Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Study of the conditions for the occurrence of aeolian microrelief

https://doi.org/10.15514/ISPRAS-2019-31(6)-15

Abstract

The possibilities of numerical modeling of the motion of hydrodynamic flows around objects of complex shape allow us to consider the results of calculations as one of the ways to understand the mechanisms of wind removal of sand particles. To study the conditions for the occurrence of microrelief, a number of numerical experiments are carried out using the open package OpenFOAM. Over inhomogeneities of the surface, determined by the features of the mutual arrangement of particles, there are areas of pressure reduction, near which the wind removal of particles is more likely. The reason for this decrease in pressure is a different kind of rarefaction of the spatial arrangement of surface elements: a change in distance, a change in the orientation of the structure in space, a change in the angle between planes containing particles. Due to the decrease in pressure, an increase in the air velocity at the surface and the occurrence of microvortices occur.

About the Author

Elena Aleksandrovna Malinovskaya
A.M. Obukhov Institute of Atmospheric Physics RAS
Russian Federation
Ph.D. in Physics and Mathematics, researcher at the Laboratory of Geophysical Hydrodynamics


References

1. Закарин Э.А. и др. ГИС-технология мониторинга и моделирования пыльных бурь. Гидрометеорология и экология, №. 3, 2010 г., стр. 8-20 / Zakarin E.A. et al. GIS technology for monitoring and modeling dust storms. Hydrometeorology and ecology, no. 3, 2010, pp. 8-20 (in Russian).

2. Greeley R., Iversen D.J. Wind as geological process of Earth, Mars and Titan. New York, Cambridge University press, 1985. 333 p.

3. Ivanov V.K., Matveev A.Ya., Tsymbal V.N., Yatsevich S.Ye. Radar investigations of the aeolian sand and dust transporting manifestations in desert areas. Telecommunications and Radio Engineering, vol. 74, no. 14, 2015, pp. 1269-1283.

4. Почвозащитное земледелие. Под общ. ред. А.И. Бараева. М., Колос, 1975, 304 стр. / Conservation Agriculture. Under general editorship of A.I. Barayev. M., Kolos, 1975, 304 pp. (in Russian).

5. Chamberlain A.C. Roughness length of sea, sand, and snow. Boundary-Layer Meteorology, vol. 25, № 4, 1983, pp. 405-409.

6. Горчаков Г.И., Карпов А.В. и др. Экспериментальное и теоретическое исследование траекторий сальтирующих песчинок на опустыненных территориях. Оптика атмосферы и океана, том 25, № 6, 2012 г., стр. 501-506 / Gorchakov G.I., Karpov A.V. et al. Experimental and theoretical study of trajectories of salt sand grains in desert territories. Optics of the Atmosphere and the Ocean, vol. 25, № 6, 2012, pp. 501-506 (in Russian).

7. Гендугов В.М., Глазунов Г.П. Ветровая эрозия почвы и запыление воздуха. М., Физматлит, 2007 г., 238 стр. / Gendugov V.M., Glazunov G.P. Wind erosion of the soil and dusting of the air. M., Fizmatlit, 2007, 238 p. (in Russian).

8. Семенов О.Е. Экспериментальные исследования кинематики и динамики пыльных бурь и поземков. Труды Казахского научно-исследовательского гидрометеорологического института, вып. 49, 1972 г., стр. 2-31 / Semenov O.E. Experimental studies of the kinematics and dynamics of dust storms and windfalls. Proceedings of the Kazakh Research Hydrometeorological Institute, issue 49, 1972, pp. 2-31 (in Russian).

9. Bagnold R.A. The physics of blown sand and desert dunes. London, Chapman & Hall, 1973, 265 p.

10. Бютнер Э.К. Динамика приповерхностного слоя воздуха. Л., Гидрометиздат, 1978 г., 156 стр. / Butner E.K. The dynamics of the surface air layer. L., Gidrometizdat, 1978, 156 p. (in Russian).

11. Hau Lu. An integrated wind erosion modeling system with emphasis on dust emission and transport PhD Thesis, School of Mathematics, University of New South Wales, Sydney, Australia, 1999. 185 p.

12. Shao Y. Physics and modeling of wind erosion. Springer, 2008, 452 p.

13. Семенов О.Е. Введение в экспериментальную метеорологию и климатологию песчаных бурь. Алматы, Казахский научно-исследовательский институт экологии и климата, 2011 г., 580 стр. / Semenov O.E. Introduction to experimental meteorology and climatology of sandstorms. Almaty, Kazakh Research Institute of Ecology and Climate, 2011, 580 p. (in Russian).

14. Lämmel M., Rings D., Kroy K. A two-species continuum model for aeolian sand transport. New Journal of Physics, vol. 14, №. 9, 2012, 24 p.

15. Pähtz T. et al. The critical role of the boundary layer thickness for the initiation of aeolian sediment transport. Geosciences, vol. 8, №. 9, 2018, 14 p.

16. Williams J. J., Butterfield G. R., Clark D. G. Aerodynamic entrainment threshold: effects of boundary layer flow conditions. Sedimentology, vol. 41, №. 2, 1994, pp. 309-328.

17. Malinovskaya E., Gorchakov G., Chkhetiani O., Karpov A. About the quasi-periodical variations of particles saltation. Geophysical Research Abstracts, vol. 21, EGU2019-3693-1, 2019.

18. Chou Y. J., Fringer O. B. A model for the simulation of coupled flow bed form evolution in turbulent flows. Journal of geophysical research, vol. 115, 2010, 20 p.

19. Малиновская Е.А. Трансформация эоловых форм рельефа при ветровом воздействии. Известия РАН. Физика атмосферы и океана, том 55, №. 1, 2019 г., стр. 54-64 / Malinovskaya E.A. Transformation of aeolian relief forms under wind influence. Izvestiya, Atmospheric and Oceanic Physics, vol. 55, issue 1, 2019, pp. 50–58.

20. Yang X.I.A. et al. Drag forces on sparsely packed cube arrays. Journal of Fluid Mechanics, vol. 880, 2019, pp. 992-1019.

21. Dupont S., Bergametti G., Simoëns S. Modeling aeolian erosion in presence of vegetation. Journal of Geophysical Research: Earth Surface, vol. 119, №. 2, 2014, pp. 168-187.

22. Малиновская Е. А. Модель формирования ветрового эолового склона. Известия РАН. Физика атмосферы и океана, том 55, №2, 2019 г., стр. 86-95 / Malinovskaya E.A. Windward Aeolian Slope Formation Model. Izvestiya, Atmospheric and Oceanic Physics, vol. 55, issue 2, 2019, pp. 218–228.

23. ] Кормилицына О. В., Бондаренко В. В., Палий И. М. Оценка свойств гранулометрических элементов как основа для создания почвенно-грунтовых смесей заданного качества. Лесной вестник, №7, 2007, стр. 84-89 / Kormilitsyna O.V., Bondarenko V.V., Paliy I.M. The estimation of properties of texture particles as a basis for creation of soil substrates of the required quality. Forestry Bulletin, №7, 2007, pp. 84-89 (in Russian).

24. Moukalled F. et al. The finite volume method in computational fluid dynamics //An advanced introduction with OpenFoam and Matlab. Springer, 2016, 135 p.

25. The PIMPLE algorithm in OpenFOAM. Available at: https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM.


Review

For citations:


Malinovskaya E.A. Study of the conditions for the occurrence of aeolian microrelief. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2019;31(6):225-236. (In Russ.) https://doi.org/10.15514/ISPRAS-2019-31(6)-15



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)