Implementation of Memory Subsystem of Cycle-Accurate Application-Level Simulator of the Elbrus Microprocessors
https://doi.org/10.15514/ISPRAS-2020-32(2)-6
Abstract
Performance characteristics of any modern microprocessor largely depend on its memory subsystem. Naturally, the memory subsystem software model is an important component of the cycle-accurate simulator, and its validity and quality have high impact on the overall accuracy of the simulation. In this paper the cycle-accurate application-level simulator of the Elbrus microprocessor family is introduced. The structure of the cycle-accurate simulator is briefly explained. After that the software model of memory subsystem and its integration as a part of the cycle-accurate application-level simulator are described. We evaluate accuracy of the application-level cycle-accurate simulator on the SPEC CPU2006 benchmark and analyze the simulation errors. Finally, a brief comparison of different Elbrus architecture simulators is given.
About the Authors
Pavel Alexeevitch POROSHINRussian Federation
Software engineer
Dmitry Valerievich ZNAMENSKIY
Russian Federation
Alexey Nikolaevitch MESHKOV
Russian Federation
PhD, chief of department at MCST
References
1. Kutsevol V.N., Meshkov A.N., Chernykh S.V. The approaches to the performance optimization of multi-core «Elbrus» processors program models. Voprosy radioelektroniki, no. 3, 2017, pp. 57–61 (in Russian) / Куцевол В. Н., Мешков А. Н., Черных С. В. Методы оптимизации производительности программного моделирования многоядерных микропроцессоров с архитектурой «Эльбрус» // Вопросы радиоэлектроники, no. 3, 2017 г., стр. 57–61.
2. Poroshin P.A., Meshkov A.N. An exploration of approaches to instruction pipeline implementation for cycle-accurate simulators of «Elbrus» microprocessors. Proc. ISP RAS, 2019, vol. 31, no. 3, pp. 47-58. DOI: 10.15514/ISPRAS-2019-31(3)-4.
3. Znamenskiy D.V., Kutsevol V.N. Development of a cycle-accurate simulator of the Elbrus processor core memory subsystem. Radio industry (Russia), vol. 29, no. 2, 2019, pp. 17-27 (in Russian), DOI: 10.21778/2413-9599-2019-29-2-17-27 / Знаменский Д.В., Куцевол В.Н. Разработка потактового симулятора подсистемы памяти процессорного ядра «Эльбрус» // Радиопромышленность, том 29, no. 2, 2019 г., стр. 17–27.
4. Henning J.L. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News, vol. 34, no. 4, 2006, pp. 1-17.
5. Weidendorfer J. KCachegrind: Call graph viewer. Official Website. Available at: http://kcachegrind.github.io/html/Home.html, accessed April 10, 2020.
6. Kozhin A.S., Neiman-zade M.I., Tikhorskiy V.V. Memory subsystem impact on the 8-core «Elbrus-8C» processor performance. Voprosy radioelektroniki, no. 3, 2017, pp. 13–21 (In Russian) / Кожин А.С., Нейман-заде М.И., Тихорский В. В. Влияние подсистемы памяти восьмиядерного микропроцессора «Эльбрус-8C» на его производительность. Вопросы радиоэлектроники, no. 3, 2017 г., стр. 13–21.
7. Ermolitckii A.V., Neiman-Zade M.I., Chetverina O.A., Markin A.L., Volkonskii V.Y. Aggressive Inlining for VLIW. Proc. ISP RAS, 2015, vol. 27, issue 6, pp. 189-198 (in Russian). DOI: 10.15514/ISPRAS-2015-27(6)-13 / Ермолицкий А.В., Нейман-заде М.И., Четверина О.А., Маркин А.Л., Волконский В.Ю. Агрессивная инлайн-подстановка функций для VLIW-архитектур. Труды ИСП РАН, том 27, вып. 6, 2015 г., стр. 189-198.
8. Yourst M.T. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator. In Proc. of the 2007 IEEE International Symposium on Performance Analysis of Systems and Software, 2007, pp. 23-34.
9. Alves M.A.Z., Villavieja C., Diener M., Moreira F.B., Navaux P.O.A. SiNUCA: A Validated Micro-Architecture Simulator. In Proc. of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, 2015, pp. 605-610.
10. Akram A., Sawalha L. A survey of computer architecture simulation techniques and tools. Ieee Access, vol. 7, 2019, pp. 78120-78145.
11. Carlson T.E., Heirman W., Eyerman S., Hur I., Eeckhout L. An evaluation of high-level mechanistic core models. ACM Transactions on Architecture and Code Optimization (TACO), vol. 11, no. 3, 2014, pp. 1-25.
12. Woo S.C., Ohara M., Torrie E., Singh J.P., Gupta A. The SPLASH-2 programs: Characterization and methodological considerations. ACM SIGARCH Computer Architecture News, vol. 23, no. 2, 1995, pp. 24-36.
13. Guthaus M.R, Ringenberg J.S., Ernst D., Austin T.M., Mudge T., Brown R.B. MiBench: A free, commercially representative embedded benchmark suite. In Proc. of the fourth Annual IEEE International Workshop on Workload Characterization, 2001, pp. 3-14.
14. Bienia C., Kumar S., Singh J.P., Li K. The PARSEC benchmark suite: Characterization and architectural implications. In Proc. of the 17th International Conference on Parallel Architectures and Compilation Techniques, 2008, pp. 72-81.
15. Aslot V., Eigenmann R. Performance characteristics of the SPEC OMP2001 benchmarks. ACM SIGARCH Computer Architecture News, vol. 29, no. 5, 2001, pp. 31-40.
16. Vandierendonck H., De Bosschere K. On the Impact of OS and Linker Effects on Level-2 Cache Performance. In Proc. of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation, 2006, pp. 87-95.
17. Cain H.W., Lepak K.M., Schwartz B.A., Lipasti M.H. Precise and accurate processor simulation. In Proc. of the Workshop on Computer Architecture Evaluation using Commercial Workloads, HPCA, 2002. vol. 8.
Review
For citations:
POROSHIN P.A., ZNAMENSKIY D.V., MESHKOV A.N. Implementation of Memory Subsystem of Cycle-Accurate Application-Level Simulator of the Elbrus Microprocessors. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(2):61-80. https://doi.org/10.15514/ISPRAS-2020-32(2)-6