Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Simulation of particle dynamics in planetary boundary layer and in a model wind farm

https://doi.org/10.15514/ISPRAS-2019-31(6)-10

Abstract

Currently, Russia is actively building new wind farms. The issues of studying physical processes are relevant, as the existing wind farms have an impact on the microclimate and ecology. In wind farms, the appearance and movement of liquid and solid particles is possible. In the study of two-phase flows containing a suspension of aerosol particles (dispersed phase) in the carrier medium (dispersion medium) in the atmosphere, it is important to choose the main parameters that determine the system correctly and adequately describe the real process using the formulated mathematical model. The work is devoted to the development of new solvers based on the SOWFA library as part of the open-source OpenFOAM 2.4.0 package for the study of particle dynamics modeling in the atmospheric boundary layer and in the model wind farm. The Euler-Lagrangian approach is used to describe particle dynamics. Two new solvers based on ABLSolver and pisoTurbineFoam.ALM have been developed to simulate particle dynamics. The calculation results for the case of a neutral boundary layer and a model wind farm with 14 model wind turbines are presented. Graphs for the distribution of particles with different diameters in height are given. Between 72 and 96 cores were used to calculate one example.

About the Authors

Konstantin Borisovich Koshelev
Ivannikov Institute for System Programming of the Russian Academy of Sciences
Russian Federation
candidate of physical and mathematical sciences, associate professor, senior researcher


Sergei Vladimirovich Strihhak
Ivannikov Institute for System Programming of the Russian Academy of Sciences
Russian Federation
candidate of technical sciences, leading engineer


References

1. . Лыкосов В.Н., Глазунов А.В., Кулямин Д.В., Мортиков Е.В., Степаненко В.М. Суперкомпьютерное моделирование в физике климатической системы: учебное пособие. – М.: Изд.-во Московского университета, 2012. 408 с.

2. . Зилитинкевич С.С. Атмосферная турбулентность и планетарные пограничные слои. – М.: Физматлит, 2014. 252 с.

3. . Алоян А.Е. Динамика и кинетика газовых примесей и аэрозолей в атмосфере / Курс лекций. – М.: ИВМ РАН, 2002. – 201 с. – ISBN 5-901854-05-5.

4. . Береснев С.А., Грязин В.И. Физика атмосферных аэрозолей: Курс лекций. – Екатеринбург: Изд-во Урал. ун-та, 2008.

5. . Архипов В.А., Усанина А.С. Движение аэрозольных частиц в потоке: учеб. пособие. – Томск: Издательский Дом Томского государственного университета, 2013. – 92 с.

6. . Fiore G., Selig M. S. A Simulation of Operational Damage for Wind Turbines. // Proceedings of the 32nd AIAA Applied Aerodynamics Conference, AIAA Paper 2014–2848, Atlanta, GA, 2014. pp. 1-19.

7. . Fiore G., Fujiwara G. E. C., Selig M. S. A Damage Assessment for Wind Turbine Blades from Heavy Atmospheric Particles // Proceedings of the AIAA Conference, AIAA Paper 2015–1495, Kissimmee, FL, 2015. pp. 1-22.

8. . Sareen A., Sapre C.A., Selig M.S. Effects of leading edge erosion on wind turbine blade performance. // Wind Energ. 2014 vol. 17:1531–1542.

9. . Trieb F. Interference of Flying Insects and Wind Parks. Study Report. Stuttgart. Deutsches Zentrum für Luft- und Raumfahrt (DLR). 30.10.2018, 30 p.

10. . Breton S-P, Sumner J., Sorensen J.N., Hansen K.S., Sarmast S., Ivanell S. A survey of modeling methods for high-fidelity wind farm simulations using large eddy simulation. Phil. Trans. R. Soc. 2017. A 375:20160097.

11. . Churchfield, M. J., Moriarty, P. J., Vijayakumar, G., Brasseur, J. G. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM. 19th Symposium on Boundary Layers and Turbulence. Keystone, Colorado, USA, 2 -6 August 2010. NREL.

12. . Churchfield, M. J., Lee. S., Michalakes, J., Moriarty. P. J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. // Journal of Turbulence, 2012, v. 13(14), pp. 1–32.

13. . Sagaut P. Large eddy simulation for incompressible flows: an introduction. Springer, Berlin, 2002. p 426.

14. . Meneveau C, Lund T S, Cabot W H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid. Mech 319 353–385.

15. . Крапошин М.В., Стрижак С.В. Проблемно-ориентированная библиотека SOWFA для решения прикладных задач ветроэнергетики. Труды ИСП РАН, том 30, вып. 6, 2018 г., стр. 259-274. DOI: 10.15514/ISPRAS-2018-30(6)-14.

16. . Zilitinkevich S S, Hunt J C R., Grachev A A, Esau I N, et al. The influence of large convective eddies on the surface layer turbulence. // Quart. J. Roy. Meteorol. Soc., 2006. 132 1423- 1456.

17. . Huang J., Cassiani M., Albertson J. D. Analysis of coherent structures within the atmospheric boundary layer. // Boundary-Layer Meteorology. 2009, 131 147–171.

18. . Shah S., Bou-Zeid E. Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition. // Boundary-Layer Meteorology. 2014, 153, issue 3 355-387.

19. . Yu H., Liu S. C., Dickinson R. E. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 2002. 107, NO. D12, 4142,

20. . Lauros J., Nilsson E.D., Dal Maso M., Kulmala M. Contribution of mixing in the ABL to new particle formation based on observations. // Atmos. Chem. Phys., 2007, 7, 4781–4792.

21. . Hancock P.E., Farr T.D., 2014. Wind-tunnel simulations of wind-turbine arrays on neutral and non-neutral winds. J. Phys.: Conf. Ser., 524 012166.

22. . Tellez-Alvarez J., Koshelev K., Strijhak S., Redondo J.M. Simulation of turbulence mixing in the atmosphere boundary layer and analysis of fractal dimension // Physica Scripta. 2019. Vol. 94. # 064004.

23. . Hancock, P.E., Pascheke, F., 2014. Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow.Boundary-Layer Meteorology, 151, pp. 23–37.

24. . Kryuchkova A.S., Strijhak S.V. MODELLING OF TURBULENT WAKE FOR TWO WIND TURBINES // Civil Aviation High TECHNOLOGIES. 2018; 21(1):40-48. (In Russ.)

25. . Kryuchkova A., Tellez-Alvarez J., Strijhak S., Redondo J.M. Assessment of Turbulent Wake Behind Two Wind Turbines Using Multi-Fractal Analysis // Ivannikov ISPRAS Open Conference (ISPRAS). Moscow, Russia, 30 November – 1 December 2017. IEEE. 7 p.

26. . Strijhak S.V., Koshelev K.B., Kryuchkova A.S. Studying parameters of turbulent wakes for model wind turbines. AIP Conference Proceedings. 2018. 2027,030086. https://doi.org/10.1063/1.5065180.

27. . Tellez-Alvarez, J., Strijhak, S., Kharchi, R., Kryuchkova, A., Redondo, J.M. 3D Numerical Simulation of Wind Turbines and Fractal Dimension Analysis // 2018 International Conference on Wind Energy and Applications in Algeria, ICWEAA 2018. 5 p.

28. . Strijhak S.V., Koshelev K.B., Kryuchkova A.S. Simulation of turbulent wakes in model wind farm with arbitrary location for wind turbines. // XXXV Siberian Thermophysical Seminar dedicated to the 75th anniversary of the Honored Worker of Science of the Russian Federation Viktor Ivanovich Terekhov. 2019. 7 p.


Review

For citations:


Koshelev K.B., Strihhak S.V. Simulation of particle dynamics in planetary boundary layer and in a model wind farm. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2019;31(6):177-186. (In Russ.) https://doi.org/10.15514/ISPRAS-2019-31(6)-10



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)