Эффективные методы и алгоритмы синтеза видео 360 градусов на основе кубической проекции виртуального окружения
https://doi.org/10.15514/ISPRAS-2020-32(4)-5
Аннотация
В статье рассматривается задача создания и воспроизведения панорамного видео с обзором 360 градусов, обеспечивающего погружение исследователя в виртуальную среду вне родительской системы виртуального окружения (СВО). Для решения этой задачи предлагается расширение метода проекции в кубическую карту, при котором разрешение карты определяется с учетом угла обзора камеры зрителя и разрешения экрана (Adequate Cubemap Projection, ACMP). В работе исследовано влияние ориентации камеры зрителя внутри куба на отношение «пиксел карты/пиксел экрана», определяющее качество визуализации панорамы, и предложен метод вычисления разрешения кубической карты для качественной визуализации панорамы при всех возможных ориентациях камеры. В работе рассмотрены эффективные метод и алгоритм создания ACMP-видео на GPU с помощью технологии рендеринга в текстуру, которые позволяют синтезировать панорамы c постоянной ориентацией или с привязкой к направлению взгляда наблюдателя. Также в исследовании предложены эффективные методы и алгоритмы воспроизведения ACMP-видео, основанные на визуализации видимых граней куба и адаптивной буферизации кадров. Полученные методы и алгоритмы реализованы в программном комплексе синтеза ACMP-видео (С++, OpenGL, FFmpeg), который включает в себя модуль захвата кадров (встраиваемый в СВО) и плеер. Разработанное решение было протестировано в системе «Виртуальная Земля» по обучению наблюдению объектов земной поверхности с орбиты Международной космической станции (МКС). С помощью модуля захвата было создано ACMP-видео полета вдоль участка подспутниковой трассы МКС. При воспроизведении данного видео обучаемый летит по орбите над виртуальной 3D поверхностью Земли и может исследовать ее, поворачивая камеру. Апробация комплекса подтвердила адекватность разработанных методов и алгоритмов поставленной задаче. Полученные научные и практические результаты позволяют расширить возможности и сферу применения СВО, систем научной визуализации, видеотренажеров и виртуальных лабораторий, эффективно обмениваться опытом между исследователями и др.
Ключевые слова
Об авторах
Петр Юрьевич ТИМОХИНРоссия
старший научный сотрудник
Михаил Васильевич МИХАЙЛЮК
Россия
Доктор физико-математических наук, профессор, главный научный сотрудник
Евгений Михайлович ВОЖЕГОВ
Россия
ведущий программист
Список литературы
1. Михайлюк М.В., Мальцев А.В., Тимохин П.Ю., Страшнов Е.В., Крючков Б.И., Усов В.М. Системы виртуального окружения для прототипирования на моделирующих стендах использования космических роботов в пилотируемых полетах. Пилотируемые полеты в космос, том 35, № 2, 2020 г., стр. 61-75. / Mikhaylyuk M.V., Maltsev A.V., Timokhin P.Yu., Strashnov E.V., Kryuchkov B.I., Usov V.M. Virtual Environment Systems for Simulating Robots in Manned Space Fligts. Pilotiruemye polety v kosmos. Manned Spaceflight, vol. 35, № 2, 2020, pp. 61-75 (in Russian).
2. Барладян Б.Х., Шапиро Л.З., Маллачиев К.A., Хорошилов А.В., Солоделов Ю.А., Волобой А.Г., Галактионов В.А., Ковернинский И.В. Система визуализации для авиационной ОС реального времени JetOS. Труды ИСП РАН, том 32, вып. 1, 2020 г., стр. 57-70. DOI: 10.15514/ISPRAS-2020-32(1)-3 / Barladian B.Kh., Shapiro L.Z., Mallachiev K.A., Khoroshilov A.V., Solodelov Y.A., Voloboy A.G., Galaktionov V.A., Koverninskiy I.V. Rendering System for the Aircraft Real-Time OS JetOS. Trudy ISP RAN/Proc. ISP RAS, vol. 32, issue 1, 2020, pp. 57-70 (in Russian).
3. Михайлюк М.В., Торгашев М.А. Система визуализации “GLView” для имитационно-тренажерных комплексов и систем виртуального окружения. Труды 25-й Международной научной конференции GraphiCon, 2015, стр. 96-101 / Mikhaylyuk M.V., Torgashev M.A. The System of Visualization “GLView” for Simulators and Virtual Environment Systems. In Proc. of the 25th International Conference on Computer Graphics and Vision (GraphiCon 2015), 2015, pp. 96-101 (in Russian).
4. Страшнов Е.В., Мироненко И.Н., Финагин Л.А. Моделирование режимов полета квадрокоптера в системах виртуального окружения. Информационные технологии и вычислительные системы, № 1, 2020 г., стр. 85-94 / Strashnov E.V., Mironenko I.N., Finagin L.A. Simulation of quadcopter flight modes in virtual environment systems. Informacionnye tekhnologii i vichslitel’nye sistemy (Journal of Information Technologies and Computing Systems), № 1, 2020. pp. 85-94 (in Russian).
5. Тимохин П.Ю., Михайлюк М.В., Вожегов Е.М., Пантелей К.Д. Технология и методы отложенного синтеза 4K-стереороликов для сложных динамических виртуальных сцен. Труды ИСП РАН, том 31, вып. 4, 2019 г., стр. 61-72. DOI: 10.15514/ISPRAS-2019-31(4)-4. / Timokhin P.Yu., Mikhaylyuk M.V., Vozhegov E.M., Panteley K.D. Technology and methods for deferred synthesis of 4K stereo clips for complex dynamic virtual scenes. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 61-72 (in Russian).
6. El-Ganainy T., Hefeeda M. Streaming Virtual Reality Content. arXiv:1612.08350, 2016..
7. Ray B., Jung J., Larabi M.-C. A Low-Complexity Video Encoder for Equirectangular Projected 360 Video Content. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018, pp. 1723-1727
8. Li J., Wen Z., Li S., Zhao Y., Guo B., Wen J. Novel tile segmentation scheme for omnidirectional video. In Proc. of the IEEE International Conference on Image Processing (ICIP), 2016, pp. 370-374.
9. K.-T. Ng, S.-C. Chan, H.-Y. Shum. Data Compression and Transmission Aspects of Panoramic Videos. IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, № 1, 2005, pp. 82-95
10. Brown C. Bringing pixels front and center in VR video. Google AR and VR, March 14, 2017. Available at: https://www.blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/, accessed 18.03.2020.
11. Kuzyakov E., Liu S., Pio D. Optimizing 360 Video for Oculus. Facebook F8 developers conference, 2016. Available at: https://developers.facebook.com/videos/f8-2016/optimizing-360-video-for-oculus/, accessed 18.03.2020.
12. Chen Z., Wang X., Zhou Y., Zou L., Jiang J. Content-Aware Cubemap Projection for Panoramic Image via Deep Q-Learning. Lecture Notes in Computer Science, vol. 11962, 2020, pp. 304-315.
13. Fu C.-W., Wan L., Wong T.-T., Leung C.-S. The Rhombic Dodecahedron Map: An Efficient Scheme for Encoding Panoramic Video. IEEE Transactions on Multimedia, vol. 11, № 4, 2009, pp. 634-644.
14. Kuzyakov E., Pio D. Next-generation video encoding techniques for 360 video and VR. Available at: https://code.facebook.com/posts/1126354007399553/next-generation-video-encodin, accessed 18.03.2020.
15. Segal M., Akeley K. The OpenGL Graphics System: A Specification. Version 4.6, Core Profile. The Khronos Group Inc., 2006-2018. Available at: https://www.khronos.org/registry/OpenGL/specs/gl/ glspec46.core.pdf, accessed 18.03.2020.
16. FFmpeg. A complete, cross-platform solution to record, convert and stream audio and video. Available at: https://ffmpeg.org/, accessed 18.03.2020.
17. Timokhin P.Y., Mikhaylyuk M.V. Effective technology to visualize virtual environment using 360-degree video based on cubemap projection. In Proc. of International Conference on Computing for Physics and Technology (CPT2020), 2020.
18. Тимохин П.Ю. Моделирование видимого движения Земли вдоль участков суточной трассы МКС в космических видеотренажерах. Труды НИИСИ РАН, том. 9, № 6, 2019 г., стр. 111-117. DOI: 10.25682/NIISI.2019.6.0014 / Timokhin P.Yu. Simulation of visible Earth motion along daily tracks of ISS orbit in space simulators. Trudy NIISI RAN/Proc. of SRISA RAS, vol. 9, № 6, 2019, pp. 111-117 (in Russian).
Рецензия
Для цитирования:
ТИМОХИН П.Ю., МИХАЙЛЮК М.В., ВОЖЕГОВ Е.М. Эффективные методы и алгоритмы синтеза видео 360 градусов на основе кубической проекции виртуального окружения. Труды Института системного программирования РАН. 2020;32(4):73-88. https://doi.org/10.15514/ISPRAS-2020-32(4)-5
For citation:
TIMOKHIN P.Yu., MIKHAYLYUK M.V., VOZHEGOV E.M. Efficient methods and algorithms to synthesize 360-degree video based on cubemap projection of virtual environment. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(4):73-88. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(4)-5