Preview

Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS)

Advanced search

Numerical Smulation of Internal Waves and Effects of Accumulation of Kinetic Energy in Large Aspect Ratio Domains

https://doi.org/10.15514/ISPRAS-2020-32(6)-15

Abstract

Tidal forcing excites internal waves in the bulk of the ocean. Deep ocean is an example of a system with continuous stratification subject to large-scale periodic forcing. Owing to specific dispersion relation of internal waves, the domains bounded by sloping boundaries may support wave patterns with wave rays converging to closed trajectories (geometric attractors) as result of iterative focusing reflections. Previously the behavior of kinetic energy in wave attractors has been investigated in two-dimensional domain with comparable depth and length. As the geometric aspect ratio of the domain increases, the dynamic pattern of energy focusing may significantly evolve both in laminar and turbulent regimes. The present paper shows that the energy density in domains with large aspect ratio can significantly increase. In numerical simulations the input forcing has been introduced at global scale by prescribing small-amplitude deformations of the upper bound of the liquid domain. The evolution of internal wave motion in such system has been computed numerically for different values of the forcing amplitude. The behavior of the large-aspect-ratio system has been compared to the well-studied case of the system with depth-to-length ratio of order unity. A number of most typical situations has been analysed in terms of behavior of integral mechanical quantities such as total dissipation, mean kinetic energy and energy fluctuations in laminar and turbulent cases.

About the Authors

Stepan Alekseevich ELISTRATOV
Lomonosov Moscow State University
Russian Federation
Student


Kirill Alexandrovich VATUTIN
Lomonosov Moscow State University, Ivannikov Institute for System Programming of the Russian Academy of Sciences
Russian Federation
PhD Student


Ilias Nailevich SIBGATULLIN
Lomonosov Moscow State University, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Shirshov Oceanology Institute of Russian Academy of Sciences
Russian Federation
Senior researcher, PhD


Evgeniy Valerievich ERMANYUK
Lavrentyev Institute of Hydrodynamics
Russian Federation
Director of the institute, doctor, professor


Evgeny Aleksandrovich MIKHAILOV
Lomonosov Moscow State University
Russian Federation
Assistant professor, Ph.D.


References

1. Garrett C.J.R., Munk W. H. Internal waves in the ocean. Annual Review of Fluid Mechanics, vol. 11. 1979, pp. 339-369.

2. Maas L.R. M., Lam F.P.A. Geometric focusing of internal waves. Journal of Fluid Mechanics, vol. 300, 1995, pp. 1-41.

3. Maas L. R.M., Benielli D., Sommeria J., Lam F.P.A. Tidally generated internal-wave attractors between double ridges. Nature, vol. 388, 1997, pp. 557-561.

4. Scolan H., Ermanyuk E., Dauxois T. Nonlinear Fate of Internal Wave Attractors. Physical Review Letters, vol. 110, 2013, article id 234501.

5. Maas L.R.M. Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. Journal of Fluid Mechanics, vol. 437, 2001, pp. 13-28.

6. Grisouard N., Staquet C., Pairaud I. Numerical simulation of a two-dimensional internal wave attractor. Journal of Fluid Mechanics, vol. 614, 2008, pp. 1-14.

7. Hazewinkel J., Grisouard N., Dalziel S. B. Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. European Journal of Mechanics – B/Fluids, vol. 30, issue 1, 2011, pp. 51-56.

8. Брузе К., Доксуа Т., Ерманюк Е. и др. Прямое численное моделирование аттракторов внутренних волн стратифицированной жидкости в трапецеидальной области с колеблющейся вертикальной стенкой. Труды ИСП РАН, том 25, вып. 5, 2014 г., стр. 117-142 / Brouzet C., Dauxois T., Ermanyuk E. et al. Direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating vertical wall. Trudy ISP RAN/Proc. ISP RAS, vol. 25, issue 5, 2014, pp. 117-142 (in Russian). DOI: 10.15514/ISPRAS-2014-26(5)-6.

9. Beckebanze F., Brouzet C., Sibgatullin I.N., Maas L.R.M. Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction. Journal of Fluid Mechanics, vol. 841, 2018, pp. 614-635.

10. Сибгатуллин И.Н., Ерманюк Е.В., Ватутин К.А., Рязанов Д.А., Сюй С. Численное моделирование трехмерных волновых аттракторов. Океанологические исследования, vol. 47, № 1, 2019 г., стр. 112-115 / Sibgatullin I.N., Ermanyuk E.V., Vatutin K.A., Ryazanov D.A., Xu X. Numerical simulation of three-dimensional wave attractors. Journal of Oceanological Research, vol. 47, № 1, 2019, pp. 112-115 (in Russian).

11. Провидухина М., Сибгатуллин И. Применение спектральных методов обработки данных к результатам численного моделирования аттракторов внутренних волн. Труды ИСП РАН, том 28, вып. 1, 2016 г., стр. 275-282 / Providukhina M., Sibgatullin I. Application of statisticaland spectral methods to computational modeling of internal wave attractors. Trudy ISP RAN/Proc. ISP RAS, 2016, vol. 28, issue 1, pp. 275-282 (in Russian). DOI: 10.15514/ISPRAS-2016-28(1)-16.

12. Сибгатуллин И.Н., Ерманюк Е.В. Аттракторы внутренних и инерционных волн (обзор). Прикладная механика и техническая физика, № 2, 2019 г., стр. 113-136 / Sibgatullin I.N., Ermanyuk E.V. Internal and inertial wave attractors: a review. Journal of Applied Mechanics and Technical Physics, № 2, 2019, pp. 113-136 (in Russian).

13. Kuznetsova D. V., Sibgatullin I. N. Transitional regimes of penetrative convection in a plane layer. Fluid Dynamics Research, vol. 44, no. 3, 2012, article id 031410.

14. Fischer P., Ronquist E. Spectral element methods for large scale parallel Navier-Stokes calculations, Computer Methods. Applied Mechanics and Engineering, vol. 116, issue 1-4, 1994, pp. 69-76.

15. Spiegel E.A., Veronis G. On the Boussinesq Approximation for a Compressible Fluid. Astrophysical Journal, vol. 131, p. 442.

16. Huang Ν.Ε. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of The Royal Society A. Mathematical Physical and Engineering Sciences, vol. 454, 1998, pp. 903-995.

17. Рязанов Д.А., Провидухина М.И., Сибгатуллин И.Н., Ерманюк Е. В. Бигармонические аттракторы внутренних гравитационных волн. Механика жидкости и газа, принята в печать, 2020.

18. Dauxois T., Joubaud S., Odier P., Vanaille A. Instabilities of internal gravity wave beams. Annual Review of Fluid Mechanics, vol. 50, 2018, pp. 131–156.

19. Allen J.B. Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, issue 3, 1977, pp. 235–238.

20. Jacobsen Ε., Lyons R. The sliding DFT. Signal Processing Magazine, vol. 20, issue 2, 2003, pp. 74–80

21. Nazarenko S. Wave turbulence. Springer, 2011, 295 p.

22. Koudella C. R., Staquet C. Instability mechanisms of a two-dimensional progressive internal gravity wave. Journal of Fluid Mechanics, vol. 548, 2006, pp. 165–196.

23. Sutherland B. R. Internal wave instability: wave-wave and wave-induced mean flow interactions. Physics of Fluids, vol. 18, issue 7, 2006, article id 074107.

24. Bourget B., Dauxois T., Joubaud S., Odier P. Experimental study of parametric subharmonic instability for internal plane waves. Journal of Fluid Mechanics, vol. 723, 2013, pp. 1–20.

25. Bourget B., Scolan H., Dauxois T. et al. Finite-size effects in parametric subharmonic instability. Journal of Fluid Mechanics, vol. 759, 2014, pp. 739–750.

26. Karimi H.H., Akylas T.R. Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wave trains. Journal of Fluid Mechanics, vol. 757, 2014, pp. 381–402.

27. Brouzet C., Ermanyuk E.V., Joubaud S. et al. Internal wave attractors: different scenarios of instability. Journal of Fluid Mechanics, vol. 811, 2017, pp. 544–568.

28. Dauxois T., Ermanyuk E. V., Brouzet C. et al. Abyssal mixing in the laboratory. In The ocean in motion: circulation, waves, polar oceanography, Springer, 2018, pp. 221–237.


Review

For citations:


ELISTRATOV S.A., VATUTIN K.A., SIBGATULLIN I.N., ERMANYUK E.V., MIKHAILOV E.A. Numerical Smulation of Internal Waves and Effects of Accumulation of Kinetic Energy in Large Aspect Ratio Domains. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(6):200-212. (In Russ.) https://doi.org/10.15514/ISPRAS-2020-32(6)-15



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-8156 (Print)
ISSN 2220-6426 (Online)