Architecture of Open Source Program for Numerical Modeling of Flows on Mountain Slopes
https://doi.org/10.15514/ISPRAS-2020-32(6)-14
Abstract
In this paper, we compare two approaches to describe the dynamics of flows on mountain slopes using the depth-averaged equations of continuum mechanics and using the complete, not depth-averaged, equations of continuum mechanics for three-dimensional modeling. Using these two approaches, a simulation of an experimental slush flow in the tank and the interaction of the flow with dam barrier protection was carried out. Numerical solutions are compared with experimental data. Also, both approaches are applied to the calculation of an avalanche in the 22nd avalanche cite of Mount Yukspor (Khibiny). Avalanche run-out distance and the shape of the avalanche deposits are compared with field data obtained from the measurement of a real avalanche. In the course of a numerical experiment, distributions of such quantities as flow velocity, depth, density, molecular and turbulent viscosity, values of the density of turbulent kinetic energy, dissipation of turbulent kinetic energy, and shear stress at the bottom of the flow were obtained. Using the obtained data a mathematical model is developed to describe the entrainment of the underlying material by the flow during slope erosion and the deposition of the flow material on the slope. To implement the obtained mathematical model, the architecture of the multiphaseEulerChangeFoam solver was developed, which implements a three-phase multi-velocity model with phase exchange between the material of the underlying surface and the material of the flow. The classic solver multiphaseEulerFoam from the OpenFOAM package is taken as a basis for the developed solver.
About the Author
Daria Igorevna ROMANOVARussian Federation
Junior researcher at the Laboratory of Computational Methods at the Faculty of Mechanics and Mathematics of Moscow State University and an intern-researcher at ISP RAS
References
1. М.Д. Докукин, С.С. Черноморец, Е.А. Савернюк, Э.В. Запорожченко, Р.А. Бобов, У.Р. Пирмамадов. Барсемская селевая катастрофа на Памире в 2015 году и ее аналоги на Центральном Кавказе. Геориск, том 13, no. 1, 2019 г., стр. 26-36, 2019 / M.D. Dokukin, S.S. Chernomorets, E.A. Savernyuk, E.V. Zaporozhchenko, R.A. Bobov, U.R. Pirmamadov. Barsem debris flow disaster in the Pamirs in 2015 and its analogues in the Central Caucasus, Georisk, vol. 13, no. 1, 2019, pp. 26-36 (in Russian).
2. С.С. Черноморец, Д.А. Петраков и др. Прорыв озера Башкара (Центральный Кавказ, Россия) 1 сентября 2017 года. Криосфера Земли, том. 22, no. 2, 2018 г., стр. 70-80 / S.S. Chernomorets, D.A. Petrakov et al. The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017. Kriosfera Zemli, vol. 22, no. 2, 2018, pp. 70-80 (in Russian).
3. M. Eglit. Some mathematical models of snow avalanches. In Advances in the Mechanics and the Flow of Granular Materials, vol. 2, Trans Tech Pubn, 1983, pp. 557-588.
4. M. Eglit, A. Yakubenko, and J. Zayko. A review of russian snow avalanche models–from analytical solutions to novel 3D models. Geosciences, vol. 10, no. 2, 2020, article no. 77.
5. O. Hungr. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, vol. 32, no. 4, 1995, pp. 610–623.
6. P. Sampl and M. Granig. Avalanche simulation with SAMOS-AT. In Proc. of the International Snow Science Workshop, 2009, pp. 519-523.
7. P. Sampl and T. Zwinger. Avalanche simulation with SAMOS. Annals of Glaciology, vol. 38, 2004, pp. 393-398.
8. V. Medina, M. Hurlimann, and A. Bateman. Application of flatmodel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, vol. 5, 2007, pp. 127-142.
9. M. Christen, J. Kowalski, and P. Bartelt. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, vol. 63, no. 1, 2010, pp. 1-14.
10. E.B. Pitman, C.C. Nichita, A. Patra, A. Bauer, M. Sheridan, and M. Bursik. Computing granular avalanches and landslides. Physics of Fluids, vol. 15, no. 12, 2003, pp. 3638-3646.
11. A.K. Patra, A.C. Bauer et al. Parallel adaptive numerical simulation of dry avalanches over natural terrain. Journal of Volcanology and Geothermal Research, vol. 139, no. 1, 2005, pp. 1-21.
12. M. Mergili, K. Schratz, A. Ostermann, and W. Fellin. Physically-based modelling of granular flows with Open Source GIS. Natural Hazards and Earth System Sciences, vol. 12, no. 1, 2012, pp. 187-200.
13. M. Mergili, J.-T. Fischer, J. Krenn, and S. P. Pudasaini. R.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, vol. 10, no. 2, 2017, pp. 553-569.
14. S. Hergarten and J. Robl. Modelling rapid mass movements using the shallow water equations in cartesian coordinates. Natural Hazards and Earth System Sciences, vol. 15, no. 3, 2015, pp. 671-685.
15. M. Rauter and Z. Tukovic. A finite area scheme for shallow granular flows on three-dimensional surfaces. Computers & Fluids, vol. 166, 2018, pp. 184-199.
16. M. Rauter, A. Kofler, A. Huber, and W. Fellin. FaSavageHutterFOAM 1.0: Depth-integrated simulation of dense snow avalanches on natural terrain with openfoam. Geoscientific Model Development, vol. 11, no. 7, 2018, pp. 2923-2939.
17. H. Orn Petursson, K. M. Hakonardottir, and A. Thoroddsen. Use of OpenFOAM and RAMMS Avalanche to simulate the interaction of avalanches and slush flows with dams. In Proc. of the International Symposium on Mitigative Measures against Snow Avalanches and Other Rapid Gravity Mass Flows, 2019, pp. 1-12.
18. Y. Yamaguchi, S. Takase, S. Moriguchi, K. Terada, K. Oda, and I. Kamiishi. Three-dimensional nonstructural finite element analysis of snow avalanche using non-newtonian fluid model. Transactions of the Japan Society for Computational Engineering and Science, vol. 2017, paper no. 20170011 (in Japanese).
19. K. Oda, S. Moriguchi, I. Kamiishi, A. Yashima, K. Sawada, and A. Sato. Simulation of a snow avalanche model test using computational fluid dynamics. Annals of Glaciology, vol. 52, no. 58, 2011, pp. 57-64.
20. Романова Д.И. Трёхмерное моделирование потоков жидкости Хершеля-Балкли на склоне в OpenFOAM. Труды ИСП РАН, том 29, вып. 1, 2017 г., стр. 85-100 / Romanova D.I. 3D flow modeling of Herschel-Bulkley fluid on the slope in OpenFOAM. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 1, 2017, pp. 85-100 (in Russian). DOI: 10.15514/ISPRAS-2017-29(1)-6.
21. С.С. Григорян, М.Э. Эглит, Ю.Л. Якимов. Новая математическая постановка задачи о движении лавины и решение этой задачи. Труды Высокогорного геофизического института, no 12, 1967 г., стр. 104-113 / S.S. Grigorian, M.E. Eglit, and Y.L. Iakimov. A new formulation and solution of the problem of snow avalanche motion. Trudy Vycokogornogo Geofizicheskogo Instituta, no. 12, 1967, pp. 104-113 (in Russian).
22. S.B. Savage and K. Hutter. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, vol. 199, 1989, pp. 177-215.
23. S.B. Savage and K. Hutter. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, vol. 86, no. 1, 1991, pp. 201-223.
24. R. Greve, T. Koch, and K. Hutter. Unconfined flow of granular avalanches along a partly curved surface. I. Theory. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 445, no. 1924, 1994, pp. 399-413.
25. A. Voellmy and A. Roch, Über die zerstörungskraft von lawinen. Schweizerische Bauzeitung, 73, 1955 (in German).
26. J.-T. Fischer, A. Kofler, W. Fellin, M. Granig, and K. Kleemayr. Multivariate parameter optimization for computational snow avalanche simulation. Journal of Glaciology, vol. 61, no. 229, 2015, pp. 875-888.
27. S.H.E. Tahry. K-epsilon equation for compressible reciprocating engine flows. Journal of Energy, vol. 7, no. 4, 1983, pp. 345-353.
28. B. Launder and D. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, 1974, pp. 456-460.
29. C. Hirt and B. Nichols. Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics, vol. 39, no. 1, 1981, pp. 201-225.
30. J. Ferziger and M. Peric. Computational methods for fluid dynamics, 3rd edition. Springer, 2002, 426 p.
31. K. Hakonardottir, A. Hogg, T. Johannesson, M. Kern, and F. Tiefenbacher. Large-scale avalanche braking mound and catching dam experiments with snow: A study of the airborne jet. Surveys in Geophysics, vol. 24, no. 5-6, 2003, pp. 543-554.
32. C. Jaedicke, M. Kern, P. Gauer, M.-A. Baillifard, and K. Platzer. Chute experiments on slushflow dynamics. In Proc. of the 2006 International Snow Science Workshop, 2006, pp. 139-147.
33. K.H. Agustsdottir. The design of slushflow barriers: Laboratory experiments. PhD thesis, Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science, University of Iceland, 2019, 58 p.
34. R.A. Jones. The design of slushflow barriers: CFD simulations. PhD thesis, Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science, University of Iceland, 2019, 52 p.
35. M. Eglit and A. Yakubenko. Numerical modeling of slope flows entraining bottom material. Cold Regions Science and Technology, vol. 108, 2014, pp. 139-148.
36. М.Э. Эглит, А.Е. Якубенко. Влияние захвата донного материала и неньютоновской реологии на динамику турбулентных склоновых потоков. Известия Российской академии наук. Механика жидкости и газа, no. 3, 2016 г., pp. 3-15 / M.E. Eglit, A.E. Yakubenko, Effect of the bottom material capture and the non-newtonian rheology on the dynamics of turbulent downslope flows. Fluid Dynamics, vol. 51, no. 3, 2016, pp. 299-310.
37. M. Eglit and K. Demidov. Mathematical modeling of snow entrainment in avalanche motion. Cold Regions Science and Technology, vol. 43, no. 1, 2005, pp. 10-23.
38. D. Issler. Dynamically consistent entrainment laws for depth-averaged avalanche models. Journal of Fluid Mechanics, vol. 759, 2014, pp. 701-738.
39. D. Issler and M. Pastor Pérez. Interplay of entrainment and rheology in snow avalanches: A numerical study. Annals of Glaciology, vol. 52, no. 58, 2011, pp. 143-147.
40. B. Bates, N. Andreini, and C. Ancey. Basal entrainment by newtonian gravity-driven flows. Physics of Fluids, vol. 28, no. 5, 2016, article no. 053101.
41. С.С. Григорян. Новый закон трения и механизм крупномасштабных горных обвалов и оползней. Доклады Академии наук СССР, том 244, no. 4, 1979 г., pp. 846-846 / S.S. Grigoryan. A new friction law and mechanism of large-scale rock falls and mountain creeps. Doklady Akademii Nauk SSSR, vol. 244, no. 4, 1979, pp. 846-849 (in Russian).
42. K. Wardle and H. Weller. Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction. International Journal of Chemical Engineering, vol. 2013, 2013, article ID 128936, 13p.
43. V.K. Oruganti. Implementation of cavitation models into the multiphaseEulerFoam solver. In Proc. of CFD with OpenSource Software, 2017, 50 p.
Review
For citations:
ROMANOVA D.I. Architecture of Open Source Program for Numerical Modeling of Flows on Mountain Slopes. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(6):183-200. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(6)-14