Анализ загруженности трафика на главных улицах электронного города c применением индекса перегрузки и искусственной нейронной сети (на примере города Хамедан)
https://doi.org/10.15514/ISPRAS-2020-32(3)-12
Аннотация
Заторы на дорогах являются серьезной проблемой для электронных городов, и для решения этой проблемы необходимо анализировать пробки в городской дорожной сети. В этой статье изучается показатель эффективности транспортных средств для оценки условий дорожных сетей. В нашем исследовании исследуется плотность трафика главной дорожной сети города Хамедан на основе данных о скорости, собранных системой управления движением Хамедана. На основе этого анализа были определены индекс трафика и пиковые часы трафика. Кроме того, с использованием нейронной сети и генетического алгоритма была определена предсказуемая связь между скоростью транспортных средств и загруженностью трафика. В работе использовались данные Центра управления движением Хамедана о скорости движения транспортных средств в густонаселенных районах.
Об авторах
Мехди ШИРМОХАММАДИИран
Аспирант в области компьютерных программных систем в Аракском филиале Исламского университета Азада, преподаватель на факультете компьютерной инженерии Хамеданского филиала Исламского университета Азад
Мансур ЭСМАИЛПУР
Иран
Доцент кафедры вычислительной техники и разработки программного обеспечения отделения Хамеданского филиала Исламского университета Азад
Список литературы
1. Chourabi H., Nam T., Walker S., Gil-Garcia J.R., Mellouli S., Nahon K., Pardo T.A., Scholl J. Understanding smart cities: An integrative framework. In Proc. of the 45th Hawaii International Conference on System Science, 2012, pp.2289-2297.
2. Rashid B., Rehmani M.H. Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, vol. 60, 2016, pp. 192 –219.
3. Sahoo J., Cherkaoui S., Hafid A. A novel vehicular sensing framework for smart cities. In Proc. of the 39th Annual IEEE Conference on Local Computer Networks, 2014, pp. 490–493.
4. Al-Turjman F., Hassanein H., Ibnkahla M. Efficient deployment of wireless sensor networks targeting environment monitoring applications. Computer Communications, vol. 36, issue 2, 2013, pp. 135–148.
5. Al-Turjman F. Cognitive-node architecture and a deployment strategy for the future sensor networks. Mobile Networks and Applications, vol. 24, issue 5, pp. 1663-1681.
6. Geisler S., Quix C., Schiffer S., Jarke M. An evaluation framework for traffic information systems based on data streams. Transportation Research, Part C: Emerging Technologies, vol. 23, 2012, pp. 29-55
7. Anthopoulos L., Fitsilis P. From Online to Ubiquitous Cities: The Technical Transformation of Virtual Communities. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 26, 2009, pp. 360-372.
8. Shwayri S.T. A model Korean ubiquitous eco-city? The politics of making Songdo. Journal of Urban Technology, vol. 20, issue 1, 2013, pp. 39-55.
9. Sanchez L. et al. SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, vol. 61, 2014, pp. 217-238.
10. Bakici T., Almirall E., Wareham J. A smart city initiative: the case of Barcelona. Journal of the Knowledge, vol. 4, issue 2, 2013, pp. 135-148.
11. Jia S., Peng H., Liu S. Urban traffic state estimation considering resident travel characteristics and road network capacity. Journal of Transportation Systems Engineering and Information Technology, vol. 11, issue 5, pp. 81-85.
12. Zhu F. Research on index system of urban traffic congestion measures. Master Degree thesis. Nanjing, Jiangsu, China, Southeast University. 2006, pp. 4-15 (in Chinese).
13. Quiroga C.A. Performance measures and data requirements for congestion management systems. Transportation Research, Part C: Emerging Technologies, vol. 8, issue 1, 2000, pp. 287-306.
14. Robert R., Theodore F. Contrasting the Use of Time-Based and Distance-Based Measures to Quantify Traffic Congestion Levels: An Analysis of New Jersey Counties. In Proc. of the 81th Annual Meetings of the Transportation Research Board, 2002.
15. Bertini R.L., Leal M., Lovell D.J. Generating Performance Measures from Portland’s Archived Advanced Traffic Management System Data. In Proc. of the 81th Annual Meetings of the Transportation Research Board, 2002.
16. Bertini R.L., Tantiyanugulchai S. Transit buses as traffic probes: Use of geolocation data for empirical evaluation. Journal of the Transportation Research Board, vol. 1870, issue 1, 2004, pp. 35-45.
17. Coifman B., Kim S.B. Measuring freeway traffic conditions with transit vehicles. Journal of the Transportation Research Board, vol. 2121, issue 1, 2009, pp. 90-101.
18. Houli D. et al. Network-wide traffic state observation and analysis method using pseudo-color map. Journal of Transportation Systems Engineering and Information Technology, vol. 9, issue 4, 2009, pp. 46-52.
19. Turochy R.E., Smith B.L. Measuring variability in traffic conditions by using archived traffic data. Journal of the Transportation Research Board, vol. 1804, issue 1, 2002, pp. 168-172.
20. Wang Y., Papageorgiou M., Messmer A. Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing. Transportation Research, Part A: Policy and Practicem, vol. 42, issue 10, 2008, pp. 1340-1358.
21. Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transportation Research, Part C: Emerging Technologies, vol. 13, issue 3, 2005, pp. 211-234.
22. Yin H., Wong S., Xu J., Wong C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transportation Research, Part C: Emerging Technologies, vol. 10, issue 2, 2002, pp. 85-98.
23. Lv Y., Duan Y., Kang W., Li Z., Wang F.Y. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, vol. 16, issue 2, 2015, pp. 865-873.
24. Smith B.L., Demetsky M.J. Short-term traffic flow prediction models-a comparison of neural network and nonparametric regression approaches. In Proc. of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, 1994, pp. 1706-1709.
25. Chen D. Research on traffic flow prediction in the big data environment based on the improved RBF neural network. IEEE Transactions on Industrial Informatics, vol. 13, issue 4, 2017, pp. 2000-2008.
26. Ma X., Tao Z., Wang Y., Yu H., Wang Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research, Part C: Emerging Technologies, vol. 54, 2015, pp. 187-197.
27. Abdulhai B., Porwa H., Recker W. Short-term traffic flow prediction using neuro-genetic algorithms. Journal-Intelligent Transportation Systems Journal, vol. 7, issue 1, 2002, pp. 3-41.
28. Massobrio R., Nesmachnow S., Tchernykh A. et al. Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Programming and Computer Software, vol. 44, issue 3, 2018, pp. 181–189.
29. Alarcon-Aquino V., Barria J.A. Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 36, issue 2, 2006, pp. 208-220.
30. Chen Y., Yang B., Meng Q. Small-time scale network traffic prediction based on flexible neural tree. Applied Soft Computing, vol. 12, issue 1, 2012, pp. 274-279.
31. Fabbiani E., Nesmachnow S., Toutouh J. et al. Analysis of Mobility Patterns for Public Transportation and Bus Stops Relocation. Programming and Computer Software, vol. 44, issue 6, 2018, pp. 508-525.
32. Yang H. J., Hu X. Wavelet neural network with improved genetic algorithm for traffic flow time series prediction. Optik, vol. 127, issue 19, 2016, pp. 8103-8110.
33. Lu B., Huang M. Traffic flow prediction based on wavelet analysis, genetic algorithm and artificial neural network. In Proc. of the 2009 International Conference on Information Engineering and Computer Science, 2009, pp. 1-4.
34. Yi J., Prybutok V.R. A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, vol. 92, issue 3, 1996, pp. 349-357.
35. Grander M.W., Dorling S.R. Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, vol, 33, issue 5, 1999, pp. 709-719.
36. Mobley B.A. et al. Predictions of coronary artery stenosis by artificial neural network. Artificial Intelligence in Medicine, vol. 18, issue 3, 2000, pp. 187-203.
37. Boone J.M. X-ray spectral reconstruction from attenuation data using neural networks. Medical Physics, vol. 17, issue 4, 1990, pp. 647-654.
38. IBM Traffic Prediction Tool – IBM Research. Available at: https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1248
39. Как работают Яндекс.Пробки / How Yandex.Traffic Works, available at: https://yandex.ru/company/technologies/yaprobki/ (in Russian).
40. Tang T.Q., Yi Z.Y., Zhang J., Wang T., Leng J.Q. A speed guidance strategy for multiple signalized intersections based on car-following model. Physica A: Statistical Mechanics and its Applications, vol. 496, 2018, pp. 399–409.
41. Moretti F., Pizzuti S., Panzieri S., Annunziato M. Urban traffic flow predicting through statistical and neural network bagging ensemble hybrid modelling. NeuroComputing, vol. 167, 2015, pp. 3–7.
42. Hou Q., Leng J., Maa G., Liu W., Cheng Y. An adaptive hybrid model for short-term urban traffic flow prediction. Physica A: Statistical Mechanics and its Applications, vol. 527, 2019, article 121065.
Рецензия
Для цитирования:
ШИРМОХАММАДИ М., ЭСМАИЛПУР М. Анализ загруженности трафика на главных улицах электронного города c применением индекса перегрузки и искусственной нейронной сети (на примере города Хамедан). Труды Института системного программирования РАН. 2020;32(3):131-146. https://doi.org/10.15514/ISPRAS-2020-32(3)-12
For citation:
SHIRMOHAMMADI M., ESMAEILPOUR M. Analysis of Traffic Congestion in Main Streets of Electronic city using Traffic Congestion Index and Artificial Neural Network (Case Study: Hamedan City). Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(3):131-146. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(3)-12