Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

HP-Graph as a Basis of a DSM Platform Visual Model Editor

https://doi.org/10.15514/ISPRAS-2020-32(2)-12

Abstract

The language-oriented approach is becoming more and more popular in the development of information systems, but the existing DSM platforms that implement this paradigm have significant limitations, including insufficient expressive capabilities of the models used to implement visual model editors for complex subject areas and limited abilities to transform visual models. Visual languages are usually based on graph models, but the types of graphs used have certain limitations, such as insufficient expressiveness, the complexity of representing large-dimensional models and operation executions. For creating a tool that does not have the described constraints, development of a new formal model is needed. HP-graphs can become a solution for this problem. It is not only possible to create new visual languages for diverse domains based on them, but also to develop efficient algorithms to perform different operations on models constructed using these languages. The HP-graph definition is given and the justification of the expressive power of the proposed model is presented, the main operations for HP-graphs are described. The chosen graph formalism combines the capabilities of different types of graphs to represent visual models and allows creating a flexible model editor for the DSM platform, to implement effective algorithms of performing operations, in particular, model transformations.

About the Authors

Nikolai Mikhailovich SUVOROV
National Research University Higher School of Economics
Russian Federation
Undergraduate student


Lyudmila Nickolaevna LYADOVA
National Research University Higher School of Economics
Russian Federation
Candidate of Physical and Mathematical Sciences, associate professor of the Department of Information Technology in Business


References

1. Koznov D.V. Basics of visual modeling. Knowledge laboratory, Internet University of information technologies; BINOM, 2008, 280 p. (in Russian) / Кознов Д. В. Основы визуального моделирования. Лаборатория знаний, Интернет-университет информационных технологий; БИНОМ, 2008 г., 280 стр.

2. Fugetta A.A classification of CASE technology. Computer, vol. 26, no. 12, 1993, pp. 25-38.

3. Ward M.P. Language Oriented Programming. Software – Concepts & Tools, vol. 15, no. 4, 1994, pp. 47 161.

4. Sukhov A.O. Comparison of visual object-oriented language development systems. Mathematics of software systems: Intercollegiate collection of scientific articles, 2012, issue 9, pp. 84-111 (in Russian) / Сухов А.О. Сравнение систем разработки визуальных предметно-ориентированных языков. Математика программных систем: межвузовский сборник научных статей, 2012, вып. 9, стр. 84-111.

5. Kelly S., Lyytinen K., Rossi. M. MetaEdit+: A Fully Configurable Multi-User and Multi-Tool CASE Environment. Lecture Notes in Computer Science, vol. 1080, 1996, pp. 1-21.

6. Lyadova L.N., Sukhov A.O., Zamyatina E.B. An Integration of Modeling Systems Based on DSM-Platform. In Proc. of the 18th International Conference on Computers, 2014, pp. 421-425.

7. Sukhov A.O., Lyadova L.N. MetaLanguage: a Tool for Creating Visual Domain-Specific Modeling Languages. In Proc. of the 6th Spring/Summer Young Researchers’ Colloquium on Software Engineering, 2012, pp. 42-53.

8. Sukhov A.O. Development of tools for creating visual subject-oriented languages. PhD thesis, Moscow, 2013, 256 p. (in Russian) Сухов А.О. Разработка инструментальных средств создания визуальных предметно-ориентированных языков. Диссертация на соискание ученой степени кандидата физ.-мат. наук, М., 2013. 256 стр.

9. Sukhov A.O., Lyadova L.N., Poryazov S.A. Hypergraphs with poles as the basis for creating visual language editors. Mathematics of software systems, no. 15, 2018, pp. 97-104 (in Russian) / Сухов А.О. Лядова Л.Н., Порязов С.А. Гиперграфы с полюсами как основа для создания редакторов визуальных языков. Математика программных систем, вып. 15, 2018, стр. 97-104.

10. Microsoft. Visual Studio Docs. Overview of Domain-Specific Language Tools. Available at: https://docs.microsoft.com/en-us/visualstudio/modeling/overview-of-domain-specific-language-tools?view=vs-2019, accessed 10.01.2020.

11. Vujovic V., Maksimovic M., Perisic B. Comparative analysis of DSM Graphical Editor frameworks: Graphiti vs. Sirius. In Proc. of the 23rd International Electrotechnical and Computer Science Conference ERK, 2014, pp. 7-10.

12. Pavlinov A.A. A set of tools for developing problem-oriented visual languages. Bulletin of Saint Petersburg University, vol. 10, no. 1, 2007, pp. 86-96 (in Russian) / Павлинов А.А. Комплекс средств разработки проблемно-ориентированных визуальных языков. Вестник Санкт-Петербургского университета, том 10, вып. 1, 2007, стр. 86-96.

13. Terekhov A.N. Architecture of the visual modeling environment QReal. System programming, no. 4, 2009, pp. 172-197 (in Russian) / Терехов А.Н. Архитектура среды визуального моделирования QReal. Системное программирование, вып. 4, 2009, стр. 172-197.

14. Bezivin J., Jouault F., Touzet D. An Introduction to the ATLAS Model Management Architecture, Laboratoire d’Informatique de Nantes-Atlantique, Research Report No. 05.01, 2005, 24 p.

15. Jeong K., Wu L., Hong J. IDEF method-based simulation model design and development. Journal of Industrial Engineering and Management, vol. 2, no. 2, 2009, pp. 337-359.

16. Serifi V., Dasic P., Jecmenica R., Labovic D. Functional and Information Modeling of Production Using IDEF Methods. Strojniški vestnik – Journal of Mechanical Engineering, vol. 55, no. 2, 2009, pp. 131-140.

17. Imran S., Foping F., Feehan J., Dokas I. Domain Specific Modeling Language for Early Warning System: Using IDEF0 for Domain Analysis. International Journal of Computer Science Issues, 2010, vol. 7, no. 5, pp. 10-17.

18. OMG. Unified Modeling Language Specification. Available at: https://www.omg.org/spec/UML/2.5.1/PDF, accessed 15.02.2020.

19. James P., Knapp A., Mossakowski T., Roggenbach M. Designing Domain Specific Languages – A Craftsman’s Approach for the Railway Domain Using CASL. Lecture Notes in Computer Science, vol. 7841, 2012, pp. 178-194.

20. Wise R., Brimhall E. A Systems Engineering Approach to the Development of a Domain-Specific Language for Functional Reference Architectures. In Proc. of the 16th Annual Conference on Systems Engineering Research, 2019, pp. 241-254.

21. Velter M. MD*/DSL Best Practices Update March 2011. Version 2.0. Available at: http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf, accessed 20.03.2020.

22. Struchkov I.V. A formalism for describing software systems and computational processes for cyclic parallel processing of real time data. Information and control systems, issue 2, 2006, pp.8-13 (in Russian) / Стручков И.В. Формализм для описания программных систем и вычислительных процессов циклической параллельной обработки данных реального времени. Информационно-управляющие системы, вып. 2, 2006, стр. 8-13.

23. Courcelle B. Recognizable Sets of Graphs, Hypergraphs and Relational Structures: A Survey. Lecture Notes in Computer Science, vol. 3340, 2005, pp. 1-11.

24. Grosu R., Stefanescu Gh., Broy M. Visual Formalisms Revisited. In Proc. of the 1998 International Conference on Application of Concurrency to System Design, 1998, pp. 41-51.

25. Power J., Tourlas K. Abstraction in Reasoning about Higraph-Based Systems. Lecture Notes in Computer Science, vol. 2620, 2003, pp. 392-408.

26. Basu A., Blanning R. Graphs, Hypergraphs, and Metagraphs. In Metagraphs and Their Applications. Integrated Series in Information Systems, vol. 15, 2007, pp. 1-12.

27. Mikov A.I. Performance evaluation: textbook, Kuban State University, Krasnodar, 2013, 99 p.

28. Filatov D.Ju., Lyadova L.N. Development of P-graph based visual model editor. In Proc. of the VIII International Scientific and Technical Conference on Information Systems Development Technologies, 2017, pp. 113-118 (in Russian) / Филатов. Д.Ю., Лядова Л.Н. Разработка редактора визуальных моделей, основанного на P-графах. Материалы VIII Международной научно-технической конференции «Технологии разработки информационных систем», 2017, стр. 113-118.

29. Parra F. Dean T. Survey of Graph Rewriting applied to Model Transformations. In Proc. of the 2nd International Conference on Model-Driven Engineering and Software Development, 2014, pp. 431-441.

30. Ehrig H., Ehrig K., Prange U., Taentzer G. Fundamentals of Algebraic Graph Transformation, Springer, 2006, 388 p.

31. AGG. The Homebase. A brief Description of AGG. Available at: https://www.user.tu-berlin.de//o.runge/agg/agg-docu.html, accessed 12.03.2020.

32. Eclipse Modeling Project. Eclipse VIATRA. Available at: https://www.eclipse.org/viatra/, accessed 12.03.2020.

33. Seriy A.P., Lyadova L.N. An Approach to Graph Matching in the Component of Model Transformations. In Proc. of the 7th Spring/Summer Young Researchers’ Colloquium on Software Engineering, 2013, pp. 41-46.

34. Sukhov A., Lyadova L.N. Horizontal Transformations of Visual Models in MetaLanguage System. In Proc. of the 7th Spring/Summer Young Researchers’ Colloquium on Software Engineering, 2013, pp. 31-40.


Review

For citations:


SUVOROV N.M., LYADOVA L.N. HP-Graph as a Basis of a DSM Platform Visual Model Editor. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(2):149-160. https://doi.org/10.15514/ISPRAS-2020-32(2)-12



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)