Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Using Big Data in International Business

https://doi.org/10.15514/ISPRAS-2020-32(4)-1

Abstract

The term BigData causes a lot of controversy among specialists, many of whom note that it only means the volumes of accumulated data, but do not forget about the technical side, the considered direction includes technologies for computing, storage, and also service services. Big Data is a term that denotes technologies for processing large unstructured and structured data to obtain results that are understandable and useful to humans. In business, Big Data is used to support the adoption of transformations by a manager (for example, based on an analysis of financial indicators from an accounting system) or a marketer (for example, based on an analysis of customer preferences from social networks). By themselves, Big Data algorithms appeared with the introduction of the first mainframes (high–performance servers), which have the necessary resources for operational data processing and are suitable for computer calculations and subsequent data analysis. As the number of embedded computers rises due to falling processor prices and the ubiquity of the Internet, so too is the amount of data transferred and then processed (often in real time). Therefore, we can assume that the importance of cloud computing and the Internet of Things will increase in the coming years. It should be noted that Big Data processing technology boils down to three main areas that solve three types of tasks: (1) translation and storage of incoming information in gigabytes, terabytes, petabyte, etc. for their processing, storage and application in practice; (2) structuring of disparate content, namely: photos, texts, audio, video and all other types of data; (3) analysis of Big Data and the implementation of different methods of processing unstructured data, the creation of various analytical reports. In essence, the application of Big Data implies all areas of work with large volumes of the most disparate data, constantly updated and scattered across various sources. The goal is quite simple – the most efficient work, the introduction of new products and increased competitiveness. In this article, we will consider the features of solving the problems of using Big Data in international business.

About the Author

Konstantin Anatolievich ALEKSEEV
EPAM Systems
Poland
Software Engineer


References

1. Lynch C. Big data: how do your data grow? Nature, vol. 455, № 7209, 2008, pp. 28-29.

2. Артемов C. Big Data: новые возможности для растущего бизнеса. URL: https://www.itweek.ru/upload/iblock/d05/jet-big-data.pdf, 12.07.2020 / Artemov S. Big Data: New Opportunities for a Growing Business (in Russian).

3. Головина Т.А., Авдеева И.Л., Парахина Л.В. Использование цифровых и мобильных инноваций для развития предприятий регионального интернет-рынка. Вопросы современной экономики, no. 3, 2014 г. / Golovina T.A., Avdeeva I.L., Parakhina L.V. Use of digital and mobile innovations for development of the enterprises regional the market of Internet. Contemporary economic issues, no. 3, 2014 (in Russian).

4. Корытникова Н.В. Online Big Data как источник аналитической информации в online-исследованиях. Социологические исследования, no. 8, 2015 г., стр. 14-24 / Кorytnikova N.V. Online Big Data as a source of analytic information in online research. Sotsiologicheskie issledovaniya [Sociological Studies], no. 8, 2015, pp. 14-24 (in Russian).

5. Измалкова С.А., Головина Т.А. Использование глобальных технологий «Big Data» в управлении экономическими системами. Известия Тульского государственного университета. Экономические и юридические науки, вып. 4-1, 2015 г., стр. 151-158 / Izmalkova S.A., Golovina T.A. The use of global technologies «Big Data» in the management of economic systems. Bulletin of the Tula State University. Economic and legal sciences, issue 4-1, 2015, pp. 151-158 (in Russian).

6. Марков Н.Г., Сонькин Д.М., Фадеев А.С., Шемяков А.О., Газизов Т.Т. Интеллектуальные навигационно-телекоммуникационные системы управления подвижными объектами с применением технологии облачных вычислений. Горячая Линия – Телеком, 2014 г., 158 стр. / Markov N.G., Sonkin D.M., Fadeev A.S., Shemyakov A.O., Gazizov T.T. Intelligent navigation and telecommunication systems for controlling mobile objects using cloud computing technology. Hot line – Telecom, 2014, 158 p. (in Russian).

7. Mayer-Schoenberger V., Cukier K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Eamon Dolan/Mariner Books, 2014, 272 p.

8. Савельев А.И. Проблемы применения законодательства о персо-нальных данных в эпоху «Больших данных» (Big Data). Право. Журнал Высшей школы экономики, no. 1, 2015 г., стр. 43–66 / Savelyev A.I. The Issues of Implementing Legislation on Personal Data in the Era of Big Data. Pravo. Zhurnal Vysshey shkoly ekonomiki, no.1, 2015, pp. 43–66 (in Russian).

9. Толстова Ю. Н. Социология и компьютерные технологии. Социологические исследования, no. 8, 2015 г., стр. 3-13 / Tolstova Yu.N. Sociology and computer technologies. Sotsiologicheskie issledovaniya [Sociological Studies], no. 8, pp. 3-13 (in Russian).

10. Соколянский В.В., Пашков Б.С. Технологии Big Data и их инсталляции в экономические исследования. Вопросы экономических наук, no. 4, 2015 г., стр. 169-171 / Sokolyansky V.V., Pashkov B.S. Big Data technologies and their installations in economic research. Issues of economic sciences, no. 4, 2015, pp. 169-171

11. Черняк Л. Большие Данные – новая теория и практика. Открытые системы. СУБД, вып. 10, 2011 / Chernyak L. Big Data: New Theory and Practice. Open systems. DBMS, issue 10, 2011 (in Russian).

12. Japek L., Crater F., Berg M., et al. AAPOR Report: Big Data. American Association of Opinion Researchers. URL: https://www.aapor.org/Education-Resources/Reports/Big-Data.aspx, 12.07.2020

13. Namiot D., Sneps-Sneppe M. On M2M Software Platforms. International Journal of Open Information Technologies, vol. 2, no. 8, 2014, pp. 29-33.

14. Namiot D., Sneps-Sneppe M. On IoT Programming. International Journal of Open Information Technologies, vol. 2, no. 10, pp. 25-28.

15. Cugola G., Margara A. Processing flows of information: From data stream to complex event processing. ACM Computing Surveys (CSUR), vol. 44, issue 3, 2012, article no. 15.


Review

For citations:


ALEKSEEV K.A. Using Big Data in International Business. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(4):7-20. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(4)-1



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)