Verification of Compliance for Multilevel Models in Individual Trace Semantics
https://doi.org/10.15514/ISPRAS-2020-32(6)-2
Abstract
The paper considers the problem of verification of compliance between models representing the same system on different level of abstraction. The existing approaches are mostly based on refinement relation. But the models representing industrial systems are quite big and complex, while semantics gap between the level is quite big. As a result, the existing methods became too complex and labour intensive. The paper presents new verification techniques that targets to prove multimodel compliance in terms of individual trace semantics. The techniques assume that each model is verified, i.e. it is proved that starting from initial states of labelled transition system is not possible to reach unsafe states by using valid transitions. The first proposed technique allows to prove that the detailed model satisfies to requirements of the abstract model, i.e. reachable states of detailed model do not include states corresponding to unsafe states of the abstract model. The second proposed technique allows to prove that the detailed model satisfies to behaviour specification of the abstract model, i.e. all reachable transitions of the detailed model do not include transitions corresponding to invalid transitions of the abstract model. For each technique the correspondence relation is defined in terms of the models, i.e. the relations are formally defined and they can be used for analysis with interactive or automated provers. At the same time, there are some requirements to that relations that are expressed in terms of low level events that exist hypothetically only and can be analyzed theoretically only. As a result, the proposed techniques provides a reasonable approach to prove compliance between mulilevel models in more approachable way for industrial settings.
About the Author
Alexey Vladimirovich KHOROSHILOVRussian Federation
Ph.D. in Physics and Mathematics, Leading Researcher, Director of the Linux OS Verification Center at ISP RAS, Associate Professor of System Programming Departments at Moscow State University, the Higher School of Economics, and Moscow Institute of Physics and Technology
References
1. B. Alpern, F.B. Schneider. Defining liveness. Information Processing Letters, vol. 21, issue 4, 1985, pp. 181-185.
2. A. Khoroshilov. On formalization of operating systems behaviour verification. In Proc. of 11th International Conference on Computer Science and Information Technologies (CSIT-2017), 2017, pp. 168-172.
3. В.В. Кулямин, Н.В. Пакулин, О.Л. Петренко, А.А. Сортов, А.В. Хорошилов. Формализация требований на практике. Препринт no. 13, ИСП РАН, 2006 , 70 стр. / V.V. Kulyamin, N.V. Pakulin, O. L. Petrenko, A.A. Sortov, A.V. Khoroshilov. Formalization of requirements in practice. Preprint no. 13, ISP RAS, 2006, 70 pp. (in Russian).
4. J. He, C.A.R. Hoare, J.W. Sanders. Data refinement refined. Lecture Notes in Computer Science, vol. 213, 1986, pp. 187-196.
5. J.R. Abrial, D. Cansell, D. Méry. Refinement and reachability in Event-B. Lecture Notes in Computer Science, vol. 3455, 2005, pp. 222-241.
6. R.J.R. Back. Refinement of parallel and reactive programs. In M. Broy (ed). Program Design Calculi. Springer, 1993, pp. 73-92.
7. M. Butler. An approach to the design of distributed systems with B AMN. Lecture Notes in Computer Science, vol. 1212, 1997, pp. 223-241.
8. L. Aceto. Action Refinement in Process Algebras. Cambridge University Press, 1992, 283 p.
9. J. Derrick, E.A. Boiten. Non-atomic refinement in Z. Lecture Notes in Computer Science, vol. 1708, 1999, pp. 1477-1496.
10. G. Schellhorn. ASM refinement and generalizations of forward simulation in data refinement: A comparison. Theoretical Computer Sciences, vol. 336, issues 2-3, 2005, pp. 403–436.
11. П.Н. Девянин, В.В. Кулямин, А.Л. Оружейников, А.К. Петренко, А.В. Хорошилов, И.В. Щепетков. Cпособ верификации формальной автоматной модели поведения программной системы. Патент на изобретение №2682003, 2019 г. / P.N. Devyanin, V.V. Kulyamin, A.L. Oruzheinikov, A.K. Petrenko, A.V. Khoroshilov, I.V. Shchepetkov. A method for verifying a formal automaton model of a software system's behavior. Patent for invention No. 2682003, 2019 (in Russian).
12. П.Н. Девянин, Д.В. Ефремов, В.В. Кулямин, А.К. Петренко, А.В. Хорошилов, И.В. Щепетков. Моделирование и верификация политик безопасности управления доступом в операционных системах. М., Горячая линия – Телеком, 2019 г., 214 стр. / P.N. Devyanin, D.V. Efremov, V.V. Kulyamin, A.K. Petrenko, A.V. Khoroshilov, I.V. Shchepetkov. Modeling and verification of access control security policies in operating systems. M., Hotline – Telecom, 2019, 214 p. (in Russian).
13. П.Н. Девянин, В.В. Кулямин, А.К. Петренко, А.В. Хорошилов, И.В. Щепетков. Интеграция мандатного и ролевого управления доступом и мандатного контроля целостности в верифицированной иерархической модели безопасности операционной системы. Труды ИСП РАН, том 32, вып. 1, 2020 г., стр. 7-26. DOI: 10.15514/ISPRAS–2020–32(1)–1 / P.N. Devyanin, V.V. Kuliamin, A.K. Petrenko, A.V. Khoroshilov, I.V. Shchepetkov. Integrating RBAC, MIC, and MLS in Verified Hierarchical Security Model for Operating System. Programming and Computer Software, 2020, vol. 46, issue 7, 2020, pp. 443–453. DOI: 10.1134/S0361768820070026.
14. V. Kuliamin, A. Khoroshilov, D. Medvedev. Formal Modeling of Multi-Level Security and Integrity Control Implemented with SELinux. In Proc. of the 2019 International Conference on Actual Problems of Systems and Software Engineering (APSSE), 2019, pp. 131-136.
15. А.В. Хорошилов, И.В. Щепетков. ADV_SPM – Формальные модели политики безопасности на практике. Труды ИСП РАН, том 29, вып. 3, 2017 г., стр. 43-56 / A.V. Khoroshilov, I.V. Shchepetkov. ADV_SPM – Formal security policy models in practice. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 3, 2017. pp. 43-56 (in Russian). DOI: 10.15514/ISPRAS-2017-29(3)-4.
16. ГОСТ Р ИСО/МЭК 15408-1-2012 Информационная технология. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий. Часть 1. Введение и общая модель / ISO/IEC 15408-1:2012 Information technology - Security techniques - Evaluation criteria for IT security - Part 1: Introduction and general model.
17. ГОСТ Р ИСО/МЭК 15408-2-2013 Информационная технология. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий. Часть 2. Функциональные компоненты безопасности / ISO/IEC 15408-2:2013 Information technology - Security techniques - Evaluation criteria for IT security - Part 2: Security functional requirements.
18. ГОСТ Р ИСО/МЭК 15408-3-2013 Информационная технология. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий. Часть 3. Компоненты доверия к безопасности / ISO/IEC 15408-3:2013 Information technology - Security techniques - Evaluation criteria for IT security - Part 3: Security assurance requirements.
Review
For citations:
KHOROSHILOV A.V. Verification of Compliance for Multilevel Models in Individual Trace Semantics. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(6):19-30. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(6)-2