Numerical simulation of indoor microclimate using free software
https://doi.org/10.15514/ISPRAS-2021-33(5)-16
Abstract
The work is devoted to the numerical study of indoor microclimate. Accurately predicting the distributed microclimate inside the residential space equipped with a microclimate control system called the «smart house» allows to save thermal energy significantly. Mathematical modeling was carried out by means of the Navier-Stokes equation, the energy equation, the continuity equation. The system of equations used was closed using the k-w-sst turbulence model. The resulting numerical solution was performed in the Code_Saturn, which has a free license. The Salome free software package was used to build a grid. In this context, a second–order scheme (SOLU) was used to resolve the velocity field, a MULTIGRID scheme was used for the pressure field, automatic settings were used for the kinetic energy of turbulence and her dissipation and for the temperature field, the maximum number of iterations for each cycle was equal to 10000, the Solver Precision accuracy was 10-8. The SIMPLEC algorithm is used to obtain a connected solution of the momentum balance and continuity equations. The paper provides an example of numerical solution verification, which is showed the relative temperature deviation from the values obtained by other authors was no more than 0.8-1.2%. Numerical simulation of the air velocity field in the residential space showed values from 0.12 to 0.15 m/s. Based on the results of the obtained solution, an analysis of the saving of thermal energy was carried out when regulating the supply of heat.
Keywords
About the Authors
Anna Alexandrovna TSYNAEVARussian Federation
Doctor of Philosophy in Technical Sciences, Associate Professor. She is Associate Professor of the Department of Heat and Gas Supply and Ventilation
Ekaterina Alexandrovna TSYNAEVA
Russian Federation
Doctor of Philosophy in Technical Sciences, Associate Professor.She isAssociate Professor of the Department of Physical Methods in Applied Research of Ulyanovsk State University. She is Associate Professor of the Department of Heat and Gas Supply and Ventilation of Samara State Technical University
References
1. Z. Zhang, H.-S. Dou et al. Mathematical Modeling of Heat and Mass Transfer in Energy Science and Engineering. Mathematical Problems in Engineering, vol. 2013, Article ID 241646, 3 p.
2. Ю. Табунщиков, М. Бродач. Математическое моделирование и оптимизация тепловой эффективности зданий. Москва, АВОК-ПРЕСС, 2002 г., 194 стр. / Yu. Tabunshchikov, M. Brodach. Mathematical modeling and optimization of the thermal efficiency of buildings. Moscow, AVOK-PRESS, 2002, 194 p. (in Russian).
3. Code-Saturne. Available at: http://code-saturne.org, accessed 05.09.2021.
4. Open Foam. Available at: http://www.openfoam.com/, accessed 05.09.2021.
5. I. Sultanguzin, H. Toepfer et al. Mathematical modeling and control system of nearly zero energy building. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 8, no. 2, 2018, pp. 21-24.
6. Д.М. Денисихина. Оценка теплового комфорта в помещениях на основе анализа результатов математического моделирования. Вестник Томского государственного архитектурно-строительного университета, no. 3, 2015 г., стр. 183-193 / D.M. Denisikhina. Mathematical simulation of room climate parameters. Vestnik of Tomsk state university of architecture and building, no. 3, 2015, pp. 183-193 (In Russian).
7. N. Fumo, P. Mago, and R. Luck, Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy and Buildings, vol. 42, issue 12, 2010. pp. 2331-2337.
8. X. Jiang, Z. Jing et al. Modelling and operation optimization of an integrated energy based direct district water-heating system. Energy, vol. 64, 2014. pp. 375-388.
9. S. Cho, M. Zaheer-uddin. Predictive control of intermittently operated radiant floor heating systems, Energy Conversion and Management, vol. 44, issue 8, 2003. pp. 1333-1342.
10. M. Nikitin. Modeling of natural convection. In Proc. of the 2nd International Conference on Industrial Engineering, Applications and Manufacturing, 2016, pp. 1-4.
11. А. Цынаева, С. Разоренов, В. Белая. Численное исследование теплоотдачи в каналах с неглубокими подковообразными лунками. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 329-344 / A. Tsynaeva, S. Razorenov, V. Belaya. Numerical modeling of heat transfer of channel with shallow curly dimples. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017. pp. 329-344 (in Russian). DOI: 10.15514/ISPRAS-2017-29(5)-16.
12. Н. Ковальногов. Прикладная механика жидкости и газа. Ульяновск, Изд. УлГТУ, 2010 г., 219 стр. / N. Kovalnogov. Applied Mechanics of Liquid and Gas. Ulyanovsk, Ed. UlSTU, 2010, 219 p. (in Russian).
13. F. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, vol. 32, № 8, 1994, pp. 1598-1605.
14. Д.М. Денисихина. Модель человека в задачах расчета распределенных параметров микроклимата в помещении. Известия Казанского государственного архитектурно-строительного университета, no. 2, 2015 г., стр. 192-199 / D.M. Denisikhina. Human shapes for CFD simulation of thermal environment in rooms. News of the Kazan State University of Architecture and Engineering, no. 2, 2015, pp. 192-199 (in Russian).
15. D.Craft. Local energy management through mathematical modeling and optimization. PhD Thesis. Massachusetts Institute of Technology, 2004, 223 p.
16. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях / GOST 30494-2011. Residential and public buildings. Microclimate parameters for indoor enclosures (in Russian).
17. Н. Ковальногов, А. Цынаева, Е. Цынаева. Способ выбора места установки регулирующего устройства в автоматизированных системах управления отоплением. Патент на изобретение RU 2340834 C1, 2008 г. / N. Koval'nogov, A. Tsynaeva, E. Tsynaeva. Method of control system placing in automated heat control systems. Patent for invention RU 2340834 C1, 2008 (in Russian).
Review
For citations:
TSYNAEVA A.A., TSYNAEVA E.A. Numerical simulation of indoor microclimate using free software. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2021;33(5):259-270. (In Russ.) https://doi.org/10.15514/ISPRAS-2021-33(5)-16