Models of processes accompanying crystallization of supercooled droplets
https://doi.org/10.15514/ISPRAS-2020-32(4)-17
Abstract
The creation of high-performance methods for calculating the interaction of aerosol flows with a solid is of great practical interest in the problems of preventing surfaces from icing, predicting climatic phenomena, metallurgy and astronomical processes. One of the methods of icing diminishing is the use of hydrophobic coatings, which, as a rule, work effectively with insignificant ratios of inertial forces to the forces of surface tension of a liquid near the relief of the streamlined body. However, when the surface density of the kinetic energy of the supercooled drop exceeds a certain critical value, the ice-phobic properties lead to negative effects due to the penetration of the supercooled liquid into the depressions and solidification in them. A method is developed for calculating the interaction of supercooled drops with a relief solids, which have various degrees of hydrophobicity. Basic criteria for corresponding the results of molecular modeling to physical reality are formulated. The need to develop algorithms for numerical simulation is due to the fact that significant computational resources are required even for calculating small droplets which are several tens of nanometers in size. Numerical estimates of the parameters of the relief of a hydrophobic surface of a solid are obtained depending on the dimensionless dynamic parameters of the impact of supercooled drops. Moving interface – the crystallization front in supercooled metastable liquid droplets has specific properties. On the basis of previously carried out experimental studies, theoretical estimates, analytical and experimental data of other researchers, in present work mathematical models of the crystallization features of a supercooled metastable liquid are developed. Estimates of the parameters of the processes accompanying the movement of the crystallization front in supercooled metastable water droplets are obtained with application to the problem of icing of aircraft.
Keywords
About the Authors
Ivan Alekseevich AMELYUSHKINRussian Federation
Candidate of Physical and Mathematical Sciences, Senior Researcher at TsAGI, Lecturer at the Department of Molecular Processes and Extreme States of Matter at the Physics Faculty of Moscow State University
Maksim Aleksandrovich KUDROV
Russian Federation
Candidate of Technical Sciences, Associate Professor, Leading Researcher, Head of the Laboratory of Information Technologies and Applied Mathematics
Alexey Olegovich MOROZOV
Russian Federation
Junior Researcher
Albert Leonidovich STASENKO
Russian Federation
Doctor of Technical Sciences, Professor of the Moscow Institute of Physics and Technology, Chief Researcher at TsAGI
Andrey Sergeevich SHCHEGLOV
Russian Federation
engineer at TsAGI, post-graduate student at MIPT
References
1. Amelyushkin I.A., Stasenko A.L. Interaction of supercooled droplets and nonspherical ice crystals with a solid body in a mixed cloud. CEAS Aeronautics Journal, vol. 9, no. 4, 2018, pp. 711–720.
2. Amelyushkin I.A., Stasenko A.L. Simulation of gas-dispersed flow particles’ interaction with a solid body. Journal of Physics: Conference Series, vol. 1560, 2020, article no, (012064).
3. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, vol. 28, issue 2, 1958, pp. 258–267.
4. Li S., Lowengrub J.S., Leo P.H., Cristini V. Nonlinear stability analysis of self-similar crystal growth: control of the Mullins-Sekerka instability. Journal of Crystal Growth, vol. 277, issues 1–4, 2005, pp. 578-592.
5. Аверков В.А., Желтов М.А., Скворцов В.В., Шибков А.А. Морфологическая неустойчивость межфазной границы лед-вода. Труды Второго международного симпозиума «Плавление и кристаллизация металлов и оксидов, 2009, стр. 179-182 / Averkov V.A., Zheltov M.A., Skvortsov V.V., Shibkov A.A. Morphological instability of the ice-water interface. In Proc. of the Second International Meeting on Melting and Crystallization of Metals and Oxides, 2009, pp. 179-182 (in Russian).
6. Amelyushkin I.A. Mathematical models of two-phase flows’ interaction with a solid body. Journal of Journal of Physics: Conference Series, vol. 1129, 2018, article no. 012003.
7. Amelyushkin I.A., Stasenko A.L., Zhbanov V.A. Experimental investigation, mathematical and numerical simulation of aircraft icing phenomena. In Proc. from the 31th Congress of the International Council of the Aeronautical Sciences, 2018, paper no. ICAS2018_0741.
8. Aboud D.G.K., Kietzig A.M. On the oblique impact dynamics of drops on superhydrophobic surfaces. Part II: Restitution coefficient and contact time. Langmuir, vol. 34, issue 2018, pp. 9889–9896.
9. Jung S., Tiwari M.K., Doan N.V., Poulikakos D. Mechanism of supercooled droplet freezing on surfaces. Nature Communications, vol. 3, 2012, article no. 615.
10. Хргиан А.Х. Физика атмосферы. Физматлит. 1958 г., 476 стр. / Khrgian A.Kh. Physics of the atmosphere. Fizmatlit, 1958, 476 p. (in Russian).
11. Скрипов В.П. Метастабильная жидкость. Наука. 1972 г., 312 стр. / Skripov V.P. Metastable liquids. Nauka, 1972, 312 p. (in Russian).
12. Вигасин А.А., Юхневич Г.В. Использование данных спектроскопии в структурных моделях жидкой воды. Теплофизические свойства веществ и материалов, вып. 21, 1984 г., стр.13–31 / Vigasin A.A., Yukhnevich G.V. Using spectroscopic data in structural models of liquid water. Thermophysical properties of substances and materials, issue. 21, 1984, pp. 13–31.
13. Радченко И.В. Молекулярная физика. Наука, 1965 г., 480 стр. / Radchenko I.V. Molecular physics. Nauka, 1965, 480 p.
14. Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории (утверждено Постановлением 28-й сессии Совета по авиации и использованию воздушного пространства от 11.12.2008). Приложение C. URL: https://legalacts.ru/doc/aviatsionnye-pravila-chast-25-normy-letnoi-godnosti-samoletov-transportnoi, 01.09.2020 / Aviation regulations. Part 25. Standards of airworthiness of aircraft of the transport category (approved by the Resolution of the 28th session of the Council for Aviation and Airspace Use, dated 11.12.2008) Appendix C (in Russian).
15. Gimelshein N., Lyons R., Reuster J., Gimelshein S. Numerical prediction of UV radiation from two-phase plumes at high altitudes. AIAA journal, vol. 46, no. 7, 2008, pp. 1764–1772.
16. Татарченко В.А. Инфракрасное характеристическое излучение фазовых переходов первого рода и его связь с оптикой атмосферы. Оптика атмосферы и океана, том 23, no. 3, 2010 г., стр. 169-175 / Tatarchenko V.A. Infrared characteristic radiation of first-order phase transitions and its relationship with atmospheric optics. Optics of Atmosphere and Ocean, vol. 23, no. 3, 2010, pp. 169-175 (in Russian).
17. Шавлов А.В. Электрический потенциал на фронте кристаллизации воды и растворов. Роль протонов и ориентационных дефектов. Журнал физической химии, том 79, no. 9, 2005 г., стр. 1626–1630 / Shavlov A.V. Electric Potential at the Front of Crystallization of Water and Solutions: The Role of Protons and Orientational Defects. Russian Journal of Physical Chemistry A, vol. 79, no. 9, 2005, pp. 1438-1442.
18. Stefan J. Über die Theory der Eisbildung, insbesondere über die Eisbildung in Polarmeere. Annalen der Physik, vol. 278, issue 2, pp.269-286 (in German).
Review
For citations:
AMELYUSHKIN I.A., KUDROV M.A., MOROZOV A.O., STASENKO A.L., SHCHEGLOV A.S. Models of processes accompanying crystallization of supercooled droplets. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(4):235-244. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(4)-17