. of the 11th IAPR International Workshop on Document Analysis Systems, 2014, pp. 151-155.

3. Dehak N., Dehak R., Kenny P., Brummer N., Ouellet P., Dumouchel P. Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification. In Proc. of the Interspeech Conference, 2009, pp. 1559-1562.

4. Dehak N., Kenny P.J., Dehak R., Dumouchel P., Ouellet P. Front-End Factor Analysis for Speaker Verification. IEEE Transactions on Audio, Speech, And Language Processing, vol. 19, no. 4, 2011, pp. 788-798.

5. Dehak N., Torres-Carrasquillo P.A., Reynolds D., Dehak R. Language Recognition via Ivectors and Dimensionality Reduction. In Proc. of the Interspeech Conference, 2011, pp. 857-860.

6. Soufifar M. Subspace Modeling of Discrete Features for Language Recognition. Doctoral theses, Trondheim, NTNU, 2014.

7. Glembek O., Burget L., Matejka P. Voice Biometry Standard, Draft. Brno: Speech@FIT, 2015.

8. Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques. 3rd Edition. Morgan Kaufmann, 2012, 800 p.

9. Drgas Sz., Dąbrowski A. Generalized cosine similarity in I-vector based automatic speaker recognition systems. In Proc. of the International Conference on Signal Processing: Algorithms, Architectures, Arrangements, and Applications, 2013, pp. 73-77.

10. Bai Zh., Zhang X.-L., Chen J. Cosine Metric Learning for Speaker Verification in the i-Vector Space. In Proc. of the Interspeech Conference, 2018, pp. 1126-1130.

11. Ghosh S., Vijay Girish K.V., Sreenivas T.V. Relationship between Indian Languages Using Long Distance Bigram Language Models. In Proc of the 9'th International Conference on Natural Language Processing, 2011, pp. 104-113.

12. Preliminary recommendations on Corpus Typology. EAGLES – Expert Advisory Group on Language Engineering Standards Guidelines, 1996. Available at: http://www.ilc.cnr.it/EAGLES96/corpustyp/corpustyp.html, 05.11.2019.

13. Comparable Corpora. MT Research Survey Wiki. University of Edinburgh. Available at: http://www.statmt.org/survey/Topic/ComparableCorpora, 05.11.2019.

14. Similarity (State of the art). ACL Wiki for Computational Linguistics. The Association for Computational Linguistics. Available at: https://aclweb.org/aclwiki/Similarity (State_of_the_art), 06.11.2019.


Для цитирования:


Берзинь А.У. Применение i-векторов для автоматизированного определения уровня близости языков. Труды Института системного программирования РАН. 2019;31(5):153-164. https://doi.org/10.15514/ISPRAS-2019-31(5)-12

For citation:


Bērziņš A. Usage of i-Vectors for Automated Determination of a Similarity Level between Languages. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2019;31(5):153-164. (In Russ.) https://doi.org/10.15514/ISPRAS-2019-31(5)-12

Просмотров: 96


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)