Simulation of Infrasound Pistonphone
https://doi.org/10.15514/ISPRAS-2020-32(5)-14
Abstract
There are presented the results of numerical simulation of an applied acoustic problem – modeling of gas processes occurring in the measuring chamber of the infrasound pistonphone 3202 at different frequencies of piston oscillation (0.1 – 1000 Hz) and characterized by extremely small Mach numbers
(9.1·10-7÷9.1·10-3). The simulation was performed using quasi-gas-dynamic (QGD) and quasi-hydrodynamic (QHD) equations of a viscous compressible heat-conducting gas with the use of a time-explicit difference scheme, all spatial derivatives was approximated by central differences. It is shown that QGD and QHD models can be used for a simulation of applied acoustics and, in particular, to the simulation of infrasonic pistonphone: the stability limits of the QGD and QHD algorithms in this problem were determined, the dependence of sound pressure on the tuning parameter α is investigated and it is shown that this dependence is quite small. The spectra of sound pressure at the control point calculated by QGD and QHD are given, their dependence on the tuning parameter α is shown, both models equally predict the value of the sound pressure amplitude at the fundamental frequency oscillations. At the end of the article, the sound pressure at the control point at the fundamental frequency oscillations obtained by using QGD and QHD is compared with the values calculated by using semi-empirical formula of sound pressure at closed volume for a case of small oscillations using the polytropic index obtained by Henry Gerber instead of the adiabatic coefficient.
Keywords
About the Author
Dmitrii Vital`evich GOLOVINRussian Federation
Researcher of acoustic laboratory
References
1. Merchant B. John. Hyperion 5113/A Infrasound Sensor Evaluation. Technical Report SAND2015-8097, Sandia National Lab., 2015, 43 p.
2. Slad George William, Merchant Bion J. Chaparral Model 60 Infrasound Sensor Evaluation. Technical Report SAND-2016-1902, Sandia National Lab., 2016, 42 p.
3. Merchant Bion J., McDowell Kyle D. MB3a Infrasound Sensor Evaluation. Technical Report SAND2014-20108, Sandia National Lab., 2014, 59 p.
4. Коньков А.В. О методе пистонфона. Сборник научных трудов ВНИИФТРИ, вып. 23 (33), 1975 г., стр. 5–11 / Konkov A.V. On the pistonphone method. Collection of scientific papers of VNIIFTRI, issue 23 (33), 1975, pp. 5–11 (in Russian).
5. Головин Д.В., Коньков А.В. Влияние внешних условий на звуковое давление в камере пистонфона в инфразвуковом диапазоне частот. Измерительная техника, №9, 2020 г., стр. 67-72 / Golovin D.V., Konkov A.V. The influence of external conditions on sound pressure in the pistonphone at the infrasound frequency range. Measuring technology, №9, 2020, pp. 67-72. (in Russian).
6. Zhang Fan, He Wen, He Longbiao, Rong Zuochao. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction. Journal of Sound and Vibration, vol. 358, 2015, pp. 324-333.
7. He Wen, He Longbiao, Zhang Fan, Rong Zuochao, and Jia Shushi. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies. Measurement Science and Technology, vol. 27, no.2, article no. 025018.
8. Gerber H. Acoustic Properties of Fluid‐Filled Chambers at Infrasonic Frequencies in the Absence of Convection. Journal of Acoustical Society of America, vol. 36, issue 8, 1964, pp. 1427–1434.
9. Guianvarc’h C., Durocher J.-N., Bruneau M., Bruneau A.-M. Acoustic transfer admittance of cylindrical cavities. Journal of Sound and Vibration, vol. 292, issues 3–5, 2006, pp. 595-603.
10. Jackett R., Avison J. Realizing the primary standard for sound pressure: The trouble with IEC 61094-2. In Proc. of the 44rd International Congress on Noise Control Engineering, 2015, 9 p.
11. Vincent P., Rodrigues D., Larsonnier F., Guianvarc'h C., Durand S. Acoustic transfer admittance of cylindrical cavities in infrasonic frequency range. Metrologia, vol. 56, no. 1, 2019, article no. 015003.
12. IEC 61094-2:2009 Electroacoustics - Measurement microphones - Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique. International Electrical Commission, Geneva, 2009
13. Елизарова Т.Г. Квазигазодинамические уравнения и методы расчета вязких течений. М., Научный Мир, 2007 г., 350 стр. / Elizarova T.G. Quasi-Gas Dynamic Equations. Springer Science & Business Media, 2009, 286 p.
14. Шеретов Ю.В. Динамика сплошных сред при пространственно-временнóм осреднении. М., Ижевск, НИЦ «Регулярная и хаотическая динамика», 2009 г., 400 стр. / Sheretov Y.V. Continuum dynamics under spatiotemporal averaging. M., Izhevsk, Scientific and Publishing Center «Regular and Chaotic Dynamics», 2009, 400 p. (in Russian).
Review
For citations:
GOLOVIN D.V. Simulation of Infrasound Pistonphone. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(5):181-198. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(5)-14