Современное состояние методов расчёта глобальной освещённости в задачах реалистичной компьютерной графики
https://doi.org/10.15514/ISPRAS-2021-33(2)-1
Аннотация
Современная реалистичная компьютерная графика базируется на физически корректном моделировании распространения света. Одной из основных и трудно вычислимых задач при этом является расчет глобальной освещенности, т.е. распределения света в виртуальной сцене, учитывающий множественные отражения и рассеяния света и всевозможные виды взаимодействия его с объектами сцены. Этой проблеме посвящены сотни публикаций, описывающие десятки методов вычисления глобальной освещенности и их модификации. В данной обзорной статье мы бы хотели не просто перечислить и кратко описать эти методы, но и дать некоторую «карту» существующих работ, которая позволит читателю сориентироваться, понять их достоинства и недостатки и, тем самым, выбрать для себя подходящий базовый метод. Особое внимание уделяется таким характеристикам методов как надёжность и универсальность в отношении используемых моделей, прозрачность их верификации, возможность эффективной реализации на GPU, а также накладываемые на сцену или феномены освещённости ограничения. В отличие от существующих обзорных работ анализируется не только эффективность методов, но также их ограничения и сложность программной реализации. Кроме того, мы предоставляем результаты собственных численных экспериментов с различными методами, служащих иллюстрациями к выводам.
Об авторах
Владимир Александрович ФРОЛОВРоссия
Кандидат физико-математических наук, старший научный сотрудник ИПМ РАН, научный сотрудник факультета ВМК МГУ
Алексей Геннадьевич ВОЛОБОЙ
Россия
Ведущий научный сотрудник, доктор физико-математических наук, доцент
Сергей Валентинович ЕРШОВ
Россия
Кандидат физико-математических наук, старший научный сотрудник, доцент
Владимир Александрович ГАЛАКТИОНОВ
Россия
Главный научный сотрудник, доктор физико-математических наук, профессор
Список литературы
1. Sik M. and Krivanek J. Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation. IEEE Transactions on Visualization and Computer Graphics, vol. 26, issue 4, 2018, pp. 1821-1840.
2. Kajiya J.T. The rendering equation. ACM SIGGRAPH Computer Graphics, 1986, vol. 20, no. 4, pp. 143-150.
3. Veach E. Robust monte carlo methods for light transport simulation. Ph.D. Dissertation, Stanford University, 1998, 406 p.
4. Ershov S.V., Voloboy A.G. Calculation of MIS weights for bidirectional path tracing with photonmaps in presence of direct illumination. Mathematica Montisnigri, vol. 48, 2020, pp. 86-102.
5. Pharr M., Jakob W., and Humphreys G. Physically Based Rendering: From Theory to Implementation (3rd. ed.). Morgan Kaufmann Publishers, 2016, 1266 p.
6. Bogolepov D., Ulyanov D. GPU-Optimized Bidirectional Path Tracing. In Proc. of the 21th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. 2013, pp. 1-15.
7. Popov S., Ramamoorthi R., Durand F., Drettakis G. Probabilistic Connections for Bidirectional Path Tracing. Computer Graphics Forum, vol. 34, no. 4, 2015, pp. 75–86.
8. Walter B., Fernandez S., Arbree A. et al. A Scalable Approach to Illumination. ACM Transactions on Graphics, vol. 24, no. 3, 2005, pp. 1098-1107.
9. Moreau P., Clarber P. Importance Sampling of Many Lights on the GPU. In Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, 2019, pp. 255-283.
10. Schussler V., Heitz E., Hanika J. and Dachsbacher C. Microfacet-based normal mapping for robust Monte Carlo path tracing. ACM Transactions on Graphics, vol. 36, no. 6, 2017, pp. 1-12.
11. Baek S.H., Jeon D.S., Tong X., Kim M.H. Simultaneous acquisition of polarimetric SVBRDF and normal. ACM Transactions on Graphics, vol. 37, no. 6, 2018, pp. 1-15.
12. Bar C., Alterman M., Gkioulekas I., Levin A. A Monte Carlo framework for rendering speckle statistics in scattering media. ACM Transactions on Graphics, vol. 38, no. 4, 2019, pp. 1-22.
13. Zhdanov A., Zhdanov D., Sokolov V. et al. Problems of the realistic image synthesis in media with a gradient index of refraction. Proc. of the SPIE 11548, Optical Design and Testing X. 2020, 115480W.
14. Speierer S., Hery C., Villemin R., Jako W. Caustic Connection Strategies for Bidirectional Path Tracing. Pixar Technical Memo no. 18-01, 2018, 6 p.
15. Wenzel J. Light Transport on Path-Space Manifolds. Ph.D. Dissertation. Cornell University, 2013, 153 p.
16. Johannes H., Droske M., and Fascione L. Manifold next event estimation. Computer Graphics Forum, vol. 34, no. 4, 2015, pp. 87-97.
17. Jensen H.W. Global Illumination using Photon Maps. In Proc. of Eurographics Workshop on Rendering, 1996, pp. 21-30.
18. Hachisuka T., Ogaki S., and Jensen H.W. Progressive photon mapping. ACM Transactions on Graphics, vol. 27, no. 5, 2008, pp. 1-8.
19. Hachisuka T., and Jensen H.W. Stochastic progressive photon mapping. ACM Transactions on Graphics, vol. 28, no. 5, 2009, pp. 1-8.
20. Spencer B. and Jones M.W. Progressive photon relaxation. ACM Transactions on Graphics, vol. 32, no. 1, 2013, PP. 1-11.
21. Kaplanyan A.S., Dachsbacher C. Adaptive progressive photon mapping. ACM Transactions on Graphics, vol. 32, no. 2, 2013, pp. 1-13.
22. Suykens F., Willems Y.D. Density Control for Photon Maps. In Proc. of the Eurographics Workshop on Rendering, 2000, pp. 23-34.
23. Jarosz W., Jensen H.W., and Donner C. Advanced global illumination using photon mapping. In ACM SIGGRAPH 2008 classes (SIGGRAPH ’08), 2008, pp. 1-112.
24. Georgiev I., Krivanek J., Davidovic T., Slusallek P. Light Transport Simulation with Vertex Connection and Merging. ACM Transactions on Graphics, vol. 31, no. 6, 2012, pp. 1-10.
25. Hachisuka T., Pantaleoni J., Jensen H.W. A path space extension for robust light transport simulation. ACM Transactions on Graphics, vol. 31, no. 6, 2012, pp. 1-10.
26. Krivanek J., Georgiev I., Hachisuka T. et al. Unifying Points, Beams, and Paths in Volumetric Light Transport Simulation. ACM Transactions on Graphics, vol. 33, no. 4, 2014, pp. 1-13.
27. Kaplanyan A.S., Dachsbacher C. Path space regularization for holistic and robust light transport. Computer Graphics Forum, vol. 32, no. 2, 2013, pp. 63–72.
28. Render Legion. Corona Render System. URL: https://corona-renderer.com/, accessed 26.01.2021.
29. Изотов И. Уроки 3Ds Max. Caustics CORONA. Видеоурок на Youtube, 2018 г. / Izotov I, Lessons 3Ds Max. Caustics CORONA. Pool water with caustic in the crown. Video tutorial on Youtube. 2018.URL: https://www.youtube.com/watch?v=Nv1ULR8sMZY, accessed 26.01.2021 (in Russian).
30. Jendersie J., Rohmer K., Brüll F., Grosch T. Pixel cache light tracing. Proceedings of the Conference on Vision, Modeling and Visualization. 2017. pp. 137-144.
31. Havran V., Herzog R., Seidel H. P. Fast final gathering via reverse photon mapping. Computer Graphics Forum, vol. 24, no. 3, 2005, pp. 323-332.
32. Zhdanov A., Zhdanov D. The Backward Photon Mapping for the Realistic Image Rendering. In Proc. 30th Conf. on Computer Graphics and Machine Vision (GraphiCon 2020), CEUR Workshop Proceedings, 2020, vol. 2744, pp. 1-12.
33. Жданов Д.Д., Ершов С.В., Волобой А.Г. Адаптивный выбор глубины трассировки обратного луча в методедвунаправленной стохастической трассировки лучей. Труды 25-й Международной конференции GraphiCon, 2015 г., стр. 44–49 / Zhdanov D.D., Ershov S.V., Voloboy A.G. Adaptive estimation of backward ray trace depth for the stochastic bi-directional ray trace method. In Proc. of the 25th Anniversary International Conference GraphiCon, 2015, pp. 44-49 (in Russian).
34. Жданов А.Д., Жданов Д.Д., Бирюков Е.Д. Реалистичный рендеринг на основе прямых и обратных фотонных карт. Препринт ИПМ № 77, 2020 г., 22 стр. / Zhdanov A.D., Zhdanov D.D., Birukov Е.D. The realistic rendering with forward and backward photon mapping. KIAM Preprint № 77, 2020, 22 p. (in Russian).
35. Ershov S.V., Zhdanov D.D., Voloboy A.G., Deryabin N.B. The method of quasi-specular elements to reduce stochastic noise in illumination simulation. Light and Engineering, no. 5, 2020, pp. 39-47.
36. Zhdanov A., Zhdanov D., Galaktionov V. Realistic image synthesis with hybrid photon maps. Proceedings of the SPIE 11550, Optoelectronic Imaging and Multimedia Technology VII, 2029, 115500G.
37. Vorba J. Bidirectional Photon Mapping. In Proc. of the 15th Central European Seminar on Computer Graphics. 2011, pp. 1-8.
38. Schutte J. Vertex Connection and Merging. Rendering Equations Blog, 2018. URL: https://schuttejoe.github.io/post/vertexconnectionandmerging/, accessed 26.01.2021.
39. Chen J., Wang B., and Yong J.-H. Improved stochastic progressive photon mapping with metropolis sampling. In Proc. of the 22nd Eurographics Conference on Rendering, 2011, pp. 1205–1213.
40. Hachisuka T. and Jensen H.W. Robust adaptive photon tracing using photon path visibility. ACM Transactions on Graphics, vol. 30, no. 5, 2011, pp. 1-11.
41. Sik M., Otsu H., Hachisuka T., and Krivanek J. Robust light transport simulation via metropolised bidirectional estimators. ACM Transactions on Graphics, vol. 35, no. 6, 2016, pp. 1-12.
42. Vorba J., Hanika J., Herholz S. et al. Path guiding in production. In ACM SIGGRAPH Courses, 2019, pp. 1-77.
43. Herholz S., Elek O., Vorba J. et al. Product importance sampling for light transport path guiding. Computer Graphics Forum, vol. 35, no. 4, 2016, pp. 67-77.
44. Guo J., Bauszat P., Bikker J., Eisemann E. Primary sample space path guiding. In Proc. of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 2018, pp. 73–82.
45. Rath A., Grittmann P., Herholz S. et al. Variance-aware path guiding. ACM Transactions on Graphics, vol. 39, no. 4, 2020, pp. 1-12.
46. Muller T., Gross M., and Novik J. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum, vol. 36, no. 4, 2017, pp. 91-100.
47. Zwicker M., Jarosz W., Lehtinen J. et al. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum, vol. 34, no. 2, 2015, pp. 667-681.
48. Ershov S.V., Zhdanov D.D., Voloboy A.G., Galaktionov V.A. Two denoising algorithms for bi-directional Monte Carlo ray tracing. Mathematica Montisnigri, vol. 43, 2018, pp. 78-100.
49. Hachisuka T., Jarosz W., Weistroffer R.P. et al. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics, vol. 27, no. 3, 2008, pp. 1-10.
50. Kettunen M., Manzi M., Aittala M. et al. Gradient-domain path tracing. ACM Transactions on Graphics, vol. 34, no. 4. 2015, pp. 1-13.
51. Manzi M., Kettunen M., Aittala M. et al. Gradient-Domain Bidirectional Path Tracing. In Proc. of the Eurographics Symposium on Rendering - Experimental Ideas & Implementations, 2015, pp. 65-74.
52. Manzi M., Kettunen M., Durand F. et al. Temporal gradient-domain path tracing. ACM Transactions on Graphics, vol. 35, no. 6, 2016, pp. 1-9.
53. Hua B.S., Gruson A., Nowrouzezahrai D., Hachisuka T. Gradient-domain Photon Density Estimation. Computer Graphics Forum, vol. 36, no. 2, 2017, pp. 31-38.
54. Lehtinen J., Karras T., Laine S. et al. Gradient-domain metropolis light transport. ACM Transactions on Graphics, vol. 32, no. 4, 2013, pp. 1-12.
55. Krivanek J., Bouatouch K., Pattanaik S., Žára J. Making Radiance and Irradiance Caching Practical: Adaptive Caching and Neighbor Clamping. In Proc. of the 17th Eurographics Conference on Rendering Techniques, 2006, pp. 127–138.
56. Schwarzhaupt J., Jensen H.W., Jarosz W. Practical Hessian-based error control for irradiance caching. ACM Transactions on Graphics, vol. 31, no. 6, 2012, pp. 1-10.
57. West R., Georgiev I., Gruson A., and Hachisuka T. Continuous multiple importance sampling. ACM Transactions on Graphics, vol. 39, no. 4, 2020, pp. 1-12.
58. Bitterli B., Wyman C., Pharr M. et al. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics, vol. 39, no. 4, 2020, pp. 1-17.
59. Санжаров В.В., Фролов В.А., Галактионов В.А. Исследование технологии Nvidia RTX. Программирование, том 46, no. 4, 2020 г., стр. 65-72 / Sanzharov V.V., Frolov V.A., and Galaktionov V.A. Survey of Nvidia RTX Technology. Programming and Computer Software, vol. 46, no. 4, 2020, pp. 297–304.
60. Meister D., Boksansky J., Guthe M., Bittner J. On Ray Reordering Techniques for Faster GPU Ray Tracing. In Proc. of the Symposium on Interactive 3D Graphics and Games, 2020, pp. 1-9.
61. Van Antwerpen D. Recursive MIS Computation for Streaming BDPT on the GPU. Technical report, Delft University of Technology, 2011, 12 p.
62. Nocak J., Havran V., and Daschbacher C. Path regeneration for interactive path tracing. In Proc. of the 31st Annual Conference of the European Association for Computer Graphics – Short Papers, 2010, pp.61-64.
63. Van Antwerpen D. Unbiased physically based rendering on the GPU. M.S. Thesis, Delft University of Technology, 2011, 180 p.
64. Фролов В.А., Галактионов В.А. Регенерация путей с низкими накладными расходами. Программирование, том 42, no. 6, 2016 г., стр. 67-74 / Frolov V.A., Galaktionov V.A. Low overhead path regeneration. Programming and Computer Software, vol. 42, no. 6, 2016, pp. 382-387.
65. Fabianowski B., Dingliana J. Interactive Global Photon Mapping. Computer Graphics Forum, vol. 28, no. 4, 2009, pp. 1151–1159.
66. Garanzha K., Pantaleoni J., McAllister D. Simpler and Faster HLBVH with Work Queues. In Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, 2011, pp. 59–64.
67. Фролов В.А., Харламов А.А., Галактионов В.А., Востряков К.А. Окто-деревья со множественными ссылками в применении к реализации фотонных карт и кэша освещенности на GPU. Программирование, том 40, no. 4, 2014 г., стр. 64-73 / Frolov V.A., Kharlamov A.A., Galaktionov V.A., Vostryakov K.A. Multiple reference octrees for a GPU photon mapping and irradiance caching. Programming and Computer Software, vol. 40, no. 4, 2014, pp. 208–214.
68. Hachisuka T. and Jensen H.W. Parallel progressive photon mapping on GPUs. In Proc. of the 3rd ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia, Sketches, 2010, pp. 1-1.
69. Garanzha K., Pantaleoni J., and McAllister D. Simpler and faster HLBVH with work queues. In Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, 2011, pp. 59–64.
70. Karras T. Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees. In Proc. of the 4th ACM SIGGRAPH / Eurographics conference on High-Performance Graphics, 2012, pp. 33-37.
71. Davidovic T., Krivanek J., Hasan M., and Slusallek P. Progressive Light Transport Simulation on the GPU: Survey and Improvements. ACM Transactions on Graphics, vol. 33, no. 3, Article 29, 2014, pp. 1-19.
72. Laine S., Karras T., and Aila T. Megakernels considered harmful: wavefront path tracing on GPUs. In Proc. of the 5th High-Performance Graphics Conference, 2013, pp. 137-143.
73. Veach E., Guibas L.J. Metropolis Light Transport. In Proc. of the of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 65-76.
74. Kiivanek J, Georgiev I., Kaplanyan A.S., Canada J. Recent Advances in Light Transport Simulation: Theory and Practice. In ACM SIGGRAPH Courses, 2013, pp. 1-5.
75. Kelemen C, Szirmay-Kalos L., Antal G., Csonka F. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum, vol. 21, no. 3, 2002, pp. 531-540.
76. Ashikhmin M., Premoze S., Shirley P., Smits B. A Variance Analysis of the Metropolis Light Transport Algorithm. Computers and Graphics, vol. 25, issue 2, 2001, pp. 287-294.
77. Kaplanyan A.S., Hanika J., Dachsbacher C. The Natural-constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Transactions on Graphics, vol. 33, no. 4, 2014, pp. 1-13.
78. Hachisuka T., Kaplanyan A.S., Dachsbache C. Multiplexed Metropolis Light Transport. ACM Transactions on Graphics, vol. 33, no. 4, 2014, pp. 1-10.
79. Swendsen R.H. and Wang J.-S. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters, vol. 57, issue 21, 1986, pp. 2607–2609.
80. Kitaoka S., Kitamura Y., Kishino F. Replica exchange light transport. Computer Graphics Forum, vol. 28, no. 8, 2009, pp. 2330-2342.
81. Otsu H., Yue Y., Hou Q. et al. Replica exchange light transport on relaxed distributions. In ACM SIGGRAPH Posters, 2013, pp. 1-1.
82. Earl D.J. and Deem M.W. Parallel tempering: Theory, applications, and new perspectives. Physical Chemistry Chemical Physics, vol. 7, issue 23, 2005, pp. 3910-3916.
83. Gruson A., West R., Hachisuka T. Stratified Markov Chain Monte Carlo Light Transport. Computer Graphics Forum, vol. 39, no. 2, 2020, pp. 351-362.
84. Schmidt M., Lobachev O., Guthe M. Coherent Metropolis Light Transport on the GPU using Speculative Mutations. Journal of WSCG, vol. 24, no. 1, 2016, pp. 1-9.
85. Antwerpen D. Improving SIMD efficiency for parallel Monte Carlo light transport on the GPU. In Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics, 2011, pp. 41-50.
86. Фролов В.А., Галактионов В.А. Компактная по памяти реализация алгоритма Metropolis light transport на графических процессорах. Программирование, том 43, no. 3, 2017 г., стр. 83-92 / Frolov V.A., Galaktionov V.A. Memory compact Metropolis light transport on GPUs. Programming and Computer Software, vol. 43, no. 3, 2017, pp. 196-203.
87. Фролов В.А. Исследование алгоритма Multiplexed Metropolis Light Transport на графических процессорах. Препринт ИПМ № 267, 2018 г., 47 стр. / Frolov V.A. Investigation of Multiplexed Metropolis Light Transport on GPUs. KIAM Preprint № 267, 2018, 47 p. (in Russian).
88. Bitterli B., Jakob W., Novak J., and Jarosz W. Reversible Jump Metropolis Light Transport Using Inverse Mappings. ACM Transactions on Graphics, vol. 37, no. 1, 2017, pp. 1-12.
89. Otsu H., Kaplanyan A. S., Hanika J. et al. Fusing state spaces for markov chain Monte Carlo rendering. ACM Transactions on Graphics, vol. 36, no. 4, 2017, pp. 1-10.
90. Pantaleoni J. Charted metropolis light transport. ACM Transactions on Graphics, vol. 36, no. 4, 2017, pp. 1-14.
91. Brooks S., Gelman A., Jones G., Meng X. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo. Chapman and Hall/CRC, 2011, pp. 113-163.
92. Duane S., Kennedy A.D., Pendleton B.J., and Roweth D. Hybrid Monte Carlo. Physics Letters, vol. 195, issue 2, 1987, pp. 216–222.
93. Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv:1701.02434, 2017, 60 p.
94. Li T.-M., Lehtinen J., Ramamoorthi R. et al. Anisotropic Gaussian mutations for metropolis light transport through Hessian-Hamiltonian dynamics. ACM Transactions on Graphics, vol. 34, no. 6, 2015, pp. 1-13.
95. Girolami M., Calderhead B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 73, issue 2, 2011, pp. 123-214.
96. Luan F., Zhao S., Bala K., and Gkioulekas I. Langevin Monte Carlo rendering with gradient-based adaptation. ACM Transactions on Graphics, vol. 39, no. 4, 2020, pp. 1-16.
97. Roberts G.O., Tweedie R.L. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, vol. 2, no. 4, 1996, pp.341-363.
98. Duong M.H., Lamacz A., Peletier M.A. et al. Quantification of coarsegraining error in Langevin and overdamped Langevin dynamics. arXiv:1712.09920, 2017, 48 p.
99. Leal R.J. CppADCodeGen. Source Code Generation for Automatic Differentiation using Operator Overloading. GitHub. 2011. URL: https://github.com/joaoleal/CppADCodeGen, accessed 26.01.2021.
100. Vassilev V., Vassilev M., Penev A. et al. Clad – Automatic Differentiation Using Clang and LLVM. Journal of Physics: Conference Series, vol. 608, no. 1, 2015, pp. 1-10.
101. Nimier-David M., Vicini D., Zeltner T., and Jakob W. Mitsuba 2: a retargetable forward and inverse renderer. ACM Transactions on Graphics, vol. 38, no. 6, 2019, pp. 1-17.
102. Rioux-Lavoie D., Litalien J., Gruson A., Hachisuka T. Delayed Rejection Metropolis Light Transport. ACM Transactions on Graphics, vol. 39, no. 3, 2020, pp. 1-14.
103. Atchade Y.F. An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift. Methodology and Computing in Applied Probability, vol.8, no. 2, 2006, pp. 235-254.
104. Roberts G.O., Stramer O. Langevin diffusions and Metropolis-Hastings algorithms. Methodology and Computing in Applied Probability, vol. 4, no. 4, 2002, pp. 337-357.
105. Cline D., Talbot J., Egbert P. Energy redistribution path tracing. ACM Transactions on Graphics, vol. 24, no. 3, 2005, pp. 1186-1195.
106. Lai Y., Fan S.H., Chenney S., Dyer C. Photorealistic image rendering with population Monte-Carlo energy redistribution. In Proc. of the 18th Eurographics Conference on Rendering Techniques, 2007, pp. 287–295.
107. OTOY. Octane Render. URL: https://home.otoy.com/render/octane-render/, accessed 26.01.2021.
108. Hydra Renderer. Frolov V., Snazharov V., Trofimov M., Galaktionov V. Hydra Renderer. Open Source GPU Rendering System. GitHub, 2019. URL: https://github.com/Ray-Tracing-Systems/HydraAPI, accessed 10.02.2021.
109. Haindl M., Filip J. Spatially Varying Bidirectional Reflectance Distribution Functions. In Visual Texture: Accurate Material Appearance Measurement, Representation and Modeling, Springer, 2013, pp 119-145.
110. Zirr T., Hanika J., Dachsbacher C. Re‐Weighting Firefly Samples for Improved Finite‐Sample Monte Carlo Estimates. Computer Graphics Forum, vol. 37, no. 6, pp. 410-421.
111. Van de Woestijne J., Frederickx R., Billen N., and Dutre P. Temporal coherence for metropolis light transport. In Proc. of the Eurographics Symposium on Rendering: Experimental Ideas and Implementations, 2017, pp. 55–63.
112. Novák J. et al. Monte Carlo methods for volumetric light transport simulation // Computer Graphics Forum, vol. 37. no. 2, 2018, pp. 551-576
Рецензия
Для цитирования:
ФРОЛОВ В.А., ВОЛОБОЙ А.Г., ЕРШОВ С.В., ГАЛАКТИОНОВ В.А. Современное состояние методов расчёта глобальной освещённости в задачах реалистичной компьютерной графики. Труды Института системного программирования РАН. 2021;33(2):7-48. https://doi.org/10.15514/ISPRAS-2021-33(2)-1
For citation:
FROLOV V., VOLOBOY A.G., ERSHOV S.V., GALAKTIONOV V.A. The current state of the methods for calculating global illumination in tasks of realistic computer graphics. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(2):7-48. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(2)-1