Применение языковых моделей в задаче извлечения оценочных отношений
https://doi.org/10.15514/ISPRAS-2021-33(3)-14
Аннотация
Объемные тексты могут содержать источник и взаимосвязанной информации различных типов, передаваемых посредством отношений, некоторые из которых могут быть оценочными. Проведение анализа так их текстов требует установление подобных связей, определении их участников: события, сущности, и т.д. В данной работе исследуется применение языковых моделей BERT в задаче извлечения оценочных отношений. Для произвольного документа и списка размеченных в нем именованных сущностей, такая задача предполагает составление списка оценочных отношений между ними. Эффективность применения языковых моделей напрямую зависит от объема обучающих данных. Для увеличения объема обучающего множества применяется подход опосредованного обучения. Такое обучение подразумевает применение алгоритма автоматической разметки оценочных отношений из сторонних источников. Предложенный подход разметки оценочных отношений основан на двухэтапном применении FRAME-BASED фактора в анализе новостных документов, для: (1) составления списка оценочных пар (PAIR-BASED), (2) разметки документов с использованием PAIR-BASED и FRAME-BASED факторов. Полученная на основе такого алгоритма коллекция получила название RuAttitudes2017. Для проведения экспериментов с моделями использовался корпус новостных текстов на русском язык е RuSentRel-1.0. Применение опосредованного обучения с использованием коллекции RuAttitudes2017 повысило качество моделей на 10-13% по метрик е F1, и на 25% при сравнении с наилучшими результатами моделей на основе нейронных сетей.
Ключевые слова
Об авторе
Николай Леонидович РУСНАЧЕНКОМосковский государственный технический университет им. Н.Э. Баумана
Россия
Аспирант кафедры «Теоретической информатики и компьютерных технологий»
Список литературы
1. N. Loukachevitch и N. Rusnachenko. Extracting sentiment attitudes from analytical texts. Proceedings of International Conference on Computational Linguistics and Intellectual Technologies Dialogue-2018 (arXiv:1808.08932):459—46 8, 2018.
2. M. Mintz, S. Bills, R. Snow и D. Jurafsky. Distant supervision for relation extraction without labeled data. в Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, страницы 1003—1011. Association for Computational Linguistics, 2009.
3. R. Hoffmann, C. Zhang, X . Ling, L. Zettlemoyer и D. S. Weld. Knowledge-based weak supervision for information ex traction of overlapping relations. В Proceedings of the 49th annual meeting of the association for computational linguistics: hum an language technologies, страницы 541—550, 2011.
4. S. Vashishth, R. Joshi, S. S. Prayaga, C. Bhattacharyya и P. Talukdar. RESIDE: improving distantly-supervised neural relation extraction using side information: 1257—126 6, окт. 2018. url: http://aclweb.org/anthology/D18-1157.
5. N. Rusnachenko, N. Loukachevitch и E. Tutubalina. Distant supervision for sentiment attitude ex traction. в Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), страницы 1022—1030, Varna, Bulgaria. INCOMA Ltd., сент. 2019. doi: 10.26615/978-954-452-056-4_118. url: https://www.aclweb.org/anthology/R19-1118.
6. N. Loukachevitch и N. Rusnachenko. Sentiment frames for attitude ex traction in russian. Proceedings of International Conference on Com p utational Linguistics and Intellectual Technologies Dialogue-2020 (arXiv preprint arXiv:2006 .10973), 2020.
7. J. Devlin, M.-W. Chang, K. Lee и K. Toutanova. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
8. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser и I. Polosukhin. Attention is all you need. в Advances in neural information processing system s, страницы 5998—6 008, 2017.
9. A. Radford, K. Narasimhan, T. Salimans и I. Sutskever. Improving language understanding by generative pre-training, 2018.
10. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell и др. Language models are few-shot learners. arXiv preprint arXiv:2005.1416 5, 2020.
11. C. Alt, M. Hubner и L. Hennig. Improving relation ex traction by pre-trained language representations. arXiv preprint arXiv:1906.03088, 2019.
12. C. Sun, L. Huang и X . Qiu. Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence. в Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hum an Language Technologies, Volume 1 (Long and Short Papers), страницы 380—385, 2019.
13. Y. Kuratov и M. Arkhipov. Adaptation of deep bidirectional multilingual transformers for russian language. arXiv preprint arXiv:1905.07213, 2019.
14. S. R. Bowman, G. Angeli, C. Potts и C. D. Manning. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326 , 2015.
15. A. Conneau, G. Lample, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk и V. Stoyanov. Xnli: evaluating cross-lingual sentence representations. arXiv preprint arXiv:1809.05053, 2018.
16. K. Clark, M.-T. Luong, Q. V. Le и C. D. Manning. Electra: pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.
17. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer и V. Stoyanov. Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.116 92, 2019.
18. A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzman, E. Grave, M. Ott, L. Zettlemoyer и V. Stoyanov. Unsupervised cross-lingual representation learning at scale. arXiv p reprint arXiv:1911.02116 , 2019.
19. M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer и O. Levy. Spanbert: improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:6 4—77, 2020.
20. I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. O S´ eaghdha, S. Pad´o, M. Pennacchiotti, L. Romano и S. Szpakowicz. Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. в Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, страницы 94—99. Association for Computational Linguistics, 2009.
21. S. Wu и Y. He. Enriching pre-trained language model with entity information for relation classification. в Proceedings of the 28th ACM International Conference on Information and Knowledge Management, страницы 236 1—236 4, 2019.
22. D. Dowty. Thematic proto-roles and argument selection. language, 6 7(3):547—6 19, 1991.
23. R. Weischedel, M. Palmer, M. Marcus, E. Hovy, S. Pradhan, L. Ramshaw, N. Xue, A. Taylor, J. Kaufman, M. Franchini и др. Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia, PA, 23, 2013.
24. N. Loukachevitch, G. Lashevich и B. Dobrov. Comparing two thesaurus representations for russian. в Proceedings of Global WordNet Conference GWC, страницы 35—44, 2018.
25. N. Rusnachenko и N. Loukachevitch. Neural network approach for extracting aggregated opinions from analytical articles. International Conference on Data Analytics and Management in Data Intensive Dom ains:16 7—179, 2018.
26. N. Rusnachenko и N. Loukachevitch. Attention-based neural networks for sentiment attitude ex traction using distant supervision. в The 10th International Conference on Web Intelligence, Mining and Semantics (WIMS 2020), June 30-July 3, 2020, Biarritz, France, 2020. doi: 10.1145/3405962.3405985.
27. N. Rusnachenko и N. Loukachevitch. Studying attention models in sentiment attitude ex traction task. в Proceedings of the 25th International Conference on Natural Language and Information Systems, 2020. doi: 10.1007/978-3-030-51310-8_15.
28. N. Rusnachenko и N. Loukachevitch. Using convolutional neural networks for sentiment attitude ex traction from analytical texts. EPiC Series in Language and Linguistics, 4:1—10, 2019.
29. S. Hochreiter и J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735—1780, 1997.
30. N. Loukachevitch и A. Levchik. Creating a general russian sentiment lexicon. в Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16 ), страницы 1171—1176 , 2016.
31. K. Clark, U. Khandelwal, O. Levy и C. D. Manning. What does bert look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.
Рецензия
Для цитирования:
РУСНАЧЕНКО Н.Л. Применение языковых моделей в задаче извлечения оценочных отношений. Труды Института системного программирования РАН. 2021;33(3):199-222. https://doi.org/10.15514/ISPRAS-2021-33(3)-14
For citation:
RUSNACHENKO N.L. Language Models Application in Sentiment Attitude Extraction Task. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(3):199-222. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(3)-14